Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 553
Filter
1.
Sci Rep ; 14(1): 12228, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38806610

ABSTRACT

DNA topoisomerase II alpha (TOP2A) expression, gene alterations, and enzyme activity have been studied in various malignant tumors. Abnormal elevation of TOP2A expression is considered to be related to the development of non-small cell lung cancer (NSCLC). However, its association with tumor metastasis and its mode of action remains unclear. Bioinformatics, real-time quantitative PCR, immunohistochemistry and immunoblotting were used to detect TOP2A expression in NSCLC tissues and cells. Cell migration and invasion assays as well as cytoskeletal staining were performed to analyze the effects of TOP2A on the motility, migration and invasion ability of NSCLC cells. Cell cycle and apoptosis assays were used to verify the effects of TOP2A on apoptosis as well as cycle distribution in NSCLC. TOP2A expression was considerably upregulated in NSCLC and significantly correlated with tumor metastasis and the occurrence of epithelial-mesenchymal transition (EMT) in NSCLC. Additionally, by interacting with the classical ligand Wnt3a, TOP2A may trigger the canonical Wnt signaling pathway in NSCLC. These observations suggest that TOP2A promotes EMT in NSCLC by activating the Wnt/ß-catenin signaling pathway and positively regulates malignant events in NSCLC, in addition to its significant association with tumor metastasis. TOP2A promotes the metastasis of NSCLC by stimulating the canonical Wnt signaling pathway and inducing EMT. This study further elucidates the mechanism of action of TOP2A, suggesting that it might be a potential therapeutic target for anti-metastatic therapy.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Cell Movement , DNA Topoisomerases, Type II , Epithelial-Mesenchymal Transition , Gene Expression Regulation, Neoplastic , Lung Neoplasms , Poly-ADP-Ribose Binding Proteins , DNA Topoisomerases, Type II/metabolism , DNA Topoisomerases, Type II/genetics , Humans , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Lung Neoplasms/pathology , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Epithelial-Mesenchymal Transition/genetics , Poly-ADP-Ribose Binding Proteins/metabolism , Poly-ADP-Ribose Binding Proteins/genetics , Cell Movement/genetics , Cell Line, Tumor , Neoplasm Metastasis , Wnt Signaling Pathway , Apoptosis , Male , Female , Middle Aged , Wnt3A Protein/metabolism , Wnt3A Protein/genetics
2.
Front Immunol ; 15: 1358036, 2024.
Article in English | MEDLINE | ID: mdl-38690262

ABSTRACT

Background: It remains unclear whether BPIV3 infection leads to stress granules formation and whether G3BP1 plays a role in this process and in viral replication. This study aims to clarify the association between BPIV3 and stress granules, explore the effect of G3BP1 on BPIV3 replication, and provide significant insights into the mechanisms by which BPIV3 evades the host's antiviral immunity to support its own survival. Methods: Here, we use Immunofluorescence staining to observe the effect of BPIV3 infection on the assembly of stress granules. Meanwhile, the expression changes of eIF2α and G3BP1 were determined. Overexpression or siRNA silencing of intracellular G3BP1 levels was examined for its regulatory control of BPIV3 replication. Results: We identify that the BPIV3 infection elicited phosphorylation of the eIF2α protein. However, it did not induce the assembly of stress granules; rather, it inhibited the formation of stress granules and downregulated the expression of G3BP1. G3BP1 overexpression facilitated the formation of stress granules within cells and hindered viral replication, while G3BP1 knockdown enhanced BPIV3 expression. Conclusion: This study suggest that G3BP1 plays a crucial role in BPIV3 suppressing stress granule formation and viral replication.


Subject(s)
DNA Helicases , Poly-ADP-Ribose Binding Proteins , RNA Helicases , RNA Recognition Motif Proteins , Stress Granules , Virus Replication , Animals , Poly-ADP-Ribose Binding Proteins/metabolism , Poly-ADP-Ribose Binding Proteins/genetics , RNA Recognition Motif Proteins/metabolism , DNA Helicases/metabolism , DNA Helicases/genetics , RNA Helicases/metabolism , RNA Helicases/genetics , Stress Granules/metabolism , Cattle , Eukaryotic Initiation Factor-2/metabolism , Respirovirus Infections/immunology , Respirovirus Infections/metabolism , Host-Pathogen Interactions/immunology , Phosphorylation , Cell Line , Cytoplasmic Granules/metabolism
3.
Nat Commun ; 15(1): 4127, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750080

ABSTRACT

Stress granules (SGs) are induced by various environmental stressors, resulting in their compositional and functional heterogeneity. SGs play a crucial role in the antiviral process, owing to their potent translational repressive effects and ability to trigger signal transduction; however, it is poorly understood how these antiviral SGs differ from SGs induced by other environmental stressors. Here we identify that TRIM25, a known driver of the ubiquitination-dependent antiviral innate immune response, is a potent and critical marker of the antiviral SGs. TRIM25 undergoes liquid-liquid phase separation (LLPS) and co-condenses with the SG core protein G3BP1 in a dsRNA-dependent manner. The co-condensation of TRIM25 and G3BP1 results in a significant enhancement of TRIM25's ubiquitination activity towards multiple antiviral proteins, which are mainly located in SGs. This co-condensation is critical in activating the RIG-I signaling pathway, thus restraining RNA virus infection. Our studies provide a conceptual framework for better understanding the heterogeneity of stress granule components and their response to distinct environmental stressors.


Subject(s)
DNA Helicases , Poly-ADP-Ribose Binding Proteins , RNA Helicases , RNA Recognition Motif Proteins , Signal Transduction , Stress Granules , Tripartite Motif Proteins , Ubiquitin-Protein Ligases , Ubiquitination , Humans , Poly-ADP-Ribose Binding Proteins/metabolism , Poly-ADP-Ribose Binding Proteins/genetics , Tripartite Motif Proteins/metabolism , Tripartite Motif Proteins/genetics , RNA Recognition Motif Proteins/metabolism , RNA Recognition Motif Proteins/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Stress Granules/metabolism , RNA Helicases/metabolism , DNA Helicases/metabolism , DEAD Box Protein 58/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Immunity, Innate , RNA, Double-Stranded/metabolism , HEK293 Cells , HeLa Cells , Cytoplasmic Granules/metabolism , RNA Virus Infections/virology , RNA Virus Infections/metabolism , RNA Virus Infections/immunology , Receptors, Immunologic/metabolism
5.
Breast Cancer ; 31(3): 417-425, 2024 May.
Article in English | MEDLINE | ID: mdl-38561479

ABSTRACT

BACKGROUND: Patients with breast cancer (BC) at advanced stages have poor outcomes because of high rate of recurrence and metastasis. Biomarkers for predicting prognosis remain to be explored. This study aimed to evaluate the relationships between circulating tumor cells (CTCs) and outcomes of BC patients. PATIENTS AND METHODS: A total of 50 female were enrolled in this study. Their diagnoses were determined by clinical characteristics, image data, and clinical pathology. CTC subtypes and TOP2A gene expression on CTCs were detected by CanPatrol™ technology and triple color in situ RNA hybridization (RNA-ISH), which divided into epithelial CTCs (eCTCs), mesenchymal CTCs (MCTCs), and hybrid CTCs (HCTCs) based on their surface markers. Hormone receptor, including estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER-2) expression, was measured by immunohistochemistry (IHC) method before treatment. The risk factors for predicting recurrence and metastasis were calculated by COX risk regression model. The progression-free survival (PFS) of patients was determined using Kaplan-Meier survival curve. RESULTS: The patients with a large tumor size (≥ 3 cm) and advanced tumor node metastasis (TNM) stages had high total CTCs (TCTCs) (P < 0.05). These patients also had high TOP2A expression level. COX risk regression analysis indicated that TOP2A expression levels in TCTCs, ER + , HER-2 + , and TNM stages were critical risk factors for recurrence and metastasis of patients (P < 0.05). The PFS of patients with ≥ 5 TCTCs, ≥ 3 HCTCs, and positive TOP2A expression in ≥ 3 TCTCs was significantly longer than that in patient with < 5 TCTCs, < 3 HCTCs, and TOP2A expression in < 3 TCTCs (P < 0.05). In contrast, the PFS of patients with positive hormone receptors (ER + , PR + , HER-2 +) also was dramatically lived longer than that in patients with negative hormone receptor expression. CONCLUSIONS: High TCTC, HCTCs, and positive TOP2A gene expression on CTCs were critical biomarkers for predicting outcomes of BC patients. Positive hormone receptor expression in BC patients has significant favor PFS.


Subject(s)
Biomarkers, Tumor , Breast Neoplasms , DNA Topoisomerases, Type II , Drug Resistance, Neoplasm , Neoplastic Cells, Circulating , Humans , Female , Neoplastic Cells, Circulating/metabolism , Neoplastic Cells, Circulating/pathology , Breast Neoplasms/pathology , Breast Neoplasms/genetics , Breast Neoplasms/drug therapy , DNA Topoisomerases, Type II/genetics , DNA Topoisomerases, Type II/metabolism , Middle Aged , Drug Resistance, Neoplasm/genetics , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Adult , Aged , Receptor, ErbB-2/metabolism , Prognosis , Receptors, Estrogen/metabolism , Poly-ADP-Ribose Binding Proteins/genetics , Poly-ADP-Ribose Binding Proteins/metabolism , Neoplasm Recurrence, Local/pathology , Neoplasm Recurrence, Local/genetics , Receptors, Progesterone/metabolism , Gene Expression Regulation, Neoplastic , Progression-Free Survival , Kaplan-Meier Estimate
6.
Vet Microbiol ; 293: 110070, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38593624

ABSTRACT

Stress granules (SGs), the main component is GTPase-activating protein-binding protein 1 (G3BP1), which are assembled during viral infection and function to sequester host and viral mRNAs and proteins, are part of the antiviral responses. In this study, we found that porcine deltacoronavirus (PDCoV) infection induced stable formation of robust SGs in cells through a PERK (protein kinase R-like endoplasmic reticulum kinase)-dependent mechanism. Overexpression of SGs marker proteins G3BP1 significantly reduced PDCoV replication in vitro, while inhibition of endogenous G3BP1 enhanced PDCoV replication. Moreover, PDCoV infected LLC-PK1 cells raise the phosphorylation level of G3BP1. By overexpression of the G3BP1 phosphorylated protein or the G3BP1 dephosphorylated protein, we found that phosphorylation of G3BP1 is involved in the regulation of PDCoV-induced inflammatory response. Taken together, our study presents a vital aspect of the host innate response to invading pathogens and reveals attractive host targets for antiviral target.


Subject(s)
DNA Helicases , Inflammation , Poly-ADP-Ribose Binding Proteins , RNA Helicases , RNA Recognition Motif Proteins , Animals , Swine , RNA Recognition Motif Proteins/genetics , RNA Recognition Motif Proteins/metabolism , Phosphorylation , Poly-ADP-Ribose Binding Proteins/metabolism , Poly-ADP-Ribose Binding Proteins/genetics , RNA Helicases/metabolism , RNA Helicases/genetics , DNA Helicases/metabolism , DNA Helicases/genetics , Virus Replication , Coronavirus/immunology , Coronavirus/physiology , Cell Line , Swine Diseases/virology , Swine Diseases/immunology , Swine Diseases/genetics , Immunity, Innate
7.
Cell Signal ; 119: 111182, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38640983

ABSTRACT

Cancer-associated Fibroblasts (CAFs) exert a tumor-promoting effect in various cancers, including breast cancer. CAFs secrete exosomes containing miRNA and proteins, influencing the tumor microenvironment. In this study, we identified CAF-derived exosomes that transport functional miR-92a from CAFs to tumor cells, thereby intensifying the aggressiveness of breast cancer. CAFs downregulate the expression of G3BP2 in breast cancer cells, and a significant elevation in miR-92a levels in CAF-derived exosomes was observed. Both in vitro and in vivo experiments demonstrate that miR-92a enhances breast cancer cell migration and invasion by directly targeting G3BP2, functioning as a tumor-promoting miRNA. We validated that the RNA-binding proteins SNRPA facilitate the transfer of CAF-derived exosomal miR-92a to breast cancer cells. The reduction of G3BP2 protein by CAF-derived exosomes releases TWIST1 into the nucleus, promoting epithelial-mesenchymal transition (EMT) and further exacerbating breast cancer progression. Moreover, CAF-derived exosomal miR-92a induces tumor invasion and metastasis in mice. Overall, our study reveals that CAF-derived exosomal miR-92a serves as a promoter in the migration and invasion of breast cancer cells by reducing G3BP2 and may represent a potential novel tumor marker for breast cancer.


Subject(s)
Breast Neoplasms , Cancer-Associated Fibroblasts , Cell Movement , Epithelial-Mesenchymal Transition , Exosomes , Gene Expression Regulation, Neoplastic , MicroRNAs , Neoplasm Invasiveness , MicroRNAs/metabolism , MicroRNAs/genetics , Humans , Exosomes/metabolism , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Breast Neoplasms/genetics , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/pathology , Female , Animals , Mice , Cell Line, Tumor , Mice, Nude , Mice, Inbred BALB C , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Poly-ADP-Ribose Binding Proteins/metabolism , Poly-ADP-Ribose Binding Proteins/genetics , Carrier Proteins/metabolism , Carrier Proteins/genetics , Neoplasm Metastasis , Twist-Related Protein 1/metabolism , Twist-Related Protein 1/genetics , RNA-Binding Proteins/metabolism
8.
Genes (Basel) ; 15(4)2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38674442

ABSTRACT

(1) Background: Cockayne syndrome (CS) is an ultra-rare multisystem disorder, classically subdivided into three forms and characterized by a clinical spectrum without a clear genotype-phenotype correlation for both the two causative genes ERCC6 (CS type B) and ERCC8 (CS type A). We assessed this, presenting a series of patients with genetically confirmed CSB. (2) Materials and Methods: We retrospectively collected demographic, clinical, genetic, neuroimaging, and serum neurofilament light-chain (sNFL) data about CSB patients; diagnostic and severity scores were also determined. (3) Results: Data of eight ERCC6/CSB patients are presented. Four patients had CS I, three patients CS II, and one patient CS III. Various degrees of ataxia and spasticity were cardinal neurologic features, with variably combined systemic characteristics. Mean age at diagnosis was lower in the type II form, in which classic CS signs were more evident. Interestingly, sNFL determination appeared to reflect clinical classification. Two novel premature stop codon and one novel missense variants were identified. All CS I subjects harbored the p.Arg735Ter variant; the milder CS III subject carried the p.Leu764Ser missense change. (4) Conclusion: Our work confirms clinical variability also in the ERCC6/CSB type, where manifestations may range from severe involvement with prenatal or neonatal onset to normal psychomotor development followed by progressive ataxia. We propose, for the first time in CS, sNFL as a useful peripheral biomarker, with increased levels compared to currently available reference values and with the potential ability to reflect disease severity.


Subject(s)
Cockayne Syndrome , DNA Helicases , DNA Repair Enzymes , Poly-ADP-Ribose Binding Proteins , Transcription Factors , Humans , Cockayne Syndrome/genetics , Cockayne Syndrome/pathology , Cockayne Syndrome/diagnosis , Poly-ADP-Ribose Binding Proteins/genetics , DNA Repair Enzymes/genetics , Female , Male , DNA Helicases/genetics , Child , Child, Preschool , Adolescent , Retrospective Studies , Adult , Infant , Genetic Association Studies , Young Adult
9.
Cells ; 13(7)2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38607030

ABSTRACT

Cockayne syndrome (CS) is a rare hereditary autosomal recessive disorder primarily caused by mutations in Cockayne syndrome protein A (CSA) or B (CSB). While many of the functions of CSB have been at least partially elucidated, little is known about the actual developmental dysregulation in this devasting disorder. Of particular interest is the regulation of cerebral development as the most debilitating symptoms are of neurological nature. We generated neurospheres and cerebral organoids utilizing Cockayne syndrome B protein (CSB)-deficient induced pluripotent stem cells derived from two patients with distinct severity levels of CS and healthy controls. The transcriptome of both developmental timepoints was explored using RNA-Seq and bioinformatic analysis to identify dysregulated biological processes common to both patients with CS in comparison to the control. CSB-deficient neurospheres displayed upregulation of the VEGFA-VEGFR2 signalling pathway, vesicle-mediated transport and head development. CSB-deficient cerebral organoids exhibited downregulation of brain development, neuron projection development and synaptic signalling. We further identified the upregulation of steroid biosynthesis as common to both timepoints, in particular the upregulation of the cholesterol biosynthesis branch. Our results provide insights into the neurodevelopmental dysregulation in patients with CS and strengthen the theory that CS is not only a neurodegenerative but also a neurodevelopmental disorder.


Subject(s)
Cockayne Syndrome , Induced Pluripotent Stem Cells , Humans , Induced Pluripotent Stem Cells/metabolism , DNA Helicases/genetics , DNA Repair Enzymes/metabolism , Cockayne Syndrome/genetics , Cockayne Syndrome/metabolism , Poly-ADP-Ribose Binding Proteins/genetics , Poly-ADP-Ribose Binding Proteins/metabolism , Brain/metabolism , Organoids/metabolism
10.
Nat Cell Biol ; 26(5): 797-810, 2024 May.
Article in English | MEDLINE | ID: mdl-38600235

ABSTRACT

Covalent DNA-protein cross-links (DPCs) are toxic DNA lesions that block replication and require repair by multiple pathways. Whether transcription blockage contributes to the toxicity of DPCs and how cells respond when RNA polymerases stall at DPCs is unknown. Here we find that DPC formation arrests transcription and induces ubiquitylation and degradation of RNA polymerase II. Using genetic screens and a method for the genome-wide mapping of DNA-protein adducts, DPC sequencing, we discover that Cockayne syndrome (CS) proteins CSB and CSA provide resistance to DPC-inducing agents by promoting DPC repair in actively transcribed genes. Consequently, CSB- or CSA-deficient cells fail to efficiently restart transcription after induction of DPCs. In contrast, nucleotide excision repair factors that act downstream of CSB and CSA at ultraviolet light-induced DNA lesions are dispensable. Our study describes a transcription-coupled DPC repair pathway and suggests that defects in this pathway may contribute to the unique neurological features of CS.


Subject(s)
Cockayne Syndrome , DNA Helicases , DNA Repair Enzymes , DNA Repair , Poly-ADP-Ribose Binding Proteins , RNA Polymerase II , Transcription, Genetic , Ubiquitination , Poly-ADP-Ribose Binding Proteins/metabolism , Poly-ADP-Ribose Binding Proteins/genetics , DNA Repair Enzymes/metabolism , DNA Repair Enzymes/genetics , Humans , DNA Helicases/metabolism , DNA Helicases/genetics , RNA Polymerase II/metabolism , RNA Polymerase II/genetics , Cockayne Syndrome/genetics , Cockayne Syndrome/metabolism , Cockayne Syndrome/pathology , DNA Damage , Ultraviolet Rays , DNA/metabolism , DNA/genetics , DNA Adducts/metabolism , DNA Adducts/genetics , Excision Repair , Transcription Factors , Receptors, Interleukin-17
11.
Nat Cell Biol ; 26(5): 770-783, 2024 May.
Article in English | MEDLINE | ID: mdl-38600236

ABSTRACT

DNA-protein crosslinks (DPCs) arise from enzymatic intermediates, metabolism or chemicals like chemotherapeutics. DPCs are highly cytotoxic as they impede DNA-based processes such as replication, which is counteracted through proteolysis-mediated DPC removal by spartan (SPRTN) or the proteasome. However, whether DPCs affect transcription and how transcription-blocking DPCs are repaired remains largely unknown. Here we show that DPCs severely impede RNA polymerase II-mediated transcription and are preferentially repaired in active genes by transcription-coupled DPC (TC-DPC) repair. TC-DPC repair is initiated by recruiting the transcription-coupled nucleotide excision repair (TC-NER) factors CSB and CSA to DPC-stalled RNA polymerase II. CSA and CSB are indispensable for TC-DPC repair; however, the downstream TC-NER factors UVSSA and XPA are not, a result indicative of a non-canonical TC-NER mechanism. TC-DPC repair functions independently of SPRTN but is mediated by the ubiquitin ligase CRL4CSA and the proteasome. Thus, DPCs in genes are preferentially repaired in a transcription-coupled manner to facilitate unperturbed transcription.


Subject(s)
DNA Helicases , DNA Repair Enzymes , DNA Repair , Poly-ADP-Ribose Binding Proteins , Proteolysis , RNA Polymerase II , Transcription, Genetic , DNA Repair Enzymes/metabolism , DNA Repair Enzymes/genetics , Humans , Poly-ADP-Ribose Binding Proteins/metabolism , Poly-ADP-Ribose Binding Proteins/genetics , DNA Helicases/metabolism , DNA Helicases/genetics , RNA Polymerase II/metabolism , RNA Polymerase II/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , DNA/metabolism , DNA/genetics , HEK293 Cells , Transcription Factors/metabolism , Transcription Factors/genetics , DNA Damage , Proteasome Endopeptidase Complex/metabolism , Carrier Proteins , Receptors, Interleukin-17
12.
Br J Cancer ; 130(9): 1493-1504, 2024 May.
Article in English | MEDLINE | ID: mdl-38448751

ABSTRACT

BACKGROUND: Paired related-homeobox 1 (PRRX1) is a transcription factor in the regulation of developmental morphogenetic processes. There is growing evidence that PRRX1 is highly expressed in certain cancers and is critically involved in human survival prognosis. However, the molecular mechanism of PRRX1 in cancer malignancy remains to be elucidated. METHODS: PRRX1 expression in human Malignant peripheral nerve sheath tumours (MPNSTs) samples was detected immunohistochemically to evaluate survival prognosis. MPNST models with PRRX1 gene knockdown or overexpression were constructed in vitro and the phenotype of MPNST cells was evaluated. Bioinformatics analysis combined with co-immunoprecipitation, mass spectrometry, RNA-seq and structural prediction were used to identify proteins interacting with PRRX1. RESULTS: High expression of PRRX1 was associated with a poor prognosis for MPNST. PRRX1 knockdown suppressed the tumorigenic potential. PRRX1 overexpressed in MPNSTs directly interacts with topoisomerase 2 A (TOP2A) to cooperatively promote epithelial-mesenchymal transition and increase expression of tumour malignancy-related gene sets including mTORC1, KRAS and SRC signalling pathways. Etoposide, a TOP2A inhibitor used in the treatment of MPNST, may exhibit one of its anticancer effects by inhibiting the PRRX1-TOP2A interaction. CONCLUSION: Targeting the PRRX1-TOP2A interaction in malignant tumours with high PRRX1 expression might provide a novel tumour-selective therapeutic strategy.


Subject(s)
DNA Topoisomerases, Type II , Epithelial-Mesenchymal Transition , Homeodomain Proteins , Poly-ADP-Ribose Binding Proteins , Humans , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , DNA Topoisomerases, Type II/genetics , DNA Topoisomerases, Type II/metabolism , Prognosis , Poly-ADP-Ribose Binding Proteins/genetics , Poly-ADP-Ribose Binding Proteins/metabolism , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Mice , Animals , Nerve Sheath Neoplasms/genetics , Nerve Sheath Neoplasms/pathology , Nerve Sheath Neoplasms/metabolism , Signal Transduction
13.
Breast Cancer Res Treat ; 205(2): 267-279, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38453781

ABSTRACT

PURPOSE: Previous studies have reported the benefit of dual HER2-targeting combined to neoadjuvant chemotherapy in HER2-amplified breast cancer (HER2 + BC). Moreover, besides the cardiac toxicity following their association to Trastuzumab, anthracyclines chemotherapy may not profit all patients. The NeoTOP study was designed to evaluate the complementary action of Trastuzumab and Pertuzumab, and the relevance of an anthracycline-based regimen according to TOP2A amplification status. METHODS: Open-label, multicentre, phase II study. Eligible patients were aged ≥ 18 with untreated, operable, histologically confirmed HER2 + BC. After centralized review of TOP2A status, TOP2A-amplified (TOP2A+) patients received FEC100 for 3 cycles then 3 cycles of Trastuzumab (8 mg/kg then 6 mg/kg), Pertuzumab (840 mg/kg then 420 mg/kg), and Docetaxel (75mg/m2 then 100mg/m2). TOP2A-not amplified (TOP2A-) patients received 6 cycles of Docetaxel (75mg/m2) and Carboplatin (target AUC 6 mg/ml/min) plus Trastuzumab and Pertuzumab. Primary endpoint was pathological Complete Response (pCR) using Chevallier's classification. Secondary endpoints included pCR (Sataloff), Progression-Free Survival (PFS), Overall Survival (OS), and toxicity. RESULTS: Out of 74 patients, 41 and 33 were allocated to the TOP2A + and TOP2A- groups respectively. pCR rates (Chevallier) were 74.4% (95%CI: 58.9-85.4) vs. 71.9% (95%CI: 54.6-84.4) in the TOP2A + vs. TOP2A- groups. pCR rates (Sataloff), 5-year PFS and OS were 70.6% (95%CI: 53.8-83.2) vs. 61.5% (95%CI: 42.5-77.6), 82.4% (95%CI: 62.2-93.6) vs. 100% (95%CI: 74.1-100), and 90% (95%CI: 69.8-98.3) vs. 100% (95%CI: 74.1-100). Toxicity profile was consistent with previous reports. CONCLUSION: Our results showed high pCR rates with Trastuzumab and Pertuzumab associated to chemotherapy. They were similar in TOP2A + and TOP2A- groups and the current role of neoadjuvant anthracycline-based chemotherapy remains questioned. TRIAL REGISTRATION NUMBER: NCT02339532 (registered on 14/12/14).


Subject(s)
Antibodies, Monoclonal, Humanized , Antineoplastic Combined Chemotherapy Protocols , Breast Neoplasms , Carboplatin , DNA Topoisomerases, Type II , Docetaxel , Neoadjuvant Therapy , Receptor, ErbB-2 , Trastuzumab , Humans , Female , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Middle Aged , Trastuzumab/administration & dosage , Trastuzumab/adverse effects , Trastuzumab/therapeutic use , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Breast Neoplasms/mortality , Breast Neoplasms/genetics , Receptor, ErbB-2/metabolism , Adult , DNA Topoisomerases, Type II/genetics , DNA Topoisomerases, Type II/metabolism , Docetaxel/administration & dosage , Docetaxel/adverse effects , Carboplatin/administration & dosage , Carboplatin/adverse effects , Aged , Antibodies, Monoclonal, Humanized/administration & dosage , Antibodies, Monoclonal, Humanized/adverse effects , Antibodies, Monoclonal, Humanized/therapeutic use , Cyclophosphamide/administration & dosage , Fluorouracil/administration & dosage , Fluorouracil/adverse effects , Fluorouracil/therapeutic use , Poly-ADP-Ribose Binding Proteins/genetics , Anthracyclines/administration & dosage , Anthracyclines/therapeutic use , Epirubicin/administration & dosage
14.
Acta Cytol ; 68(2): 128-136, 2024.
Article in English | MEDLINE | ID: mdl-38471464

ABSTRACT

INTRODUCTION: Patients with polymerase epsilon (POLE) mutation (POLEmut) subtype, MMR-deficient (MMR-d) subtype as classified by The Cancer Genome Atlas (TCGA), and a high tumor mutation burden (TMB-high) potentially benefit from immunotherapy. However, characteristics of the cytological morphology within these populations remain unknown. METHODS: DNA extracted from formalin-fixed paraffin-embedded tissues was subjected to next-generation sequencing analysis. Genomic mutations related to gynecological cancers, TMB, and microsatellite instability were analyzed and were placed in four TCGA classification types. The following morphological cytological investigations were conducted on endometrial cancer using a liquid-based preparation method, prior to the commencement of initial treatment: (i) cytological backgrounds; (ii) differences between each count of neutrophils and lymphocytes as described below. RESULTS: Insignificant differences in the cytological background patterns of TCGA groups and TMB status were found. Although there was no significant difference in neutrophil count (p = 0.955) in the TCGA groups, POLEmut and MMR-d had significantly higher lymphocyte counts than no specific molecular profile (NSMP) (p = 0.019 and 0.037, respectively); furthermore, p53mut also tended to be significant (p = 0.064). Lymphocyte counts in TMB-high were also significantly greater than TMB-low (p = 0.002). POLEmut showed a positive correlation between TMB levels and lymphocyte counts. For predicting patients with POLEmut plus MMR-d, lymphocyte counts demonstrated a superior diagnostic accuracy of area under the curve (AUC) (0.70, 95% CI: 0.57-0.84), with a cutoff value of 26 high-power field. CONCLUSION: Lymphocyte count using liquid-based cytology for patients with endometrial cancer may predict POLEmut plus MMR-d of TCGA groups and TMB-high in those who can benefit from immunotherapy.


Subject(s)
Biomarkers, Tumor , DNA Polymerase II , Endometrial Neoplasms , Endometrium , Immunotherapy , Mutation , Humans , Female , Endometrial Neoplasms/pathology , Endometrial Neoplasms/genetics , Endometrial Neoplasms/therapy , Middle Aged , Immunotherapy/methods , Aged , Biomarkers, Tumor/genetics , Endometrium/pathology , Endometrium/immunology , DNA Polymerase II/genetics , Poly-ADP-Ribose Binding Proteins/genetics , Neutrophils/pathology , Adult , Lymphocyte Count/methods , Microsatellite Instability , Predictive Value of Tests , Aged, 80 and over , Patient Selection , DNA Mutational Analysis , Lymphocytes/pathology , Clinical Decision-Making , Cytology
15.
J Clin Invest ; 134(10)2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38451729

ABSTRACT

Development of effective strategies to manage the inevitable acquired resistance to osimertinib, a third-generation EGFR inhibitor for the treatment of EGFR-mutant (EGFRm) non-small cell lung cancer (NSCLC), is urgently needed. This study reports that DNA topoisomerase II (Topo II) inhibitors, doxorubicin and etoposide, synergistically decreased cell survival, with enhanced induction of DNA damage and apoptosis in osimertinib-resistant cells; suppressed the growth of osimertinib-resistant tumors; and delayed the emergence of osimertinib-acquired resistance. Mechanistically, osimertinib decreased Topo IIα levels in EGFRm NSCLC cells by facilitating FBXW7-mediated proteasomal degradation, resulting in induction of DNA damage; these effects were lost in osimertinib-resistant cell lines that possess elevated levels of Topo IIα. Increased Topo IIα levels were also detected in the majority of tissue samples from patients with NSCLC after relapse from EGFR tyrosine kinase inhibitor treatment. Enforced expression of an ectopic TOP2A gene in sensitive EGFRm NSCLC cells conferred resistance to osimertinib, whereas knockdown of TOP2A in osimertinib-resistant cell lines restored their susceptibility to osimertinib-induced DNA damage and apoptosis. Together, these results reveal an essential role of Topo IIα inhibition in mediating the therapeutic efficacy of osimertinib against EGFRm NSCLC, providing scientific rationale for targeting Topo II to manage acquired resistance to osimertinib.


Subject(s)
Acrylamides , Aniline Compounds , Carcinoma, Non-Small-Cell Lung , DNA Topoisomerases, Type II , Drug Resistance, Neoplasm , ErbB Receptors , Lung Neoplasms , Topoisomerase II Inhibitors , Humans , Acrylamides/pharmacology , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/enzymology , Aniline Compounds/pharmacology , ErbB Receptors/genetics , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/metabolism , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lung Neoplasms/enzymology , Lung Neoplasms/metabolism , DNA Topoisomerases, Type II/genetics , DNA Topoisomerases, Type II/metabolism , Cell Line, Tumor , Topoisomerase II Inhibitors/pharmacology , Drug Resistance, Neoplasm/genetics , Drug Resistance, Neoplasm/drug effects , Animals , Mice , Mutation , Poly-ADP-Ribose Binding Proteins/genetics , Poly-ADP-Ribose Binding Proteins/metabolism , Poly-ADP-Ribose Binding Proteins/antagonists & inhibitors , Drug Synergism , DNA Damage , Piperazines/pharmacology , Etoposide/pharmacology , Xenograft Model Antitumor Assays
16.
Nucleic Acids Res ; 52(7): 3837-3855, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38452213

ABSTRACT

CCCTC-binding factor (CTCF) binding sites are hotspots of genome instability. Although many factors have been associated with CTCF binding site fragility, no study has integrated all fragility-related factors to understand the mechanism(s) of how they work together. Using an unbiased, genome-wide approach, we found that DNA double-strand breaks (DSBs) are enriched at strong, but not weak, CTCF binding sites in five human cell types. Energetically favorable alternative DNA secondary structures underlie strong CTCF binding sites. These structures coincided with the location of topoisomerase II (TOP2) cleavage complex, suggesting that DNA secondary structure acts as a recognition sequence for TOP2 binding and cleavage at CTCF binding sites. Furthermore, CTCF knockdown significantly increased DSBs at strong CTCF binding sites and at CTCF sites that are located at topologically associated domain (TAD) boundaries. TAD boundary-associated CTCF sites that lost CTCF upon knockdown displayed increased DSBs when compared to the gained sites, and those lost sites are overrepresented with G-quadruplexes, suggesting that the structures act as boundary insulators in the absence of CTCF, and contribute to increased DSBs. These results model how alternative DNA secondary structures facilitate recruitment of TOP2 to CTCF binding sites, providing mechanistic insight into DNA fragility at CTCF binding sites.


Subject(s)
CCCTC-Binding Factor , DNA Breaks, Double-Stranded , DNA Topoisomerases, Type II , DNA , Nucleic Acid Conformation , DNA Topoisomerases, Type II/metabolism , DNA Topoisomerases, Type II/genetics , DNA Topoisomerases, Type II/chemistry , Humans , CCCTC-Binding Factor/metabolism , CCCTC-Binding Factor/genetics , Binding Sites , DNA/metabolism , DNA/chemistry , DNA/genetics , Protein Binding , Poly-ADP-Ribose Binding Proteins/metabolism , Poly-ADP-Ribose Binding Proteins/genetics , Poly-ADP-Ribose Binding Proteins/chemistry , Cell Line
17.
Cancer Biomark ; 40(1): 27-45, 2024.
Article in English | MEDLINE | ID: mdl-38393891

ABSTRACT

BACKGROUND: Our study aimed to investigate the Hub genes and their prognostic value in colorectal cancer (CRC) via bioinformatics analysis. METHODS: The data set of colorectal cancer was downloaded from the GEO database (GSE21510, GSE110224 and GSE74602) for differential expression analysis using the GEO2R tool. Hub genes were screened by protein-protein interaction (PPI) comprehensive analysis. GEPIA was used to verify the expression of Hub genes and evaluate its prognostic value. The protein expression of Hub gene in CRC was analyzed using the Human Protein Atlas database. The cBioPortal was used to analyze the type and frequency of Hub gene mutations, and the effects of mutation on the patients' prognosis. The TIMER database was used to study the correlation between Hub genes and immune infiltration in CRC. Gene set enrichment analysis (GSEA) was used to explore the biological function and signal pathway of the Hub genes and corresponding co-expressed genes. RESULTS: We identified 346 differentially expressed genes (DEGs), including 117 upregulated and 229 downregulated. Four Hub genes (AURKA, CCNB1, EXO1 and CCNA2) were selected by survival analysis and differential expression validation. The protein and mRNA expression levels of AURKA, CCNB1, EXO1 and CCNA2 were higher in CRC tissues than in adjacent tissues. There were varying degrees of immune cell infiltration and gene mutation of Hub genes, especially B cells and CD8+ T cells. The results of GSEA showed that Hub genes and their co-expressed genes mainly participated in chromosome segregation, DNA replication, translational elongation and cell cycle. CONCLUSION: Overexpression of AURKA, CCNB1, CCNA2 and EXO1 had a better prognosis for CRC and this effect was correlation with gene mutation and infiltration of immune cells.


Subject(s)
Biomarkers, Tumor , Colorectal Neoplasms , Computational Biology , Gene Expression Regulation, Neoplastic , Protein Interaction Maps , Humans , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Colorectal Neoplasms/mortality , Computational Biology/methods , Prognosis , Protein Interaction Maps/genetics , Biomarkers, Tumor/genetics , Gene Expression Profiling , Cyclin B1/genetics , Cyclin A2/genetics , Exodeoxyribonucleases/genetics , Mutation , Aurora Kinase A/genetics , Gene Regulatory Networks , Poly-ADP-Ribose Binding Proteins/genetics , Databases, Genetic , DNA Repair Enzymes
18.
Nucleic Acids Res ; 52(8): 4151-4166, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38340348

ABSTRACT

In cancer therapy, DNA intercalators are mainly known for their capacity to kill cells by inducing DNA damage. Recently, several DNA intercalators have attracted much interest given their ability to inhibit RNA Polymerase I transcription (BMH-21), evict histones (Aclarubicin) or induce chromatin trapping of FACT (Curaxin CBL0137). Interestingly, these DNA intercalators lack the capacity to induce DNA damage while still retaining cytotoxic effects and stabilize p53. Herein, we report that these DNA intercalators impact chromatin biology by interfering with the chromatin stability of RNA polymerases I, II and III. These three compounds have the capacity to induce degradation of RNA polymerase II and they simultaneously enable the trapping of Topoisomerases TOP2A and TOP2B on the chromatin. In addition, BMH-21 also acts as a catalytic inhibitor of Topoisomerase II, resembling Aclarubicin. Moreover, BMH-21 induces chromatin trapping of the histone chaperone FACT and propels accumulation of Z-DNA and histone eviction, similarly to Aclarubicin and CBL0137. These DNA intercalators have a cumulative impact on general transcription machinery by inducing accumulation of topological defects and impacting nuclear chromatin. Therefore, their cytotoxic capabilities may be the result of compounding deleterious effects on chromatin homeostasis.


Subject(s)
Chromatin , DNA Topoisomerases, Type II , Intercalating Agents , Poly-ADP-Ribose Binding Proteins , RNA Polymerase II , Chromatin/metabolism , Intercalating Agents/pharmacology , Intercalating Agents/chemistry , DNA Topoisomerases, Type II/metabolism , RNA Polymerase II/metabolism , Humans , Poly-ADP-Ribose Binding Proteins/metabolism , Poly-ADP-Ribose Binding Proteins/genetics , DNA-Binding Proteins/metabolism , High Mobility Group Proteins/metabolism , High Mobility Group Proteins/genetics , Histones/metabolism , Topoisomerase II Inhibitors/pharmacology , Transcriptional Elongation Factors/metabolism , Transcriptional Elongation Factors/genetics , Antigens, Neoplasm/metabolism , Antigens, Neoplasm/genetics , DNA Damage , DNA/metabolism , DNA/chemistry , RNA Polymerase I/metabolism , RNA Polymerase I/antagonists & inhibitors , RNA Polymerase III/metabolism , Transcription, Genetic/drug effects , Carbazoles , Diketopiperazines
19.
Adv Sci (Weinh) ; 11(16): e2306174, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38368261

ABSTRACT

Patients with concurrent intrahepatic cholangiocarcinoma (ICC) and hepatolithiasis generally have poor prognoses. Hepatolithiasis is once considered the primary cause of ICC, although recent insights indicate that bacteria in the occurrence of hepatolithiasis can promote the progression of ICC. By constructing in vitro and in vivo ICC models and patient-derived organoids (PDOs), it is shown that Escherichia coli induces the production of a novel RNA, circGLIS3 (cGLIS3), which promotes tumor growth. cGLIS3 binds to hnRNPA1 and G3BP1, resulting in the assembly of stress granules (SGs) and suppression of hnRNPA1 and G3BP1 ubiquitination. Consequently, the IKKα mRNA is blocked in SGs, decreasing the production of IKKα and activating the NF-κB pathway, which finally results in chemoresistance and produces metastatic phenotypes of ICC. This study shows that a combination of Icaritin (ICA) and gemcitabine plus cisplatin (GP) chemotherapy can be a promising treatment strategy for ICC.


Subject(s)
Bile Duct Neoplasms , Cholangiocarcinoma , Disease Progression , Escherichia coli , NF-kappa B , Stress Granules , Animals , Humans , Mice , Bile Duct Neoplasms/metabolism , Bile Duct Neoplasms/genetics , Bile Duct Neoplasms/pathology , Cholangiocarcinoma/metabolism , Cholangiocarcinoma/genetics , Cholangiocarcinoma/pathology , Disease Models, Animal , DNA Helicases , Escherichia coli/genetics , Escherichia coli/metabolism , Gemcitabine , NF-kappa B/metabolism , NF-kappa B/genetics , Poly-ADP-Ribose Binding Proteins/metabolism , Poly-ADP-Ribose Binding Proteins/genetics , RNA Helicases , RNA Recognition Motif Proteins/metabolism , RNA Recognition Motif Proteins/genetics , Signal Transduction/genetics , Stress Granules/metabolism , Stress Granules/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...