Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 13.365
Filter
1.
Molecules ; 29(9)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38731451

ABSTRACT

A novel second-generation blue fluorescent polyamidoamine dendrimer peripherally modified with sixteen 4-N,N-dimethylaninoethyloxy-1,8-naphthalimide units was synthesized. Its basic photophysical characteristics were investigated in organic solvents of different polarity. It was found that in these solvents, the dendrimer is colorless and emitted blue fluorescence with different intensities depending on their polarity. The effect of the pH of the medium on the fluorescence intensity was investigated and it was found that in the acidic medium, the fluorescence is intense and is quenched in the alkaline medium. The ability of the dendrimer to detect metal ions (Pb2+, Zn2+, Mg2+, Sn2+, Ba2+, Ni2+, Sn2+, Mn2+, Co2+, Fe3+, and Al3+) was also investigated, and it was found that in the presence of Fe3+, the fluorescent intensity was amplified more than 66 times. The antimicrobial activity of the new compound has been tested in vitro against Gram-positive B. cereus and Gram-negative P. aeruginosa. The tests were performed in the dark and after irradiation with visible light. The antimicrobial activity of the compound enhanced after light irradiation and B. cereus was found slightly more sensitive than P. aeruginosa. The increase in antimicrobial activity after light irradiation is due to the generation of singlet oxygen particles, which attack bacterial cell membranes.


Subject(s)
Dendrimers , Microbial Sensitivity Tests , Naphthalimides , Polyamines , Naphthalimides/chemistry , Naphthalimides/pharmacology , Dendrimers/chemistry , Dendrimers/pharmacology , Polyamines/chemistry , Polyamines/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Fluorescence , Pseudomonas aeruginosa/drug effects , Hydrogen-Ion Concentration , Bacillus cereus/drug effects , Light , Fluorescent Dyes/chemistry , Spectrometry, Fluorescence
2.
Sci Rep ; 14(1): 11957, 2024 05 25.
Article in English | MEDLINE | ID: mdl-38796499

ABSTRACT

Hydatidosis causes a serious health hazard to humans and animals leading to significant economic and veterinary and public health concern worldwide. The present study aimed to evaluate the in vitro and ex vivo protoscolicidal effects of synthesized poly(amidoamine), PAMAM, nanoemulsion. In this study, PAMAM was characterized through dynamic light scattering technique to investigate the particle size and zeta potential of nanoemulsified polymer. For the in vitro and ex vivo assays, we used eosin dye exclusion test and scanning electron microscope (SEM) to evaluate the effects of the prepared and characterized PAMAM nanoemulsion against protoscoleces from Echinococcus granulosus sensu lato G6 (GenBank: OQ443068.1) isolated from livers of naturally infected camels. Various concentrations (0.5, 1, 1.5 and 2 mg/mL) of PAMAM nanoemulsion at different exposure times (5, 10, 20 and 30 min) were tested against protoscolices. Our findings showed that PAMAM nanoemulsion had considerable concentration- and time-dependent protoscolicidal effect at both in vitro and ex vivo experiments. Regarding in vitro assay, PAMAM nanoemulsion had a potent protoscolicidal effect when compared with the control group with a highest protoscolicidal activity observed at the concentration of 2 mg/mL at all exposure times, such that 100% of protoscolices were killed after 20 min of exposure. Also, the mortality of protoscolices was 100% after 30 min of exposure to 1 and 1.5 mg/mL of PAMAM nanoemulsion, in vitro. Concerning ex vivo assay PAMAM nanoemulsion recorded the highest mortality rates at the concentration of 2 mg/mL (55, 99.4 and 100% at 10, 20, 30 min, respectively). Ultrastructure examination of examined protoscolices after 20 min of exposure to PAMAM nanoemulsion showed a complete loss of rostellar hooks, disruption of suckers with disorganization of hooks with partial or complete loss of them, and damage of protoscolices tegument with loss of their integrity in the form of holes and contraction of the soma region were observed in 1.5 and 2 mg/mL of PAMAM, in vitro and ex vivo, showing more damage in the in vitro conditions. It can be concluded that PAMAM nanoemulsion is a promising protoscolicidal agent offering a high protoscolicidal effect at a short exposure time. Further in vivo studies and preclinical animal trials are required to evaluate its efficacy and clinical applications against hydatid cysts.


Subject(s)
Echinococcosis , Echinococcus granulosus , Emulsions , Animals , Echinococcus granulosus/drug effects , Echinococcus granulosus/ultrastructure , Echinococcosis/drug therapy , Echinococcosis/parasitology , Polyamines/pharmacology , Polyamines/chemistry , Nanoparticles/chemistry , Particle Size , Camelus/parasitology
3.
Int J Biol Macromol ; 269(Pt 2): 132157, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38723804

ABSTRACT

Hydrogel-based wound dressings are becoming increasingly important for wound healing. Bacterial cellulose (BC) has been commonly used as wound dressings due to its good in vitro and in vivo biocompatibility. However, pure BC does not possess antibacterial properties. In this regard, polycation gel was grafted onto the BC using a surface-initiated activator regenerated by electron transfer atom transfer radical polymerization (SI-ARGET ATRP) with subsequent quaternization for antibacterial wound dressing. Dimethylethyl methacrylate (DMAEMA) was successfully polymerized on the BC surface which was confirmed by Fourier transform infrared spectroscopy and elemental analysis. The morphology structure, specific surface area, pore size, and mechanical properties were also characterized. The quaternized PDMAEMA grafted on the BC endowed it with excellent antibacterial activity against E. coli (Gram-negative) and S. aureus (Gram-positive) with a killing rate of 89.2 % and 93.4 %, respectively. The number of cells was significantly reduced on QPD/BC hydrogel, demonstrating its good anti-adhesion ability. In vitro cellular evaluation revealed that the antibacterial wound dressing exhibited good biocompatibility. Overall, this study provides a feasible method to develop antibacterial and anti-cell adhesive hydrogel, which has a promising potential for wound healing.


Subject(s)
Anti-Bacterial Agents , Bandages , Cellulose , Escherichia coli , Polyelectrolytes , Staphylococcus aureus , Wound Healing , Cellulose/chemistry , Cellulose/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Polyelectrolytes/chemistry , Polyelectrolytes/pharmacology , Escherichia coli/drug effects , Staphylococcus aureus/drug effects , Wound Healing/drug effects , Polyamines/chemistry , Polyamines/pharmacology , Hydrogels/chemistry , Hydrogels/pharmacology , Animals , Methacrylates/chemistry , Mice , Microbial Sensitivity Tests , Humans , Nylons
4.
Sensors (Basel) ; 24(10)2024 May 19.
Article in English | MEDLINE | ID: mdl-38794084

ABSTRACT

Fluorescence induced by the excitation of a fluorophore with plane-polarized light has a different polarization depending on the size of the fluorophore-containing reagent and the rate of its rotation. Based on this effect, many analytical systems have been implemented in which an analyte contained in a sample and labeled with a fluorophore (usually fluorescein) competes to bind to antibodies. Replacing antibodies in such assays with aptamers, low-cost and stable oligonucleotide receptors, is complicated because binding a fluorophore to them causes a less significant change in the polarization of emissions. This work proposes and characterizes the compounds of the reaction medium that improve analyte binding and reduce the mobility of the aptamer-fluorophore complex, providing a higher analytical signal and a lower detection limit. This study was conducted on aflatoxin B1 (AFB1), a ubiquitous toxicant contaminating foods of plant origins. Eight aptamers specific to AFB1 with the same binding site and different regions stabilizing their structures were compared for affinity, based on which the aptamer with 38 nucleotides in length was selected. The polymers that interact reversibly with oligonucleotides, such as poly-L-lysine and polyethylene glycol, were tested. It was found that they provide the desired reduction in the depolarization of emitted light as well as high concentrations of magnesium cations. In the selected optimal medium, AFB1 detection reached a limit of 1 ng/mL, which was 12 times lower than in the tris buffer commonly used for anti-AFB1 aptamers. The assay time was 30 min. This method is suitable for controlling almond samples according to the maximum permissible levels of their contamination by AFB1. The proposed approach could be applied to improve other aptamer-based analytical systems.


Subject(s)
Aflatoxin B1 , Aptamers, Nucleotide , Fluorescence Polarization , Aflatoxin B1/analysis , Aflatoxin B1/chemistry , Aptamers, Nucleotide/chemistry , Fluorescence Polarization/methods , Polyelectrolytes/chemistry , Biosensing Techniques/methods , Polyamines/chemistry , Limit of Detection , Fluorescent Dyes/chemistry
5.
Biomolecules ; 14(5)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38785938

ABSTRACT

The adsorption kinetics of human serum albumin (HSA) on bare and poly-L-arginine (PARG)-modified silica substrates were investigated using reflectometry and atomic force microscopy (AFM). Measurements were carried out at various pHs, flow rates and albumin concentrations in the 10 and 150 mM NaCl solutions. The mass transfer rate constants and the maximum protein coverages were determined for the bare silica at pH 4.0 and theoretically interpreted in terms of the hybrid random sequential adsorption model. These results were used as reference data for the analysis of adsorption kinetics at larger pHs. It was shown that the adsorption on bare silica rapidly decreased with pH and became negligible at pH 7.4. The albumin adsorption on PARG-functionalized silica showed an opposite trend, i.e., it was negligible at pH 4 and attained maximum values at pH 7.4 and 150 mM NaCl, the conditions corresponding to the blood serum environment. These results were interpreted as the evidence of a significant role of electrostatic interactions in the albumin adsorption on the bare and PARG-modified silica. It was also argued that our results can serve as useful reference data enabling a proper interpretation of protein adsorption on substrates functionalized by polyelectrolytes.


Subject(s)
Polyelectrolytes , Serum Albumin , Silicon Dioxide , Silicon Dioxide/chemistry , Adsorption , Humans , Kinetics , Hydrogen-Ion Concentration , Serum Albumin/chemistry , Polyelectrolytes/chemistry , Polyamines/chemistry , Peptides/chemistry , Microscopy, Atomic Force , Serum Albumin, Human/chemistry
6.
Int J Mol Sci ; 25(10)2024 May 15.
Article in English | MEDLINE | ID: mdl-38791426

ABSTRACT

This review describes a 50-year-long research study on the characteristics of Helianthus tuberosus L. tuber dormancy, its natural release and programmed cell death (PCD), as well as on the ability to change the PCD so as to return the tuber to a life program. The experimentation on the tuber over the years is due to its particular properties of being naturally deficient in polyamines (PAs) during dormancy and of immediately reacting to transplants by growing and synthesizing PAs. This review summarizes the research conducted in a unicum body. As in nature, the tuber tissue has to furnish its storage substances to grow vegetative buds, whereby its destiny is PCD. The review's main objective concerns data on PCD, the link with free and conjugated PAs and their capacity to switch the destiny of the tuber from a program of death to one of new life. PCD reversibility is an important biological challenge that is verified here but not reported in other experimental models. Important aspects of PA features are their capacity to change the cell functions from storage to meristematic ones and their involvement in amitosis and differentiation. Other roles reported here have also been confirmed in other plants. PAs exert multiple diverse roles, suggesting that they are not simply growth substances, as also further described in other plants.


Subject(s)
Apoptosis , Helianthus , Plant Tubers , Polyamines , Helianthus/metabolism , Helianthus/growth & development , Polyamines/metabolism , Plant Tubers/metabolism , Plant Tubers/growth & development
7.
J Colloid Interface Sci ; 669: 667-678, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38733878

ABSTRACT

HYPOTHESIS: Renal calculi (kidney stones) are mainly made by calcium oxalate and can cause different complications including malfunction of the kidney. The most important urinary stone inhibitors are citrate molecules. Unfortunately, the amount of citrate reaching the kidney after oral ingestion is low. We hypothesized that nanoparticles of polyallylamine hydrochloride (CIT-PAH) carrying citrate ions could simultaneously deliver citrates while PAH would complex oxalate triggering dissolution and removal of CaOx nanocrystals. EXPERIMENTS: We successfully prepared nanoparticles of citrate ions with polyallylamine hydrochloride (CIT-PAH), PAH with oxalate (OX-PAH) and characterize them by Small Angle X ray Scattering (SAXS), Transmission Electron Microscopy (TEM), Dynamic Light Scattering (DLS) and NMR. Dissolution of CaOx nanocrystals in presence of CIT-PAH have been followed with Wide Angle Xray Scattering (WAXS), DLS and Confocal Raman Microscopy. Raman spectroscopy was used to study the dissolution of crystals in synthetic urine samples. The release of citrate from CIT-PAH was followed by diffusion NMR. Molecular dynamics (MD) simulations were carried out to study the interaction of CIT and OX ions with PAH. FINDINGS: CIT-PAH nanoparticles dissolves CaOx nanocrystals as shown by NMR, DLS, TEM and WAXS in water and by Raman spectroscopy in artificial human urine. WAXS and Raman show that the crystal structure of CaOx disappears in the presence of CIT-PAH. DLS shows that the time required for CaOX dissolution will depend on the concentration of CIT-PAH NPs. NMR proves that citrate ions are released from the CIT PAH NPs during CaOX dissolution, MD simulations showed that oxalates exhibit a stronger interaction for PAH than citrate, explaining the removal of oxalate ions and replacement of the citrate in the polymer nanoparticles.


Subject(s)
Calcium Oxalate , Citric Acid , Nanoparticles , Polyamines , Nanoparticles/chemistry , Polyamines/chemistry , Calcium Oxalate/chemistry , Citric Acid/chemistry , Humans , Particle Size , Solubility , Molecular Dynamics Simulation , Drug Carriers/chemistry
8.
J Colloid Interface Sci ; 669: 835-843, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38749222

ABSTRACT

Wearable drug delivery systems (DDS) have made significant advancements in the field of precision medicine, offering precise regulation of drug dosage, location, and timing. The performance qualities that wearable DDS has always strived for are simplicity, efficiency, and intelligence. This paper proposes a wearable dual-drug synergistic release patch. The patch is powered by a built-in magnesium battery and utilizes a hydrogel containing viologen-based hyperbranched polyamidoamine as both a cathode material and an integrated drug reservoir. This design allows for the simultaneous release of both dexamethasone and tannic acid, overcoming the limitations of monotherapy and ensuring effective synergy for on-demand therapy. In a mouse model with praziquimod-induced psoriasis, the patch demonstrated therapeutic efficacy at a low voltage. The inflammatory skin returned to normal after 5 days with the on-demand release of dual drugs. This work provides a promising treatment option considering its straightforward construction and the therapeutic advantages of dual-drug synergy.


Subject(s)
Dexamethasone , Psoriasis , Wearable Electronic Devices , Animals , Mice , Psoriasis/drug therapy , Psoriasis/pathology , Dexamethasone/administration & dosage , Dexamethasone/pharmacology , Delayed-Action Preparations/chemistry , Tannins/chemistry , Tannins/pharmacology , Drug Liberation , Hydrogels/chemistry , Drug Delivery Systems , Transdermal Patch , Polyamines
9.
Nat Commun ; 15(1): 4272, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38769321

ABSTRACT

The mitoribosome translates mitochondrial mRNAs and regulates energy conversion that is a signature of aerobic life forms. We present a 2.2 Å resolution structure of human mitoribosome together with validated mitoribosomal RNA (rRNA) modifications, including aminoacylated CP-tRNAVal. The structure shows how mitoribosomal proteins stabilise binding of mRNA and tRNA helping to align it in the decoding center, whereas the GDP-bound mS29 stabilizes intersubunit communication. Comparison between different states, with respect to tRNA position, allowed us to characterize a non-canonical L1 stalk, and molecular dynamics simulations revealed how it facilitates tRNA transitions in a way that does not require interactions with rRNA. We also report functionally important polyamines that are depleted when cells are subjected to an antibiotic treatment. The structural, biochemical, and computational data illuminate the principal functional components of the translation mechanism in mitochondria and provide a description of the structure and function of the human mitoribosome.


Subject(s)
Mitochondrial Ribosomes , RNA, Transfer , Humans , RNA, Transfer/metabolism , RNA, Transfer/chemistry , RNA, Transfer/genetics , Mitochondrial Ribosomes/metabolism , Mitochondrial Ribosomes/chemistry , Ligands , Molecular Dynamics Simulation , RNA, Messenger/metabolism , RNA, Messenger/genetics , Mitochondria/metabolism , RNA, Ribosomal/metabolism , RNA, Ribosomal/chemistry , Ribosomal Proteins/metabolism , Ribosomal Proteins/chemistry , Guanosine Diphosphate/metabolism , Polyamines/metabolism , Polyamines/chemistry , Protein Binding
10.
Front Immunol ; 15: 1373876, 2024.
Article in English | MEDLINE | ID: mdl-38715602

ABSTRACT

Objective: The objective of this study was to investigate the impact of electro-acupuncture (EA) on sepsis-related intestinal injury and its relationship with macrophage polarization. Methods: A sepsis model was established using cecal ligation and puncture (CLP) to assess the effectiveness of EA. The extent of pathological injury was evaluated using Chiu's score, the expression of ZO-1 and Ocludin, and the impact on macrophage polarization was examined through flow cytometry and immunofluorescence staining. The expression of spermidine, one type of polyamine, and ornithine decarboxylase (ODC) was measured using ELISA and PCR. Once the efficacy was determined, a polyamine depletion model was created, and the role of polyamines was reassessed by evaluating efficacy and observing macrophage polarization. Results: EA treatment reduced the Chiu's score and increased the expression of ZO-1 and Ocludin in the intestinal tissue of septic mice. It inhibited the secretion of IL-1ß and TNF-α, promoted the polarization of M2-type macrophages, increased the secretion of IL-10, and upregulated the expression of Arg-1, spermidine, and ODC. However, after depleting polyamines, the beneficial effects of EA on alleviating intestinal tissue damage and modulating macrophage polarization disappeared. Conclusion: The mechanism underlying the alleviation of intestinal injury associated with CLP-induced sepsis by EA involves with the promotion of M2-type macrophage polarization mediated by spermidine expression.


Subject(s)
Disease Models, Animal , Electroacupuncture , Macrophages , Polyamines , Sepsis , Animals , Sepsis/therapy , Sepsis/metabolism , Sepsis/immunology , Mice , Macrophages/immunology , Macrophages/metabolism , Electroacupuncture/methods , Polyamines/metabolism , Male , Macrophage Activation , Intestines/pathology , Intestines/immunology , Mice, Inbred C57BL , Cytokines/metabolism
11.
Biomed Mater ; 19(4)2024 May 22.
Article in English | MEDLINE | ID: mdl-38729172

ABSTRACT

The sensitivity and diagnostic accuracy of magnetic resonance imaging mainly depend on the relaxation capacity of contrast agents (CAs) and their accumulated amount at the pathological region. Due to the better biocompatibility and high-spin capacity, Fe-complexes have been studied widely as an alternative to replace popular Gd-based CAs associated with potential biotoxicity. Compared with a variety of Fe complex-based CAs, such as small molecular, macrocyclic, multinuclear complexes, the form of nanoparticle exhibits outstanding longitudinal relaxation, but the clinical transformation was still limited by the inconspicuous difference of contrast between tumor and normal tissue. The enhanced effect of contrast is a positive relation as relaxation of CAs and their concentration in desired region. To specifically improve the amount of CAs accumulated in the tumor, pH-responsive polymer poly(2-ethyl-2-oxazoline) (PEOz) was modified on melanin, a ubiquitous natural pigment providing much active sites for chelating with Fe(III). The Fe(III)-Mel-PEOz we prepared could raise the tumor cell endocytosis efficiency via switching surface charge from anion to cation with the stimuli of the decreasing pH of tumor microenvironment. The change of pH has negligible effect on ther1of Fe(III)-Mel-PEOz, which is always maintained at around 1.0 mM-1s-1at 0.5 T. Moreover, Fe(III)-Mel-PEOz exhibited low cytotoxicity, and satisfactory enhancement of positive contrast effectin vivo. The excellent biocompatibility and stable relaxation demonstrate the high potential of Fe(III)-Mel-PEOz in the diagnosis of tumor.


Subject(s)
Biocompatible Materials , Contrast Media , Iron , Magnetic Resonance Imaging , Melanins , Melanins/chemistry , Hydrogen-Ion Concentration , Magnetic Resonance Imaging/methods , Contrast Media/chemistry , Animals , Biocompatible Materials/chemistry , Humans , Iron/chemistry , Mice , Cell Line, Tumor , Polyamines/chemistry , Nanoparticles/chemistry , Tumor Microenvironment
12.
Mol Biol Rep ; 51(1): 623, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38710891

ABSTRACT

BACKGROUND: An increase in cancer stem cell (CSC) populations and their resistance to common treatments could be a result of c-Myc dysregulations in certain cancer cells. In the current study, we investigated anticancer effects of c-Myc decoy ODNs loaded-poly (methacrylic acid-co-diallyl dimethyl ammonium chloride) (PMA-DDA)-coated silica nanoparticles as carriers on cancer-like stem cells (NTERA-2). METHODS AND RESULTS: The physicochemical characteristics of the synthesized nanocomposites (SiO2@PMA-DDA-DEC) were analyzed using FT-IR, DLS, and SEM techniques. UV-Vis spectrophotometer was applied to analyze the release pattern of decoy ODNs from the nanocomposite. Furthermore, uptake, cell viability, apoptosis, and cell cycle assays were used to investigate the anticancer effects of nanocomposites loaded with c-Myc decoy ODNs on NTERA-2 cancer cells. The results of physicochemical analytics demonstrated that SiO2@PMA-DDA-DEC nanocomposites were successfully synthesized. The prepared nanocomposites were taken up by NTERA-2 cells with high efficiency, and could effectively inhibit cell growth and increase apoptosis rate in the treated cells compared to the control group. Moreover, SiO2@PMA-DDA nanocomposites loaded with c-Myc decoy ODNs induced cell cycle arrest at the G0/G1 phase in the treated cells. CONCLUSIONS: The conclusion drawn from this study is that c-Myc decoy ODN-loaded SiO2@PMA-DDA nanocomposites can effectively inhibit cell growth and induce apoptosis in NTERA-2 cancer cells. Moreover, given that a metal core is incorporated into this synthetic nanocomposite, it could potentially be used in conjunction with irradiation as part of a decoy-radiotherapy combinational therapy in future investigations.


Subject(s)
Apoptosis , Cell Proliferation , Nanoparticles , Neoplastic Stem Cells , Proto-Oncogene Proteins c-myc , Humans , Apoptosis/drug effects , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/metabolism , Proto-Oncogene Proteins c-myc/metabolism , Proto-Oncogene Proteins c-myc/genetics , Cell Proliferation/drug effects , Nanoparticles/chemistry , Cell Line, Tumor , Nanocomposites/chemistry , Polyelectrolytes/chemistry , Oligodeoxyribonucleotides/pharmacology , Oligodeoxyribonucleotides/chemistry , Cell Survival/drug effects , Silicon Dioxide/chemistry , Polyamines/chemistry , Polyamines/pharmacology , Cell Cycle/drug effects
13.
J Am Chem Soc ; 146(15): 10263-10267, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38578094

ABSTRACT

Entomopathogenic fungus Metarhizium majus contains the nine-gene PPZ cluster, with ppzA, encoding a peramine-producing nonribosomal peptide synthetase, as the central component. In this work, the roles of two α-ketoglutarate, iron-dependent oxygenases encoded by the PPZ genes ppzC and ppzD were elucidated. PpzD was found to produce both trans-4-hydroxy-l-proline and trans-3-hydroxy-l-proline in a 13.1:1 ratio, yielding a key precursor for peramine biosynthesis. PpzC was found to act directly on peramine, yielding the novel analogue 8-hydroxyperamine.


Subject(s)
Heterocyclic Compounds, 2-Ring , Iron , Ketoglutaric Acids , Metarhizium , Polyamines , Multigene Family , Ferrous Compounds
14.
Int J Mol Sci ; 25(7)2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38612774

ABSTRACT

D-arginine (D-Arg) can promote embryogenic callus (EC) proliferation and increase the rate of somatic embryo induction of litchi (Litchi chinensis Sonn.), yet the mechanism underlying the processes is incompletely understood. To investigate the mechanism, physiological responses of polyamines (PAs) [putrescine (Put), spermidine (Spd), and spermine (Spm)] were investigated for D-Arg-treated litchi EC and enzyme activity related to polyamine metabolism, plant endogenous hormones, and polyamine- and embryogenic-related genes were explored. Results showed that the exogenous addition of D-Arg reduces the activity of diamine oxidase (DAO) and polyamine oxidase (PAO) in EC, reduces the production of H2O2, promotes EC proliferation, and increases the (Spd + Spm)/Put ratio to promote somatic embryo induction. Exogenous D-Arg application promoted somatic embryogenesis (SE) by increasing indole-3-acetyl glycine (IAA-Gly), kinetin-9-glucoside (K9G), and dihydrozeatin-7-glucoside (DHZ7G) levels and decreasing trans-zeatin riboside (tZR), N-[(-)-jasmonoyl]-(L)-valine (JA-Val), jasmonic acid (JA), and jasmonoyl-L-isoleucine (Ja-ILE) levels on 18 d, as well as promoting cell division and differentiation. The application of exogenous D-Arg regulated EC proliferation and somatic embryo induction by altering gene expression levels of the WRKY family, AP2/ERF family, C3H family, and C2H2 family. These results indicate that exogenous D-Arg could regulate the proliferation of EC and the SE induction of litchi by changing the biosynthesis of PAs through the alteration of gene expression pattern and endogenous hormone metabolism.


Subject(s)
Cyclopentanes , Isoleucine/analogs & derivatives , Litchi , Oxylipins , Litchi/genetics , Hydrogen Peroxide , Embryonic Development , Polyamines , Spermidine , Putrescine , Spermine , Arginine , Cell Division , Glucosides
15.
Int J Med Sci ; 21(5): 904-913, 2024.
Article in English | MEDLINE | ID: mdl-38617002

ABSTRACT

Dysregulation of cellular metabolism is a key marker of cancer, and it is suggested that metabolism should be considered as a targeted weakness of colorectal cancer. Increased polyamine metabolism is a common metabolic change in tumors. Thus, targeting polyamine metabolism for anticancer therapy, particularly polyamine blockade therapy, has gradually become a hot topic. Quercetin-3-methyl ether is a natural compound existed in various plants with diverse biological activities like antioxidant and antiaging. Here, we reported that Quercetin-3-methyl ether inhibits colorectal cancer cell viability, and promotes apoptosis in a dose-dependent and time-dependent manner. Intriguingly, the polyamine levels, including spermidine and spermine, in colorectal cancer cells were reduced upon treatment of Quercetin-3-methyl ether. This is likely resulted from the downregulation of SMOX, a key enzyme in polyamine metabolism that catalyzes the oxidation of spermine to spermidine. These findings suggest Quercetin-3-methyl ether decreases cellular polyamine level by suppressing SMOX expression, thereby inducing colorectal cancer cell apoptosis. Our results also reveal a correlation between the anti-tumor activity of Quercetin-3-methyl ether and the polyamine metabolism modulation, which may provide new insights into a better understanding of the pharmacological activity of Quercetin-3-methyl ether and how it reprograms cellular polyamine metabolism.


Subject(s)
Biological Products , Colorectal Neoplasms , Quercetin/analogs & derivatives , Humans , Polyamines , Spermidine , Spermine , Apoptosis , Colorectal Neoplasms/drug therapy
16.
BMC Genomics ; 25(1): 370, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38627628

ABSTRACT

BACKGROUND: Quinoa (Chenopodium quinoa Willd.) is valued for its nutritional richness. However, pre-harvest sprouting poses a significant threat to yield and grain quality. This study aims to enhance our understanding of pre-harvest sprouting mitigation strategies, specifically through delayed sowing and avoiding rainy seasons during quinoa maturation. The overarching goal is to identify cold-resistant varieties and unravel the molecular mechanisms behind the low-temperature response of quinoa. We employed bioinformatics and genomics tools for a comprehensive genome-wide analysis of polyamines (PAs) and ethylene synthesis gene families in quinoa under low-temperature stress. RESULTS: This involved the identification of 37 PA biosynthesis and 30 PA catabolism genes, alongside 227 ethylene synthesis. Structural and phylogenetic analyses showcased conserved patterns, and subcellular localization predictions indicated diverse cellular distributions. The results indicate that the PA metabolism of quinoa is closely linked to ethylene synthesis, with multiple genes showing an upregulation in response to cold stress. However, differential expression within gene families suggests a nuanced regulatory network. CONCLUSIONS: Overall, this study contributes valuable insights for the functional characterization of the PA metabolism and ethylene synthesis of quinoa, which emphasize their roles in plant low-temperature tolerance and providing a foundation for future research in this domain.


Subject(s)
Chenopodium quinoa , Chenopodium quinoa/genetics , Chenopodium quinoa/metabolism , Phylogeny , Temperature , Polyamines/metabolism , Ethylenes/metabolism
17.
Anal Methods ; 16(16): 2585-2596, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38606467

ABSTRACT

Excessive dietary polyamines (PAs), including putrescine (PUT), spermine (SPM), and spermidine (SPD), have become a worldwide concern due to their carcinogenicity and reduced shelf life. A modern miniaturized on-chip electromembrane extraction (EME) has been applied to extract these compounds from chicken breast samples. This method is based fundamentally on ionic compounds' electrostatic attraction, diffusion, and solubility in the acceptor phase. The chemical structure of polyamines enables their efficient extraction using an electric driving force on a microchip device. HCl solution (0.1 mol L-1) was applied as an aqueous acceptor solvent. Dispersive liquid-liquid microextraction was performed after EME to facilitate joining three-phase EME to GC-MS and improve the merit figures. The total ranges of 3.77-7.89 µg g-1, 3.48-7.02 µg g-1, and 0.78-2.20 µg g-1 were acquired as PUT, SPM and SPD concentrations in chicken breast, respectively. The results demonstrate that the level of PAs in fresh chicken breast samples is not concerning, but it may reduce the quality of chicken meat over time. This novel analytical technique has several advantages: high recovery, substantial quickness, remarkable selectivity, and good enrichment factors. This emerging method could be generalized to other studies to analyze different foodstuffs.


Subject(s)
Chickens , Gas Chromatography-Mass Spectrometry , Liquid Phase Microextraction , Polyamines , Animals , Liquid Phase Microextraction/methods , Gas Chromatography-Mass Spectrometry/methods , Polyamines/chemistry , Polyamines/analysis , Lab-On-A-Chip Devices , Meat/analysis , Membranes, Artificial
18.
Se Pu ; 42(4): 360-367, 2024 Apr.
Article in Chinese | MEDLINE | ID: mdl-38566425

ABSTRACT

The macroporous anion exchange chromatographic medium (FastSep-PAA) was prepared through grafting polyallylamine (PAA) onto polyacrylate macroporous microspheres (FastSep-epoxy). The effects of the synthesis conditions, including the PAA concentration, reaction time, and reaction solution pH, on the ion exchange (IC) of the medium were investigated in detail. When the PAA concentration, reaction time, and reaction solution pH were increased, the IC of the medium increased, and optimal synthesis conditions were then selected in combination with changes of protein binding capacity. A scanning electron microscope was used to examine the surface morphology of the medium. The medium possessed high pore connectivity. Furthermore, the pore structure of the medium was preserved after the grafting of PAA onto the macroporous microspheres. This finding demonstrates that the density of the PAA ligands does not appear to have any discernible impact on the structure of the medium; that is, no difference in the structure of the medium is observed before and after the grafting of PAA onto the microspheres. The pore size and pore-size distribution of the medium before and after grafting were determined by mercury intrusion porosimetry and the nitrogen adsorption method to investigate the relationship between pore size (measured in the range of 300-1000 nm) and protein adsorption. When the pore size of the medium was increased, its protein binding capacity did not exhibit any substantial decrease. An increase in pore size may hasten the mass transfer of proteins within the medium. Among the media prepared, that with a pore size of 400 nm exhibited the highest dynamic-binding capacity (DBC: 70.3 g/L at 126 cm/h). The large specific surface area of the medium and its increased number of protein adsorption sites appeared to positively influence its DBC. When the flow rate was increased, the protein DBC decreased in media with original pore sizes of less than 700 nm. In the case of the medium with an original pore size of 1000 nm, the protein DBC was independent of the flow rate. The protein DBC decreased by 3.5% when the flow rate was increased from 126 to 628 cm/h. In addition, the protein DBC was maintained at 57.7 g/L even when the flow velocity was 628 cm/h. This finding reveals that the diffusion rate of protein molecules at this pore size is less restricted and that the prepared medium has excellent mass-transfer performance. These results confirm that the macroporous polymer anion exchange chromatographic medium developed in this study has great potential for the high-throughput separation of proteins.


Subject(s)
Polyamines , Proteins , Chromatography, Ion Exchange/methods , Adsorption , Proteins/chemistry , Anions
19.
Redox Biol ; 72: 103151, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38593631

ABSTRACT

Salmonella infection entails a cascade of attacks and defence measures. After breaching the intestinal epithelial barrier, Salmonella is phagocytosed by macrophages, where the bacteria encounter multiple stresses, to which it employs relevant countermeasures. Our study shows that, in Salmonella, the polyamine spermidine activates a stress response mechanism by regulating critical antioxidant genes. Salmonella Typhimurium mutants for spermidine transport and synthesis cannot mount an antioxidative response, resulting in high intracellular ROS levels. These mutants are also compromised in their ability to be phagocytosed by macrophages. Furthermore, it regulates a novel enzyme in Salmonella, Glutathionyl-spermidine synthetase (GspSA), which prevents the oxidation of proteins in E. coli. Moreover, the spermidine mutants and the GspSA mutant show significantly reduced survival in the presence of hydrogen peroxide in vitro and reduced organ burden in the mouse model of Salmonella infection. Conversely, in macrophages isolated from gp91phox-/- mice, we observed a rescue in the attenuated fold proliferation previously observed upon infection. We found that Salmonella upregulates polyamine biosynthesis in the host through its effectors from SPI-1 and SPI-2, which addresses the attenuated proliferation observed in spermidine transport mutants. Thus, inhibition of this pathway in the host abrogates the proliferation of Salmonella Typhimurium in macrophages. From a therapeutic perspective, inhibiting host polyamine biosynthesis using an FDA-approved chemopreventive drug, D, L-α-difluoromethylornithine (DFMO), reduces Salmonella colonisation and tissue damage in the mouse model of infection while enhancing the survival of infected mice. Therefore, our work provides a mechanistic insight into the critical role of spermidine in stress resistance of Salmonella. It also reveals a bacterial strategy in modulating host metabolism to promote their intracellular survival and shows the potential of DFMO to curb Salmonella infection.


Subject(s)
Bacterial Proteins , Macrophages , Membrane Proteins , NADPH Oxidase 2 , Reactive Oxygen Species , Salmonella typhimurium , Spermidine , Animals , Salmonella typhimurium/metabolism , Salmonella typhimurium/drug effects , Spermidine/metabolism , Mice , Macrophages/microbiology , Macrophages/metabolism , Macrophages/drug effects , Reactive Oxygen Species/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Polyamines/metabolism , Phagocytosis/drug effects , Salmonella Infections/microbiology , Salmonella Infections/metabolism , NADPH Oxidases/metabolism , NADPH Oxidases/genetics , Host-Pathogen Interactions , Spermidine Synthase/metabolism , Spermidine Synthase/genetics , Oxidative Stress/drug effects
20.
Bull Environ Contam Toxicol ; 112(4): 64, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38622342

ABSTRACT

A fast and simple dispersive solid phase extraction method is described for nitrophenols determination in water samples by using gas chromatography-nitrogen phosphorous detector. Firstly, the Poly(amidoamine) grafted Fe3O4 magnetic nanoparticles were synthesized in different generations by successive addition of butyl acrylate and ethylenediamine. After characterization, the prepared dendrimer was utilized as an adsorbent for magnetic solid phase extraction of 2-nitrophenol, 3-nitrophenol, and 4-nitrophenol to benefit large number of surface amine interaction sites. The effects of the different parameters influencing the sample preparation efficiency were investigated. The proposed method showed linearity in the ranges of 0.04-700 and 0.05-700 µg/dm3 for nitrophenols. The obtained limits of detection and quantification under optimized conditions were 0.01-0.02 and 0.04-0.05 µg/dm3, respectively. The relative standard deviations (n = 5) were less than 3.8% (at 10 µg/dm3). Moreover, the calculated enrichment factors were above 200. In addition, the relative recoveries for a spiked river water sample were satisfactory.


Subject(s)
Dendrimers , Polyamines , Water , Magnetic Phenomena , Solid Phase Extraction/methods , Nitrophenols , Limit of Detection
SELECTION OF CITATIONS
SEARCH DETAIL
...