Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 696
Filter
1.
Chemosphere ; 359: 142294, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38734247

ABSTRACT

Development of efficient catalysts for non-thermal plasma (NTP) assisted catalysis to mitigate the formation of harmful by-products is a significant challenge in the degradation of chlorinated volatile organic compounds (Cl-VOCs). In this study, catalytically active Pt nanoparticles supported on non-porous SiO2 and silicalite-1 zeolites (S1) with different pore structure were comparatively investigated for catalytic chlorobenzene degradation under NTP condition. It was shown that the pore structure could significantly impact the metal size and metal dispersion rate. Pt supported on modified S1 hierarchical meso-micro-porous silicalite-1 (Pt/D-S1) exhibited the smallest particle size (∼6.19 nm) and the highest dispersion rate (∼1.87). Additionally, Pt/D-S1 demonstrated superior catalytic performance compared to the other catalysts, achieving the highest chlorobenzene conversion and COx selectivity at about 80% and 75%, respectively. Furthermore, the pore structure also affected the formation of by-products according to the findings from GC-MS analysis. Pt/SiO2 generated a total of 18 different species of organic compounds, whereas only 12 species of organic by-products were identified in the Pt/D-S1 system (e.g. polychlorinated compounds like 3,4 dichlorophenol were exclusively identified in Pt/SiO2). Moreover, dioxin-like polychlorinated biphenyl and other chlorinated organic compounds, which have potential to form highly toxic dioxins, were detected in the catalysts. HRGC-HRMS confirmed and quantified the 17 different dioxin/furans formed on Pt/SiO2 (25,100 ng TEQ kg-1), Pt/S1 (515 ng TEQ kg-1) and Pt/D-S1 (367 ng TEQ kg-1). The correlation between synthesis-structure-performance in this study provides insights into the design of catalysts for deep oxidation of Cl-VOCs in NTP system.


Subject(s)
Chlorobenzenes , Platinum , Polychlorinated Dibenzodioxins , Silicon Dioxide , Chlorobenzenes/chemistry , Catalysis , Platinum/chemistry , Silicon Dioxide/chemistry , Polychlorinated Dibenzodioxins/chemistry , Plasma Gases/chemistry , Zeolites/chemistry , Volatile Organic Compounds/chemistry , Metal Nanoparticles/chemistry , Benzofurans/chemistry
2.
Environ Pollut ; 350: 124011, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38641034

ABSTRACT

The clean and efficient utilization of municipal solid waste (MSW) has attracted increasing concerns in recent years. Pyrolysis of MSW is one of the promising options due to the production of high-value intermediates and the inhibition of pollutants at reducing atmosphere. Herein, the formation behavior of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) during MSW pyrolysis and incineration was experimentally investigated and compared. The influence of reaction temperature, CaO addition, and redox atmosphere on PCDD/Fs formation were compared and discussed. The results showed as the pyrolysis temperature increased, the mass concentration and international toxicity equivalence quantity of PCDD/Fs initially peaked at ∼750 °C before declining. Most of the generated PCDD/Fs were concentrated in the liquid and gaseous products, accounting for ∼90% of the total. Among liquid products, octachlorodibenzo-p-dioxin (O8CDD), 2,3,4,7,8-pentachlorodibenzofuran and 1,2,3,4,6,7,8-heptachlorodibenzofuran (H7CDF) were the most crucial mass concentration contributors, while in gas products, high-chlorinated PCDD/Fs, such as O8CDD, octachlorodibenzofuran (O8CDF) and 1,2,3,4,6,7,8-H7CDF were predominant. Compared to incineration, the formation of PCDD/Fs was 7-20 times greater than that from pyrolysis. This discrepancy can be attributed to the hydrogen-rich and oxygen-deficient atmosphere during pyrolysis, which effectively inhibited the Deacon reaction and the formation of C-Cl bonds, thereby reducing the active chlorine in the system. The addition of in-situ CaO additives also decreased the active chlorine content in the system, bolstering the inhibiting of PCDD/Fs formation during MSW pyrolysis.


Subject(s)
Calcium Compounds , Incineration , Oxidation-Reduction , Oxides , Polychlorinated Dibenzodioxins , Pyrolysis , Polychlorinated Dibenzodioxins/chemistry , Polychlorinated Dibenzodioxins/analysis , Calcium Compounds/chemistry , Oxides/chemistry , Dibenzofurans, Polychlorinated/chemistry , Temperature , Solid Waste , Air Pollutants/analysis , Air Pollutants/chemistry , Benzofurans/chemistry
3.
J Environ Manage ; 345: 118669, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37506443

ABSTRACT

Incineration technology has been widely adopted to safely dispose of hazardous waste (HW). While the incineration process causes the formation of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs). Due to its extreme toxicity, many scholars have been committed to determining the PCDD/F formation process and reducing emissions in incinerators. Previous studies ignored the impact of incineration and fluctuation of feeding materials on PCDD/F formation in hazardous waste incinerators (HWIs). In this study, differences in PCDD/F formation between HWIs and municipal solid waste incinerators (MSWIs) were pointed out. The incineration section in HWIs should be carefully considered. Laboratory experiments, conventional analysis and thermogravimetry experiments were conducted. An obvious disparity of PCDD/F formation between 12 kinds of HWs was found. Distillation residue was found with remarkably higher PCDD/F concentrations (11.57 ng/g). Except for the Cl content, aromatic rings and C-O bond organics were also found with high correlation coefficients with PCDD/F concentrations (>0.92). And PCDD/Fs were formed through a chlorination process and structure formation process. All of these are helpful to further understand the PCDD/F formation process during HW incineration, optimize the operation conditions in HWIs and reduce the emission pressure of PCDD/Fs in the future.


Subject(s)
Air Pollutants , Polychlorinated Dibenzodioxins , Dibenzofurans/analysis , Incineration , Polychlorinated Dibenzodioxins/analysis , Polychlorinated Dibenzodioxins/chemistry , Dibenzofurans, Polychlorinated/analysis , Dibenzofurans, Polychlorinated/chemistry , Hazardous Waste/analysis , Air Pollutants/analysis , Environmental Monitoring , Solid Waste/analysis
4.
Int J Mol Sci ; 24(11)2023 May 26.
Article in English | MEDLINE | ID: mdl-37298290

ABSTRACT

The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that mediates the biological and toxicological effects of structurally diverse chemicals, including halogenated aromatic hydrocarbons. In this work, we investigate the effects of the binding of the AhR prototypical ligand, TCDD, on the stability of the AhR:ARNT complex, as well as the mechanisms by which ligand-induced perturbations propagate to the DNA recognition site responsible for gene transcription. To this aim, a reliable structural model of the overall quaternary structure of the AhR:ARNT:DRE complex is proposed, based on homology modelling. The model shows very good agreement with a previous one and is supported by experimental evidence. Moreover, molecular dynamics simulations are performed to compare the dynamic behaviour of the AhR:ARNT heterodimer in the presence or absence of the TCDD. Analysis of the simulations, performed by an unsupervised machine learning method, shows that TCDD binding to the AhR PASB domain influences the stability of several inter-domain interactions, in particular at the PASA-PASB interface. The inter-domain communication network suggests a mechanism by which TCDD binding allosterically stabilizes the interactions at the DNA recognition site. These findings may have implications for the comprehension of the different toxic outcomes of AhR ligands and drug design.


Subject(s)
Polychlorinated Dibenzodioxins , Receptors, Aryl Hydrocarbon , Receptors, Aryl Hydrocarbon/metabolism , Aryl Hydrocarbon Receptor Nuclear Translocator/metabolism , Ligands , Polychlorinated Dibenzodioxins/chemistry , DNA/metabolism
5.
ACS Sens ; 8(5): 2115-2123, 2023 05 26.
Article in English | MEDLINE | ID: mdl-37183968

ABSTRACT

The fast and economical detection of trace polychlorinated dibenzo-p-dioxins (PCDDs) in food samples by current mass spectrum-based methods is hindered by tedious sample preparation and bulky & expensive analytical instruments. Surface-enhanced Raman spectroscopy (SERS) successfully detects many organic pollutants in foods but not dioxins because the employed metal nanoparticles weakly adsorb hydrophobic PCDDs. Herein, we report the detection of PCDDs in milk with SERS for the first time using a bifunctional substrate consisting of Au nanoparticles embedded in a zirconium-based metal-organic framework shell (AuNP/Zr-MOF). 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), as the most toxic PCDD, is detected as low as 1.2 parts per trillion (ppt) in real milk samples with massive interfering substances in 30 min, which is the lowest among all reported methods. The aromatic rings of Zr-MOF promote the smart accumulation of TCDD through π-π interactions, and Au-Cl interactions drive TCDD onto Au surfaces. Zr-MOF shells with pore sizes of 12.7 and 20 Å block the accessibility of larger interfering molecules. A one-step apparatus and protocol are established to be superior to traditional methods in terms of time and cost. This work provides new insight into a rational screening method for the detection of persistent organic pollutants in a real sample matrix.


Subject(s)
Dioxins , Metal Nanoparticles , Polychlorinated Dibenzodioxins , Spectrum Analysis, Raman , Gold , Polychlorinated Dibenzodioxins/chemistry
6.
Environ Pollut ; 327: 121520, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-36990339

ABSTRACT

One of the main sources of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in the environment is the sintering of iron ore. Both flue gas recirculation (FGR) and activated carbon (AC), which have the impact of decreasing both PCDD/Fs and conventional pollutants (NOx, SO2, etc.), are significant technologies for the abatement of PCDD/Fs from the sintering exhaust gas. This work involved the first measurement of PCDD/Fs emissions during FGR and a thorough analysis of the impact of PCDD/Fs reduction following the coupling of FGR and AC technologies. According to the measured data, the ratio of PCDFs to PCDDs in the sintered flue gas was 6.8, indicating that during the sintering process, the PCDD/Fs were primarily produced by de novo synthesis. Further investigation revealed that FGR initially removed 60.7% of PCDD/Fs by returning it to the high temperature bed, and AC further removed 95.2% of the remaining PCDD/Fs through physical adsorption. While AC is better at removing PCDFs and can efficiently remove tetra-to octa-chlorinated homologs, FGR is more effective at removing PCDDs and has higher removal efficiency for hexa-to octa-chlorinated PCDD/Fs. Together, they complement each other with a removal rate of 98.1%. The study's findings are instructional for the process design of combining FGR and AC technologies to reduce PCDD/Fs in the sintered flue gas.


Subject(s)
Air Pollutants , Dibenzofurans, Polychlorinated , Polychlorinated Dibenzodioxins , Air Pollutants/analysis , Air Pollutants/chemistry , Charcoal , Dibenzofurans , Dibenzofurans, Polychlorinated/analysis , Dibenzofurans, Polychlorinated/chemistry , Incineration , Iron , Polychlorinated Dibenzodioxins/analysis , Polychlorinated Dibenzodioxins/chemistry
7.
Waste Manag ; 156: 33-43, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36436406

ABSTRACT

The SN-containing inhibitors are effective for suppressing the formation of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in the post-combustion zone of municipal solid waste incineration systems, but the industrial application of the SN-containing inhibitors is restricted by the high cost and the generation of corrosive by-products (e.g., SOx). To develop cost-effective and environmentally friendly inhibitors, a new inhibition system consisting of P-based compounds (i.e., NH4H2PO4 (ADP) and KH2PO4 (PDP)) and a chlorine-deactivation material (CaO) was proposed in this study. Also, the performance of this inhibition system in terms of suppressing PCDD/Fs formation was evaluated in an experimental system which simulated PCDD/Fs generation in the post-combustion zone. Generally, the formation of PCDD/Fs was effectively suppressed by over 95 % by the mixed inhibitors (ADP/CaO and PDP/CaO) and the individual inhibitor of ADP. Based on the observation on PCDD/F-fingerprints and the chemical speciation of Cl and Cu, the mechanisms of inhibitors were identified as: (i) passivating metal catalyst by converting the speciation of Cu from chlorides and Cu2+ with high reactivities to phosphates, oxides, and Cu+ with low reactivities, and (ii) deactivating Cl by CaO to prevent the formation of organic Cl which was critical for PCDD/Fs formation. In addition, both mechanisms were supported by (i) the better performance of inhibitors on suppressing the PCDD/F-congeners formed via de novo pathway than congeners synthesized from chlorophenols and (ii) lower degrees of chlorination of PCDD/Fs for reaction systems with CaO involved than other systems.


Subject(s)
Benzofurans , Polychlorinated Dibenzodioxins , Polychlorinated Dibenzodioxins/chemistry , Dibenzofurans, Polychlorinated , Dibenzofurans , Chlorine/chemistry , Chlorides , Incineration , Adenosine Diphosphate
8.
J Appl Toxicol ; 41(2): 233-246, 2021 02.
Article in English | MEDLINE | ID: mdl-32656810

ABSTRACT

Polychlorinated dibenzo-p-dioxins (PCDDs) are hypothesized to exert their toxic effects in wildlife and humans via endocrine disruption. However, very scanty information is available on the underlying molecular interactions that trigger this disruption. In this study, molecular docking simulation was used to predict the susceptibility of 12 nuclear receptors to disruption via PCDD bindings. Findings revealed that androgen (AR and AR an), estrogen (ER α and ER ß), glucocorticoid (GR) and thyroid hormone (TR α and TR ß) receptors are the most probable protein targets that bind to PCDDs. Further molecular docking analyses showed that PCDD molecules mimic the modes of interaction observed for the co-crystallized ligands of the affected receptors, resulting in the formation of ligand-receptor complexes that were stabilized through electrostatic, van der Waals, pi-effect and hydrophobic interactions with 18, 17, 17, 16, 18, eight and four amino acid residues in the active sites of AR, AR an, ER α, ER ß, GR, TR α and TR ß respectively. The commonalities of these interacting amino acid residues with those utilized by dihydrotestosterone in AR, bicalutamide in AR an, 17ß-estradiol in ER α, 17ß-estradiol in ER ß, cortisol in GR, thyromimetic GC-1 in TR α and thyromimetic GC-1 in TR ß are 86%, 74%, 94%, 80%, 82%, 50% and 43% respectively. The results obtained in this study provide supporting evidence that PCDD molecules may interfere with the endocrine system via binding interactions with some vital amino acid residues in the binding pockets of AR, ERs, GRs and TRs.


Subject(s)
Endocrine Disruptors/chemistry , Endocrine Disruptors/toxicity , Polychlorinated Dibenzodioxins/chemistry , Polychlorinated Dibenzodioxins/toxicity , Structure-Activity Relationship , Glucocorticoids/chemistry , Humans , Molecular Docking Simulation , Receptors, Androgen/chemistry , Receptors, Estrogen/chemistry , Thyroid Hormones/chemistry
9.
Chemosphere ; 262: 128356, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33182092

ABSTRACT

Polybrominated diphenyl ethers (PBDEs) are often suspected to activate the signal transduction pathway of aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor, for the induction of toxicity. Hence, the binding property of PBDEs with AhR is assumed to be associated with the ligand-dependent activation of AhR that may introduce many drug-metabolizing enzymes of genes encoding. However, the binding mechanism and the structural effect of PBDEs on their binding properties of AhR still need to be unraveled for toxicology research. A comprehensive study of the PBDEs-AhR binding mechanism was investigated using an integrated molecular modeling approach with two-dimensional quantitative structure-activity relationships (2D-QSAR), three-dimensional QSAR (3D-QSAR), and molecular docking simulation. Molecular docking revealed the differences in binding domains among 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-AhR complex and two PBDE-AhR complexes. A 2D-QSAR model was developed to analyze the overall structural effects of PBDEs on the binding affinity of AhR. It provided an insight into major physico-chemical properties by multiple linear regression based on genetic algorithm with reasonable results. The 3D-QSAR modeling discovered the detailed interaction features of binding sites, configurations and interaction fields of AhR with different PBDE ligands. This study demonstrated that the descriptors of Smin69 and MoRSEC15 were related to electronic properties and had a great effect on the relative binding affinities. The position of Br substitutions exhibited a significant influence on the interactions between AhR and PBDEs, including halogen interaction, π-S interaction, π-π stacking interaction, and hydrophobic effect. This integrated molecular modeling approach provided a comprehensive analysis of the structural effects of PBDEs on their binding properties with AhR at molecular level.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/chemistry , Basic Helix-Loop-Helix Transcription Factors/metabolism , Halogenated Diphenyl Ethers/chemistry , Halogenated Diphenyl Ethers/metabolism , Polychlorinated Dibenzodioxins , Quantitative Structure-Activity Relationship , Receptors, Aryl Hydrocarbon/chemistry , Receptors, Aryl Hydrocarbon/metabolism , Binding Sites , Hydrophobic and Hydrophilic Interactions , Ligands , Models, Molecular , Molecular Docking Simulation , Polychlorinated Dibenzodioxins/chemistry , Polychlorinated Dibenzodioxins/metabolism , Signal Transduction
10.
Molecules ; 25(23)2020 Dec 03.
Article in English | MEDLINE | ID: mdl-33287203

ABSTRACT

All the possible polychlorinated aromatic compounds in the classes of dibenzodioxins (PCDDs), dibenzofurans (PCDFs), and biphenyls (PCBs) were studied by the quantum chemical methods of HF/6-311++G(d,p), B3LYP/6-311++G(d,p), and MP2/cc-pVTZ. The calculated stabilities and structures of these compounds were compared with the available data on their abundance and toxicity. Prediction models for trends in energy and planarity among these congeners were proposed. The results discussed here can help contribute to the understanding of the role of dioxin-like compounds (DLCs) in the environment.


Subject(s)
Biphenyl Compounds/chemistry , Dibenzofurans/chemistry , Polychlorinated Dibenzodioxins/chemistry , Benzofurans/chemistry , Dioxins/chemistry , Polychlorinated Biphenyls/chemistry
11.
Gen Comp Endocrinol ; 299: 113592, 2020 12 01.
Article in English | MEDLINE | ID: mdl-32858041

ABSTRACT

The aryl hydrocarbon receptor (AHR) plays pleiotropic roles in the development and physiology of vertebrates in conjunction with xenobiotic and endogenous ligands. It is best known for mediating the toxic effects of dioxin-like pollutants such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). While most vertebrates possess at least one AHR that binds TCDD tightly, amphibian AHRs bind TCDD with very low affinity. Previous analyses of AHRs from Xenopus laevis (a frog; order Anura) and Ambystoma mexicanum (a salamander; order Caudata) identified three amino acid residues in the ligand-binding domain (LBD) that underlie low-affinity binding. In X. laevis AHR1ß, these are A354, A370, and N325. Here we extend the analysis of amphibian AHRs to the caecilian Gymnopis multiplicata, representing the remaining extant amphibian order, Gymnophiona. G. multiplicata AHR groups with the monophyletic vertebrate AHR/AHR1 clade. The LBD includes all three signature residues of low TCDD affinity, and a structural homology model suggests that its architecture closely resembles those of other amphibians. In transactivation assays, the EC50 for reporter gene induction by TCDD was 17.17 nM, comparable to X. laevis AhR1ß (26.23 nM) and Ambystoma AHR (34.09 nM) and dramatically higher than mouse AhR (0.13 nM), a trend generally reflected in direct measures of TCDD binding. These shared properties distinguish amphibian AHRs from the high-affinity proteins typical of both vertebrate groups that diverged earlier (teleost fish) and those that appeared more recently (other tetrapods). These findings suggest the hypothesis that AHRs with low TCDD affinity represent a characteristic that evolved in a common ancestor of all three extant amphibian groups.


Subject(s)
Ambystoma mexicanum/metabolism , Polychlorinated Dibenzodioxins/metabolism , Receptors, Aryl Hydrocarbon/metabolism , Xenopus laevis/metabolism , Amino Acid Sequence , Animals , Cloning, Molecular , Ligands , Phylogeny , Polychlorinated Dibenzodioxins/chemistry , Receptors, Aryl Hydrocarbon/chemistry , Receptors, Aryl Hydrocarbon/genetics , Sequence Homology
12.
Chemosphere ; 260: 127632, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32693261

ABSTRACT

In this study, the incineration fly ash (IFA) of municipal solid waste (MSW) and municipal sewage sludge (MSS) was synergistically subjected to hydrothermal treatment coupled with pyrolysis (HTP). The regulation of Cl removal and the destruction and detoxification of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs) were investigated. The results demonstrated that during hydrothermal treatment (HTT), the Cl removal rate increased with temperature, most of the soluble chlorides were removed, and the acid dissolution of Cl in the hydro-residue was significantly reduced. At hydrothermal temperatures exceeding 180 °C, the variation in the Cl removal rate decreased. Although a certain quantity of PCDD/Fs dissolved in the hydrothermal liquid, the total destruction rate achieved by HTT remained more than 90%. The detoxification rate did not exceed 60% owing to the formation of low-chlorinated PCDD/Fs. Subsequent pyrolysis of the hydro-residue further improved the Cl removal rate, which increased with pyrolysis temperature; the Cl content of pyro-char was reduced to 1.8% and that of the leached acid was less than 0.5 mg/g at 800 °C. In addition, PCDD/Fs in tar and pyrolysis gas were not detected under optimal conditions; the PCDD/F concentration of pyro-char was reduced to 0.17 ng I-TEQ/kg. The destruction and detoxification efficiencies of PCDD/Fs reached 98.49% and 92.50%, respectively. Thus, the method of HTP was conducive to the co-disposal of IFA and MSS.


Subject(s)
Incineration , Benzofurans/chemistry , Coal Ash/chemistry , Dibenzofurans , Dibenzofurans, Polychlorinated , Polychlorinated Dibenzodioxins/chemistry , Pyrolysis , Sewage , Solid Waste , Temperature
13.
Chemosphere ; 256: 127065, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32454353

ABSTRACT

Dibenzo-p-dioxin (DD) and dibenzofuran (DF) chlorination mediated by Cu and Fe chlorides can make a direct contribution to the formation of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in combustion flue gas. In this study, a kind of composite Cu and Fe chlorides and oxides (CuFe9O9.5Cl10) was prepared by impregnating oxides with HCl solution to imitate the coexistence status of Cu and Fe species in combustion flue gas. Composite CuFe9O9.5Cl10 was active in promoting the electrophilic chlorination of DD/DF at 150-300 °C, with the highest activity at 200 °C. DD/DF chlorination could occur under inert atmosphere, and 5% O2 atmosphere was most favorable for DD/DF chlorination. Electrophilic chlorination of DD/DF primarily favored at 2,3,7,8 positions. Hybridization of Cu and Fe chlorides and oxides not only decreased the starting temperature and activation energy of DD/DF chlorination, but also induced a synergistic effect for accelerating the chlorination of DD/DF. The measured activities of composite CuFe9O9.5Cl10 for promoting the chlorination of DD/DF were near to those of composite Cu chloride and oxide (CuO0.2Cl1.6), whereas 2 orders of magnitude higher than those of composite Fe chloride and oxide (FeO0.3Cl2.4). Comparison of PCDD/F congener distribution patterns indicated that DD/DF chlorination should be a main source of Cl1-3DFs and Cl1-2DDs in combustion flue gases.


Subject(s)
Benzofurans/chemistry , Copper/chemistry , Dioxins/chemistry , Polychlorinated Dibenzodioxins/chemistry , Chlorides , Chlorine , Dibenzofurans , Dibenzofurans, Polychlorinated , Halogenation , Incineration , Iron , Oxides , Temperature
14.
Chem Res Toxicol ; 33(4): 860-879, 2020 04 20.
Article in English | MEDLINE | ID: mdl-32259433

ABSTRACT

The Ah receptor (AHR) has been studied for almost five decades. Yet, we still have many important questions about its role in normal physiology and development. Moreover, we still do not fully understand how this protein mediates the adverse effects of a variety of environmental pollutants, such as the polycyclic aromatic hydrocarbons (PAHs), the chlorinated dibenzo-p-dioxins ("dioxins"), and many polyhalogenated biphenyls. To provide a platform for future research, we provide the historical underpinnings of our current state of knowledge about AHR signal transduction, identify a few areas of needed research, and then develop concepts such as adaptive metabolism, ligand structural diversity, and the importance of proligands in receptor activation. We finish with a discussion of the cognate physiological role of the AHR, our perspective on why this receptor is so highly conserved, and how we might think about its cognate ligands in the future.


Subject(s)
Environmental Pollutants/pharmacology , Polychlorinated Dibenzodioxins/pharmacology , Polycyclic Aromatic Hydrocarbons/pharmacology , Receptors, Aryl Hydrocarbon/metabolism , Animals , Environmental Pollutants/chemistry , Humans , Ligands , Molecular Structure , Polychlorinated Dibenzodioxins/chemistry , Polycyclic Aromatic Hydrocarbons/chemistry , Receptors, Aryl Hydrocarbon/genetics , Signal Transduction/drug effects
15.
Environ Sci Pollut Res Int ; 27(9): 9227-9235, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31916168

ABSTRACT

A yeast reporter gene assay system with improved performance for dioxin detection was established. Since yeast reporter gene assays are relatively simple, easy to handle, and inexpensive, they have been used for various assessments of environmental contaminants. We previously constructed a yeast assay strain expressing the aryl hydrocarbon receptor (AhR) and AhR nuclear translocator (Arnt) carrying the lacZ reporter gene, for detection of dioxins. In the present study, genes encoding cell wall mannoproteins and ATP-binding cassette transporters in the yeast assay strains were deleted in order to increase the substance influx and prevent its efflux. We also established an assay procedure for protoplasts of these yeasts. These modifications improved the detection limit 40-fold and reduced the duration of the assay by 40%. By combining the yeast protoplast and a rapid sample preparation technique using disposal multilayer solid-phase extraction columns to remove unintended aryl hydrocarbons, this yeast reporter gene assay system detected the ligand activities of dioxins and related compounds in 1 g of forest soil containing dioxins at a concentration 10 times lower than the Japanese environmental standard for dioxins in soil.


Subject(s)
Aryl Hydrocarbon Receptor Nuclear Translocator/genetics , Dioxins , Polychlorinated Dibenzodioxins/chemistry , Receptors, Aryl Hydrocarbon/genetics , Saccharomyces cerevisiae/chemistry , Aryl Hydrocarbon Receptor Nuclear Translocator/chemistry , Dioxins/chemistry , Genes, Reporter , Protoplasts , Receptors, Aryl Hydrocarbon/chemistry
16.
Chemosphere ; 243: 125319, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31722260

ABSTRACT

Due to the promotion on Cl radical generation by enhanced oxidation, chlorination of hydrocarbon intermediates becomes a potential formation path for chloroaromatic precursors of PCDD/Fs (polychlorinated dibenzo-p-dioxins and dibenzofurans) in both MSW (municipal solid waste) incineration and gasification-combustion processes, in which intrinsic oxygen might have a significant effect on the competition between oxidation and chlorination. Thus, chlorination of benzene and phenol was experimentally studied on a homogeneous flow reaction system. Effects of temperature and ER (equivalence ratio) were assessed, and comparison was carried out to clarify the alteration in formation behaviors of chloroaromatics by extrinsic and intrinsic oxygen. At 600 °C, chlorobenzenes were already largely formed in benzene chlorination, and the addition of extrinsic oxygen barely affected it. On the contrary, with intrinsic oxygen, phenol tended to decompose to light compounds. With rising temperature, oxidation was promoted and extrinsic oxygen strongly inhibited the formation of chloroaromatics in benzene chlorination at 900 °C and higher temperature. For phenol chlorination, chlorobenzenes were still rarely generated. However, high proportions of octachloronaphthalene and octachlorodibenzofuran were observed, due to the enhancement in polymerization by high temperature. When increasing ER, oxidative decomposition was also promoted in both the chlorination of benzene and phenol. Extra extrinsic oxygen led to a further reduction of chloroaromatics during benzene chlorination, and till ER = 1.0 at 1000 °C, comparable performance to intrinsic oxygen could be achieved in the control of chloroaromatics. Based on these results, formation pathways of the major chloroaromatics from chlorination, oxidation and polymerization were summarized, and the roles of extrinsic and intrinsic oxygen in altering their formation behaviors were revealed.


Subject(s)
Dibenzofurans, Polychlorinated/analysis , Oxygen/chemistry , Polychlorinated Dibenzodioxins/analysis , Benzene , Benzofurans , Chlorobenzenes , Dibenzofurans, Polychlorinated/chemistry , Halogenation , Hot Temperature , Incineration , Models, Chemical , Oxidation-Reduction , Phenols , Polychlorinated Dibenzodioxins/chemistry , Solid Waste , Temperature
17.
Chemosphere ; 243: 125338, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31783185

ABSTRACT

Super-hydrophobic organic contaminants (SHOCs) such as polychlorinated biphenyls (PCBs), polychlorinated dibenzo-p-dioxins (PCDDs) and octachlorodibenzofuran (OCDF) can sorb to dissolved hydrophobic materials including humic acids (HAs), enhancing their apparent aqueous solubility and potentially resulting in increased groundwater contamination and offsite transport. To manage risks associated with transport of and contamination by SHOCs, modelling approaches incorporating partitioning data, i.e. dissolved organic carbon-water partition constants (KDOC), are necessary. Measurement of KDOC can however be compromised by SHOC sorption to glassware surfaces leading to an overestimation of experimental values resulting in larger KDOC. A method for simultaneous derivation of KDOC and glass-water partition constants (KGW) is described. It involves a mass balance approach combined with HA as a co-solvent at various concentrations and accounts for SHOC losses to silanized glassware. Measured log KDOC values ranged from 5.28 to 7.64 for tetra- to decachlorinated PCBs, 6.67 to 7.93 for tetra- to octachlorinated PCDDs and 8.20 for OCDF. These data were linear functions of log KOW and consistent with relationships reported for more polar compounds. Log KGW (mm3 mm-2) values (1.62 to 4.06 for PCBs, 2.96 to 3.90 for PCDDs, 3.77 for OCDF) were one order of magnitude greater compared to literature PCB borosilicate glass-water partition constants. Techniques such as those presented in this work present simple, versatile means to provide prediction of the SHOC proportion remaining in aqueous solutions after loss to glassware that was inversely related to container surface area/volume ratio and log KOW in our study.


Subject(s)
Benzofurans/analysis , Polychlorinated Biphenyls/analysis , Polychlorinated Dibenzodioxins/analysis , Water Pollutants, Chemical/analysis , Environmental Monitoring/methods , Groundwater , Humic Substances/analysis , Hydrophobic and Hydrophilic Interactions , Polychlorinated Biphenyls/chemistry , Polychlorinated Dibenzodioxins/chemistry , Solubility
18.
Chemosphere ; 243: 125351, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31756654

ABSTRACT

Hazardous waste disposal is a serious environmental concern in China. Therefore, in this study, industrial trials were conducted in a low-temperature thermal degradation facility, a tunnel kiln, and a shaft kiln to effectively treat dioxins in municipal solid waste incineration (MSWI) fly ash. The results indicated that the low-temperature thermal degradation facility efficiently decomposed polychlorinated dibenzo-p-dioxins and dibenzofurans in the MSWI fly ash. Additionally, the concentrations of dioxins in the treated fly ash and exhaust gas were lower than the suggested standard limits and the degradation ratio of dioxins was ∼99%. Therefore, treated fly ash characterized by acceptable dioxin risks could be utilized for the production of non-fired building materials. The results from the tunnel kiln indicated complete decomposition of the dioxins in the firing and insulating sections. However, the addition of fly ash in the tunnel kiln increased the concentration of dioxins in the flue gas. This can be primarily attributed to the heterogeneous catalytic synthesis reaction in the low-temperature section of the tunnel kiln. The results from the shaft kiln indicated degradation of at least 22% of the dioxins in the ash. The dioxin concentration in the flue gas was lower than the national standard while that in the clinker was within a reasonable limit. Furthermore, the environmental risks were significantly reduced at fly ash addition ratios lower than 3%.


Subject(s)
Dibenzofurans, Polychlorinated/chemistry , Hazardous Waste/analysis , Incineration/methods , Polychlorinated Dibenzodioxins/chemistry , China , Coal Ash , Construction Materials , Dibenzofurans , Dioxins , Industry , Polychlorinated Dibenzodioxins/analysis , Refuse Disposal , Solid Waste
19.
Nat Commun ; 10(1): 3861, 2019 08 27.
Article in English | MEDLINE | ID: mdl-31455843

ABSTRACT

Polychlorinated dibenzo-p-dioxins (PCDDs), as a class of persistent and highly toxic organic pollutants, have been posing a great threat to human health and the environment. The sensing of these compounds is important but challenging. Here, we report a highly stable zirconium-based metal-organic framework (MOF), Zr6O4(OH)8(HCOO)2(CPTTA)2 (BUT-17) with one-dimensional hexagonal channels and phenyl-rich pore surfaces for the recognition and sensing of two representative PCDDs, 2,3-dichlorodibenzo-p-dioxin (BCDD) and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), based on the fluorescence quenching. BUT-17 exhibits high sensing ability with the detection limits as low as 27 and 57 part per billion toward BCDD and TCDD, respectively, and is very selective as well without the interference of similar compounds. The recognition of BUT-17 toward BCDD is demonstrated by single-crystal structure of its guest-loaded phase, in which the fluorescence-quenched complexes form between the adsorbed BCDD molecules and the MOF host through π-π stacking and hydrogen bonding interactions.


Subject(s)
Environmental Pollutants/analysis , Metal-Organic Frameworks/chemistry , Polychlorinated Dibenzodioxins/analysis , Zirconium/chemistry , Environmental Pollutants/chemistry , Fluorescence , Polychlorinated Dibenzodioxins/chemistry
20.
Environ Monit Assess ; 191(8): 529, 2019 Jul 31.
Article in English | MEDLINE | ID: mdl-31368020

ABSTRACT

The contamination levels of PCDD/PCDFs in irrigation water are the most rarely studied throughout the world. The major problem in Egypt is the lack of studies and statistics about these contaminants of POPs in irrigation water. Therefore, this study is the first comprehensive report to elucidate the estimation and sources of PCDD/PCDFs and PCBs in irrigation water from Egypt and rare for worldwide may provide a reference to future studies of POPs compounds in irrigation water of Egypt. A total of 24 irrigated water samples were collected from different irrigation canals which are adjacent to industrial areas from six Egyptian governorates (Bani Swef, El-Giza, El-Sharkeya, El-Menoufeya, El-Gharbeya, and Alexandria). The study shows that irrigation water canals were contaminated with low levels of PCDDs/PCDFs, which were 0.95 pgWHO-TEQ/l, and the total of PCDD/PCDFs and dl-PCBs were 2.06 pgWHO-TEQ/l with contamination ranging between 0.88 to 2.97 pgWHO-TEQ/l while the levels of indicator PCBs were 18.52 ng/l and ranged between 0.39 to 165.6 ng/l. The most predominant dioxins congeners were HpCDD, OCDD, HpCDF, and OCDF while for dl-PCBs were PCB105 and PCB118, and for ndl-PCBs was PCB138. The areas with recent urbanization and industrialization were more contaminated with PCBs than the unindustrialized area. Lightly to moderately chlorinated congeners dominated the PCB profiles. The major sources for these contaminants were fire bricks followed by textile industries closer to the located sampling sites. The detected pattern was found to be similar to the patterns reported in the air by other studies. Although the concentrations of the studied POPs are found to be low in irrigated water, it may be considered as a potential source of soil pollution due to their accumulation process in the agricultural land and may lead to risk on human health by consuming the agricultural products irrigated by contaminated water.


Subject(s)
Agricultural Irrigation , Polychlorinated Biphenyls/analysis , Polychlorinated Dibenzodioxins/analysis , Water/chemistry , Benzofurans/analysis , Egypt , Environmental Monitoring , Environmental Pollution/analysis , Humans , Polychlorinated Biphenyls/chemistry , Polychlorinated Dibenzodioxins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...