Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 737
Filter
1.
Epigenetics Chromatin ; 17(1): 18, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38783373

ABSTRACT

The three-dimensional organization of the genome plays a central role in the regulation of cellular functions, particularly in the human brain. This review explores the intricacies of chromatin organization, highlighting the distinct structural patterns observed between neuronal and non-neuronal brain cells. We integrate findings from recent studies to elucidate the characteristics of various levels of chromatin organization, from differential compartmentalization and topologically associating domains (TADs) to chromatin loop formation. By defining the unique chromatin landscapes of neuronal and non-neuronal brain cells, these distinct structures contribute to the regulation of gene expression specific to each cell type. In particular, we discuss potential functional implications of unique neuronal chromatin organization characteristics, such as weaker compartmentalization, neuron-specific TAD boundaries enriched with active histone marks, and an increased number of chromatin loops. Additionally, we explore the role of Polycomb group (PcG) proteins in shaping cell-type-specific chromatin patterns. This review further emphasizes the impact of variations in chromatin architecture between neuronal and non-neuronal cells on brain development and the onset of neurological disorders. It highlights the need for further research to elucidate the details of chromatin organization in the human brain in order to unravel the complexities of brain function and the genetic mechanisms underlying neurological disorders. This research will help bridge a significant gap in our comprehension of the interplay between chromatin structure and cell functions.


Subject(s)
Brain , Chromatin , Neurons , Humans , Neurons/metabolism , Neurons/cytology , Chromatin/metabolism , Animals , Brain/metabolism , Polycomb-Group Proteins/metabolism , Polycomb-Group Proteins/genetics , Chromatin Assembly and Disassembly
2.
Epigenetics Chromatin ; 17(1): 17, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773468

ABSTRACT

BACKGROUND: Insulator-binding proteins (IBPs) play a critical role in genome architecture by forming and maintaining contact domains. While the involvement of several IBPs in organising chromatin architecture in Drosophila has been described, the specific contribution of the Suppressor of Hairy wings (Su(Hw)) insulator-binding protein to genome topology remains unclear. RESULTS: In this study, we provide evidence for the existence of long-range interactions between chromatin bound Su(Hw) and Combgap, which was first characterised as Polycomb response elements binding protein. Loss of Su(Hw) binding to chromatin results in the disappearance of Su(Hw)-Combgap long-range interactions and in a decrease in spatial self-interactions among a subset of Su(Hw)-bound genome sites. Our findings suggest that Su(Hw)-Combgap long-range interactions are associated with active chromatin rather than Polycomb-directed repression. Furthermore, we observe that the majority of transcription start sites that are down-regulated upon loss of Su(Hw) binding to chromatin are located within 2 kb of Combgap peaks and exhibit Su(Hw)-dependent changes in Combgap and transcriptional regulators' binding. CONCLUSIONS: This study demonstrates that Su(Hw) insulator binding protein can form long-range interactions with Combgap, Polycomb response elements binding protein, and that these interactions are associated with active chromatin factors rather than with Polycomb dependent repression.


Subject(s)
Chromatin , Drosophila Proteins , Animals , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Chromatin/metabolism , Drosophila melanogaster/metabolism , Repressor Proteins/metabolism , Repressor Proteins/genetics , Protein Binding , DNA-Binding Proteins/metabolism , Transcription Initiation Site , Polycomb-Group Proteins/metabolism , Drosophila/metabolism
3.
Sci Adv ; 10(19): eadl4529, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38718120

ABSTRACT

Polycomb repressive complexes 1 and 2 (PRC1 and 2) are required for heritable repression of developmental genes. The cis- and trans-acting factors that contribute to epigenetic inheritance of mammalian Polycomb repression are not fully understood. Here, we show that, in human cells, ectopically induced Polycomb silencing at initially active developmental genes, but not near ubiquitously expressed housekeeping genes, is inherited for many cell divisions. Unexpectedly, silencing is heritable in cells with mutations in the H3K27me3 binding pocket of the Embryonic Ectoderm Development (EED) subunit of PRC2, which are known to disrupt H3K27me3 recognition and lead to loss of H3K27me3. This mode of inheritance is less stable and requires intact PRC2 and recognition of H2AK119ub1 by PRC1. Our findings suggest that maintenance of Polycomb silencing is sensitive to local genomic context and can be mediated by PRC1-dependent H2AK119ub1 and PRC2 independently of H3K27me3 recognition.


Subject(s)
Gene Silencing , Histones , Polycomb-Group Proteins , Ubiquitination , Humans , Histones/metabolism , Polycomb-Group Proteins/metabolism , Polycomb-Group Proteins/genetics , Polycomb Repressive Complex 2/metabolism , Polycomb Repressive Complex 2/genetics , Polycomb Repressive Complex 1/metabolism , Polycomb Repressive Complex 1/genetics , Genome, Human , Epigenesis, Genetic , Mutation
4.
Nature ; 629(8012): 688-696, 2024 May.
Article in English | MEDLINE | ID: mdl-38658752

ABSTRACT

Although cancer initiation and progression are generally associated with the accumulation of somatic mutations1,2, substantial epigenomic alterations underlie many aspects of tumorigenesis and cancer susceptibility3-6, suggesting that genetic mechanisms might not be the only drivers of malignant transformation7. However, whether purely non-genetic mechanisms are sufficient to initiate tumorigenesis irrespective of mutations has been unknown. Here, we show that a transient perturbation of transcriptional silencing mediated by Polycomb group proteins is sufficient to induce an irreversible switch to a cancer cell fate in Drosophila. This is linked to the irreversible derepression of genes that can drive tumorigenesis, including members of the JAK-STAT signalling pathway and zfh1, the fly homologue of the ZEB1 oncogene, whose aberrant activation is required for Polycomb perturbation-induced tumorigenesis. These data show that a reversible depletion of Polycomb proteins can induce cancer in the absence of driver mutations, suggesting that tumours can emerge through epigenetic dysregulation leading to inheritance of altered cell fates.


Subject(s)
Drosophila Proteins , Drosophila melanogaster , Epigenesis, Genetic , Janus Kinases , Neoplasms , Polycomb-Group Proteins , STAT Transcription Factors , Animals , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Polycomb-Group Proteins/metabolism , Polycomb-Group Proteins/genetics , Neoplasms/genetics , Neoplasms/pathology , STAT Transcription Factors/metabolism , STAT Transcription Factors/genetics , Janus Kinases/metabolism , Janus Kinases/genetics , Female , Carcinogenesis/genetics , Male , Signal Transduction/genetics , Gene Silencing , Cell Transformation, Neoplastic/genetics , Cell Lineage/genetics , Gene Expression Regulation, Neoplastic
5.
Cell Rep ; 43(4): 114090, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38607915

ABSTRACT

Gene repression by the Polycomb pathway is essential for metazoan development. Polycomb domains, characterized by trimethylation of histone H3 lysine 27 (H3K27me3), carry the memory of repression and hence need to be maintained to counter the dilution of parental H3K27me3 with unmodified H3 during replication. Yet, how locus-specific H3K27me3 is maintained through replication is unclear. To understand H3K27me3 recovery post-replication, we first define nucleation sites within each Polycomb domain in mouse embryonic stem cells. To map dynamics of H3K27me3 domains across the cell cycle, we develop CUT&Flow (coupling cleavage under target and tagmentation with flow cytometry). We show that post-replication recovery of Polycomb domains occurs by nucleation and spreading, using the same nucleation sites used during de novo domain formation. By using Polycomb repressive complex 2 (PRC2) subunit-specific inhibitors, we find that PRC2 targets nucleation sites post-replication independent of pre-existing H3K27me3. Thus, competition between H3K27me3 deposition and nucleosome turnover drives both de novo domain formation and maintenance during every cell cycle.


Subject(s)
Cell Cycle , Histones , Polycomb Repressive Complex 2 , Animals , Mice , Histones/metabolism , Polycomb Repressive Complex 2/metabolism , Methylation , Mouse Embryonic Stem Cells/metabolism , Mouse Embryonic Stem Cells/cytology , Polycomb-Group Proteins/metabolism , Polycomb-Group Proteins/genetics , Protein Domains , Nucleosomes/metabolism
6.
Sci Adv ; 10(17): eadn1837, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38657072

ABSTRACT

Polycomb group (PcG) proteins mediate epigenetic silencing of important developmental genes by modifying histones and compacting chromatin through two major protein complexes, PRC1 and PRC2. These complexes are recruited to DNA by CpG islands (CGIs) in mammals and Polycomb response elements (PREs) in Drosophila. When PcG target genes are turned OFF, PcG proteins bind to PREs or CGIs, and PREs serve as anchors that loop together and stabilize gene silencing. Here, we address which PcG proteins bind to PREs and whether PREs mediate looping when their targets are in the ON transcriptional state. While the binding of most PcG proteins decreases at PREs in the ON state, one PRC1 component, Ph, remains bound. Further, PREs can loop to each other and with presumptive enhancers in the ON state and, like CGIs, may act as tethering elements between promoters and enhancers. Overall, our data suggest that PREs are important looping elements for developmental loci in both the ON and OFF states.


Subject(s)
Drosophila Proteins , Polycomb-Group Proteins , Protein Binding , Response Elements , Transcription, Genetic , Animals , Polycomb-Group Proteins/metabolism , Polycomb-Group Proteins/genetics , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , CpG Islands , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Chromatin/metabolism , Chromatin/genetics , Promoter Regions, Genetic
7.
Curr Opin Struct Biol ; 86: 102806, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38537534

ABSTRACT

The chromatin compaction activity of Polycomb group proteins has traditionally been considered essential for transcriptional repression. However, there is very little information on how Polycomb group proteins compact chromatin at the molecular level and no causal link between the compactness of chromatin and transcriptional repression. Recently, a more complete picture of Polycomb-dependent chromatin architecture has started to emerge, owing to advanced methods for imaging and chromosome conformation capture. Discoveries into Polycomb-driven phase separation add another layer of complexity. Recent observations generally imply that Polycomb group proteins modulate chromatin structure at multiple scales to reduce its dynamics and segregate it from active domains. Hence, it is reasonable to hypothesise that Polycomb group proteins maintain the energetically favourable state of compacted chromatin, rather than actively compact it.


Subject(s)
Chromatin , Polycomb-Group Proteins , Polycomb-Group Proteins/metabolism , Polycomb-Group Proteins/genetics , Chromatin/metabolism , Chromatin/chemistry , Humans , Animals
8.
J Cell Biol ; 223(5)2024 May 06.
Article in English | MEDLINE | ID: mdl-38506728

ABSTRACT

The development of multicellular organisms depends on spatiotemporally controlled differentiation of numerous cell types and their maintenance. To generate such diversity based on the invariant genetic information stored in DNA, epigenetic mechanisms, which are heritable changes in gene function that do not involve alterations to the underlying DNA sequence, are required to establish and maintain unique gene expression programs. Polycomb repressive complexes represent a paradigm of epigenetic regulation of developmentally regulated genes, and the roles of these complexes as well as the epigenetic marks they deposit, namely H3K27me3 and H2AK119ub, have been extensively studied. However, an emerging theme from recent studies is that not only the autonomous functions of the Polycomb repressive system, but also crosstalks of Polycomb with other epigenetic modifications, are important for gene regulation. In this review, we summarize how these crosstalk mechanisms have improved our understanding of Polycomb biology and how such knowledge could help with the design of cancer treatments that target the dysregulated epigenome.


Subject(s)
Epigenetic Repression , Genes, Developmental , Polycomb-Group Proteins , Cell Differentiation , Drosophila Proteins , Epigenesis, Genetic , Polycomb-Group Proteins/genetics , Polycomb-Group Proteins/metabolism , Humans , Animals
9.
Nat Genet ; 56(3): 493-504, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38361032

ABSTRACT

Polycomb group proteins have a critical role in silencing transcription during development. It is commonly proposed that Polycomb-dependent changes in genome folding, which compact chromatin, contribute directly to repression by blocking the binding of activating complexes. Recently, it has also been argued that liquid-liquid demixing of Polycomb proteins facilitates this compaction and repression by phase-separating target genes into a membraneless compartment. To test these models, we used Optical Reconstruction of Chromatin Architecture to trace the Hoxa gene cluster, a canonical Polycomb target, in thousands of single cells. Across multiple cell types, we find that Polycomb-bound chromatin frequently explores decompact states and partial mixing with neighboring chromatin, while remaining uniformly repressed, challenging the repression-by-compaction or phase-separation models. Using polymer simulations, we show that these observed flexible ensembles can be explained by 'spatial feedback'-transient contacts that contribute to the propagation of the epigenetic state (epigenetic memory), without inducing a globular organization.


Subject(s)
Drosophila Proteins , Genes, Homeobox , Genes, Homeobox/genetics , Feedback , Polycomb-Group Proteins/genetics , Polycomb-Group Proteins/metabolism , Chromatin/genetics , Drosophila Proteins/genetics , Polycomb Repressive Complex 1/genetics , Polycomb Repressive Complex 1/metabolism
10.
Nat Commun ; 15(1): 667, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38253560

ABSTRACT

Polycomb Repressive Complexes (PRCs) control gene expression through the incorporation of H2Aub and H3K27me3. In recent years, there is increasing evidence of the complexity of PRCs' interaction networks and the interplay of these interactors with PRCs in epigenome reshaping, which is fundamental to understand gene regulatory mechanisms. Here, we identified UBIQUITIN SPECIFIC PROTEASE 5 (UBP5) as a chromatin player able to counteract the deposition of the two PRCs' epigenetic hallmarks in Arabidopsis thaliana. We demonstrated that UBP5 is a plant developmental regulator based on functional analyses of ubp5-CRISPR Cas9 mutant plants. UBP5 promotes H2A monoubiquitination erasure, leading to transcriptional de-repression. Furthermore, preferential association of UBP5 at PRC2 recruiting motifs and local H3K27me3 gaining in ubp5 mutant plants suggest the existence of functional interplays between UBP5 and PRC2 in regulating epigenome dynamics. In summary, acting as an antagonist of the pivotal epigenetic repressive marks H2Aub and H3K27me3, UBP5 provides novel insights to disentangle the complex regulation of PRCs' activities.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Polycomb-Group Proteins , Ubiquitin-Specific Proteases , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis/metabolism , Chromatin , Deubiquitinating Enzymes , Histones/genetics , Polycomb-Group Proteins/metabolism , Ubiquitin-Specific Proteases/metabolism , Arabidopsis Proteins/metabolism
11.
Mol Cell ; 84(3): 476-489.e10, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38211589

ABSTRACT

Pioneer transcription factors (TFs) regulate cell fate by establishing transcriptionally primed and active states. However, cell fate control requires the coordination of both lineage-specific gene activation and repression of alternative-lineage programs, a process that is poorly understood. Here, we demonstrate that the pioneer TF FOXA coordinates with PRDM1 TF to recruit nucleosome remodeling and deacetylation (NuRD) complexes and Polycomb repressive complexes (PRCs), which establish highly occupied, accessible nucleosome conformation with bivalent epigenetic states, thereby preventing precocious and alternative-lineage gene expression during human endoderm differentiation. Similarly, the pioneer TF OCT4 coordinates with PRDM14 to form bivalent enhancers and repress cell differentiation programs in human pluripotent stem cells, suggesting that this may be a common and critical function of pioneer TFs. We propose that pioneer and PRDM TFs coordinate to safeguard cell fate through epigenetic repression mechanisms.


Subject(s)
Nucleosomes , Transcription Factors , Humans , Transcription Factors/genetics , Transcription Factors/metabolism , Nucleosomes/genetics , Cell Differentiation/genetics , Polycomb-Group Proteins/metabolism , Epigenesis, Genetic
12.
Biochem Soc Trans ; 52(1): 151-161, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38288743

ABSTRACT

Polycomb repressive complexes 1 and 2 (PRC1 and PRC2) are transcriptional repressor complexes that play a fundamental role in epigenomic regulation and the cell-fate decision; these complexes are widely conserved in multicellular organisms. PRC1 is an E3 ubiquitin (ub) ligase that generates histone H2A ubiquitinated at lysine (K) 119 (H2AK119ub1), whereas PRC2 is a histone methyltransferase that specifically catalyzes tri-methylation of histone H3K27 (H3K27me3). Genome-wide analyses have confirmed that these two key epigenetic marks highly overlap across the genome and contribute to gene repression. We are now beginning to understand the molecular mechanisms that enable PRC1 and PRC2 to identify their target sites in the genome and communicate through feedback mechanisms to create Polycomb chromatin domains. Recently, it has become apparent that PRC1-induced H2AK119ub1 not only serves as a docking site for PRC2 but also affects the dynamics of the H3 tail, both of which enhance PRC2 activity, suggesting that trans-tail communication between H2A and H3 facilitates the formation of the Polycomb chromatin domain. In this review, we discuss the emerging principles that define how PRC1 and PRC2 establish the Polycomb chromatin domain and regulate gene expression in mammals.


Subject(s)
Genome-Wide Association Study , Histone Code , Animals , Polycomb Repressive Complex 1/genetics , Polycomb Repressive Complex 1/metabolism , Polycomb-Group Proteins/metabolism , Histones/metabolism , Chromatin , Polycomb Repressive Complex 2/genetics , Ubiquitin-Protein Ligases/metabolism , Mammals/metabolism
13.
Curr Opin Genet Dev ; 84: 102137, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38091876

ABSTRACT

Epigenetic reprogramming during development is key to cell identity and the activities of the Polycomb repressive complexes are vital for this process. We focus on polycomb repressive complex 2 (PRC2), which catalyzes H3K27me1/2/3 and safeguards cellular integrity by ensuring proper gene repression. Notably, various accessory factors associate with PRC2, strongly influencing cell fate decisions, and their deregulation contributes to various illnesses. Yet, the exact role of these factors during development and carcinogenesis is not fully understood. Here, we present recent progress toward addressing these points and an analysis of the expression levels of PRC2 accessory factors in various tissues and developmental stages to highlight their abundance and roles. Last, we evaluate their contribution to cancer-specific phenotypes, providing insight into novel anticancer therapies.


Subject(s)
Polycomb Repressive Complex 2 , Polycomb Repressive Complex 2/genetics , Polycomb-Group Proteins/genetics , Polycomb-Group Proteins/metabolism , Cell Differentiation/genetics
14.
J Cell Physiol ; 239(1): 152-165, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37991435

ABSTRACT

Polycomb repressive complexes (PRCs) play critical roles in cell fate decisions during normal development as well as disease progression through mediating histone modifications such as H3K27me3 and H2AK119ub. How exactly PRCs recruited to chromatin remains to be fully illuminated. Here, we report that YTHDF1, the N6-methyladenine (m6 A) RNA reader that was previously known to be mainly cytoplasmic, associates with RNF2, a PRC1 protein that mediates H2AK119ub in human embryonic stem cells (hESCs). A portion of YTHDF1 localizes in the nuclei and associates with RNF2/H2AK119ub on a subset of gene loci related to neural development functions. Knock-down YTHDF1 attenuates H2AK119ub modification on these genes and promotes neural differentiation in hESCs. Our findings provide a noncanonical mechanism that YTHDF1 participates in PRC1 functions in hESCs.


Subject(s)
Cell Cycle Proteins , Human Embryonic Stem Cells , RNA-Binding Proteins , Humans , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Chromatin , Human Embryonic Stem Cells/metabolism , Polycomb Repressive Complex 1/genetics , Polycomb Repressive Complex 1/metabolism , Polycomb-Group Proteins/genetics , Polycomb-Group Proteins/metabolism , Protein Processing, Post-Translational , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Histones/genetics , Histones/metabolism
15.
Life Sci Alliance ; 7(1)2024 01.
Article in English | MEDLINE | ID: mdl-37914396

ABSTRACT

Circadian rhythms are essential physiological feature for most living organisms. Previous studies have shown that epigenetic regulation plays a crucial role. There is a knowledge gap in the chromatin state of some key clock neuron clusters. In this study, we show that circadian rhythm is affected by the epigenetic regulator Polycomb (Pc) within the Drosophila clock neurons. To investigate the molecular mechanisms underlying the roles of Pc in these clock neuron clusters, we use targeted DamID (TaDa) to identify genes significantly bound by Pc in the neurons marked by C929-Gal4 (including l-LNvs cluster), R6-Gal4 (including s-LNvs cluster), R18H11-Gal4 (including DN1 cluster), and DVpdf-Gal4, pdf-Gal80 (including LNds cluster). It shows that Pc binds to the genes involved in the circadian rhythm pathways, arguing a direct role for Pc in regulating circadian rhythms through specific clock genes. This study shows the identification of Pc targets in the clock neuron clusters, providing potential resource for understanding the regulatory mechanisms of circadian rhythms by the PcG complex. Thus, this study provided an example for epigenetic regulation of adult behavior.


Subject(s)
Drosophila Proteins , Neuropeptides , Animals , Drosophila/metabolism , Epigenesis, Genetic , Neuropeptides/metabolism , Drosophila Proteins/metabolism , Circadian Rhythm/genetics , Neurons/metabolism , Polycomb-Group Proteins/genetics , Polycomb-Group Proteins/metabolism
16.
Dev Biol ; 505: 130-140, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37981061

ABSTRACT

The Trithorax group (trxG) proteins counteract the repressive effect of Polycomb group (PcG) complexes and maintain transcriptional memory of active states of key developmental genes. Although chromatin structure and modifications appear to play a fundamental role in this process, it is not clear how trxG prevents PcG-silencing and heritably maintains an active gene expression state. Here, we report a hitherto unknown role of Drosophila Multiple ankyrin repeats single KH domain (Mask), which emerged as one of the candidate trxG genes in our reverse genetic screen. The genome-wide binding profile of Mask correlates with known trxG binding sites across the Drosophila genome. In particular, the association of Mask at chromatin overlaps with CBP and H3K27ac, which are known hallmarks of actively transcribed genes by trxG. Importantly, Mask predominantly associates with actively transcribed genes in Drosophila. Depletion of Mask not only results in the downregulation of trxG targets but also correlates with diminished levels of H3K27ac. The fact that Mask positively regulates H3K27ac levels in flies was also found to be conserved in human cells. Strong suppression of Pc mutant phenotype by mutation in mask provides physiological relevance that Mask contributes to the anti-silencing effect of trxG, maintaining expression of key developmental genes. Since Mask is a downstream effector of multiple cell signaling pathways, we propose that Mask may connect cell signaling with chromatin mediated epigenetic cell memory governed by trxG.


Subject(s)
Chromatin , Drosophila Proteins , Animals , Humans , Chromatin/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Polycomb Repressive Complex 1/genetics , Chromosomes , Drosophila/metabolism , Polycomb-Group Proteins/genetics , Polycomb-Group Proteins/metabolism , DNA-Binding Proteins/metabolism
17.
Sci Adv ; 9(51): eadj8198, 2023 Dec 22.
Article in English | MEDLINE | ID: mdl-38134278

ABSTRACT

Animals use the Polycomb system to epigenetically repress developmental genes. The repression requires trimethylation of lysine 27 of histone H3 (H3K27me3) by Polycomb Repressive Complex 2 (PRC2), but the dynamics of this process is poorly understood. To bridge the gap, we developed a computational model that forecasts H3K27 methylation in Drosophila with high temporal resolution and spatial accuracy of contemporary experimental techniques. Using this model, we show that pools of methylated H3K27 in dividing cells are defined by the effective concentration of PRC2 and the replication frequency. We find that the allosteric stimulation by preexisting H3K27me3 makes PRC2 better in methylating developmental genes as opposed to indiscriminate methylation throughout the genome. Applied to Drosophila development, our model argues that, in this organism, the intergenerationally inherited H3K27me3 does not "survive" rapid cycles of embryonic chromatin replication and is unlikely to transmit the memory of epigenetic repression to the offspring. Our model is adaptable to other organisms, including mice and humans.


Subject(s)
Drosophila Proteins , Histones , Humans , Animals , Mice , Histones/genetics , Histones/metabolism , Polycomb-Group Proteins/genetics , Polycomb-Group Proteins/metabolism , Chromatin/genetics , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Polycomb Repressive Complex 2/genetics , Polycomb Repressive Complex 2/metabolism , Drosophila/genetics , Methylation
20.
Commun Biol ; 6(1): 1144, 2023 11 10.
Article in English | MEDLINE | ID: mdl-37949928

ABSTRACT

Polycomb group proteins, as part of the Polycomb repressive complexes, are essential in gene repression through chromatin compaction by canonical PRC1, mono-ubiquitylation of histone H2A by non-canonical PRC1 and tri-methylation of histone H3K27 by PRC2. Despite prevalent models emphasizing tight functional coupling between PRC1 and PRC2, it remains unclear whether this paradigm indeed reflects the evolution and functioning of these complexes. Here, we conduct a comprehensive analysis of the presence or absence of cPRC1, nPRC1 and PRC2 across the entire eukaryotic tree of life, and find that both complexes were present in the Last Eukaryotic Common Ancestor (LECA). Strikingly, ~42% of organisms contain only PRC1 or PRC2, showing that their evolution since LECA is largely uncoupled. The identification of ncPRC1-defining subunits in unicellular relatives of animals and fungi suggests ncPRC1 originated before cPRC1, and we propose a scenario for the evolution of cPRC1 from ncPRC1. Together, our results suggest that crosstalk between these complexes is a secondary development in evolution.


Subject(s)
Histones , Polycomb Repressive Complex 1 , Animals , Polycomb Repressive Complex 1/genetics , Polycomb Repressive Complex 1/metabolism , Polycomb-Group Proteins/genetics , Polycomb-Group Proteins/metabolism , Histones/genetics , Histones/metabolism , Chromatin/genetics , Ubiquitination
SELECTION OF CITATIONS
SEARCH DETAIL
...