Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.580
Filter
1.
Nat Commun ; 15(1): 3698, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38693102

ABSTRACT

Mouse models of autosomal dominant polycystic kidney disease (ADPKD) show that intact primary cilia are required for cyst growth following the inactivation of polycystin-1. The signaling pathways underlying this process, termed cilia-dependent cyst activation (CDCA), remain unknown. Using translating ribosome affinity purification RNASeq on mouse kidneys with polycystin-1 and cilia inactivation before cyst formation, we identify the differential 'CDCA pattern' translatome specifically dysregulated in kidney tubule cells destined to form cysts. From this, Glis2 emerges as a candidate functional effector of polycystin signaling and CDCA. In vitro changes in Glis2 expression mirror the polycystin- and cilia-dependent changes observed in kidney tissue, validating Glis2 as a cell culture-based indicator of polycystin function related to cyst formation. Inactivation of Glis2 suppresses polycystic kidney disease in mouse models of ADPKD, and pharmacological targeting of Glis2 with antisense oligonucleotides slows disease progression. Glis2 transcript and protein is a functional target of CDCA and a potential therapeutic target for treating ADPKD.


Subject(s)
Cilia , Disease Models, Animal , Polycystic Kidney, Autosomal Dominant , Signal Transduction , TRPP Cation Channels , Animals , Humans , Male , Mice , Cilia/metabolism , Kidney/metabolism , Kidney/pathology , Mice, Inbred C57BL , Mice, Knockout , Oligonucleotides, Antisense/pharmacology , Polycystic Kidney Diseases/metabolism , Polycystic Kidney Diseases/genetics , Polycystic Kidney Diseases/pathology , Polycystic Kidney, Autosomal Dominant/metabolism , Polycystic Kidney, Autosomal Dominant/genetics , Polycystic Kidney, Autosomal Dominant/pathology , Polycystic Kidney, Autosomal Dominant/drug therapy , TRPP Cation Channels/metabolism , TRPP Cation Channels/genetics
2.
Sci Rep ; 14(1): 10063, 2024 05 02.
Article in English | MEDLINE | ID: mdl-38698187

ABSTRACT

Ultra high frequency (UHF) ultrasound enables the visualization of very small structures that cannot be detected by conventional ultrasound. The utilization of UHF imaging as a new imaging technique for the 3D-in-vivo chorioallantoic membrane (CAM) model can facilitate new insights into tissue perfusion and survival. Therefore, human renal cystic tissue was grafted onto the CAM and examined using UHF ultrasound imaging. Due to the unprecedented resolution of UHF ultrasound, it was possible to visualize microvessels, their development, and the formation of anastomoses. This enabled the observation of anastomoses between human and chicken vessels only 12 h after transplantation. These observations were validated by 3D reconstructions from a light sheet microscopy image stack, indocyanine green angiography, and histological analysis. Contrary to the assumption that the nutrient supply of the human cystic tissue and the gas exchange happens through diffusion from CAM vessels, this study shows that the vasculature of the human cystic tissue is directly connected to the blood vessels of the CAM and perfusion is established within a short period. Therefore, this in-vivo model combined with UHF imaging appears to be the ideal platform for studying the effects of intravenously applied therapeutics to inhibit renal cyst growth.


Subject(s)
Chorioallantoic Membrane , Polycystic Kidney, Autosomal Dominant , Ultrasonography , Animals , Chorioallantoic Membrane/blood supply , Chorioallantoic Membrane/diagnostic imaging , Humans , Polycystic Kidney, Autosomal Dominant/diagnostic imaging , Ultrasonography/methods , Chickens , Kidney/diagnostic imaging , Kidney/blood supply , Imaging, Three-Dimensional/methods
3.
Narra J ; 4(1): e584, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38798842

ABSTRACT

Autosomal dominant polycystic kidney disease (ADPKD) is the most common hereditary polycystic kidney disease characterized by renal enlargement, resulting in renal failure. In Indonesia, the exact prevalence of ADPKD is unknown due to limited reports on the disease. The aim of this study was to report a case of a patient with ADPKD with multiple complications. A 54-year-old male presented to the emergency room of Dr. Soetomo Academic General Hospital, Surabaya, Indonesia, with a chief complaint of dark-red-colored urine for one week. There was a progressive abdominal enlargement over the past five years, which had become more tense and rigid for the past one month. The patient had a history of fatigue and hypertension with routine follow-up. Physical examination on admission showed normal vital signs, and the abdominal assessment revealed a palpable hard mass approximately 4 cm in size in the right upper abdomen. Laboratory test indicated anemia, leukocytosis, lymphopenia, proteinuria, hematuria, leukocyturia, and elevated serum creatinine and urea levels. Abdominal imaging using ultrasonography, computed tomography (CT) scan, and magnetic resonance imaging (MRI) revealed bilateral kidney and liver enlargement containing multiple cysts, suggesting polycystic kidney and liver disease. There was a ruptured cyst in the middle of the left kidney pole with minimal ascites found in the CT scan. The MRI exhibited the presence of multiple cysts in both kidneys, partially filled with blood. The patient was diagnosed with ADPKD, gross hematuria, acute or chronic kidney disease (CKD), urinary tract infection (UTI), normochromic-normocytic anemia, and metabolic acidosis. Dietary control with high-calorie, high-protein, and low-salt diet; fluid balance; and other symptomatic medications were initiated. It is critical to be aware of risk factors associated with the rapid progression of ADPKD in order to be able to provide a favorable impact on the disease prevention and management.


Subject(s)
Polycystic Kidney, Autosomal Dominant , Humans , Polycystic Kidney, Autosomal Dominant/complications , Male , Middle Aged , Indonesia/epidemiology , Tomography, X-Ray Computed
4.
Int J Mol Sci ; 25(9)2024 May 05.
Article in English | MEDLINE | ID: mdl-38732256

ABSTRACT

Autosomal polycystic kidney disease (ADPKD) is the most common genetic form of kidney failure, reflecting unmet needs in management. Prescription of the only approved treatment (tolvaptan) is limited to persons with rapidly progressing ADPKD. Rapid progression may be diagnosed by assessing glomerular filtration rate (GFR) decline, usually estimated (eGFR) from equations based on serum creatinine (eGFRcr) or cystatin-C (eGFRcys). We have assessed the concordance between eGFR decline and identification of rapid progression (rapid eGFR loss), and measured GFR (mGFR) declines (rapid mGFR loss) using iohexol clearance in 140 adults with ADPKD with ≥3 mGFR and eGFRcr assessments, of which 97 also had eGFRcys assessments. The agreement between mGFR and eGFR decline was poor: mean concordance correlation coefficients (CCCs) between the method declines were low (0.661, range 0.628 to 0.713), and Bland and Altman limits of agreement between eGFR and mGFR declines were wide. CCC was lower for eGFRcys. From a practical point of view, creatinine-based formulas failed to detect rapid mGFR loss (-3 mL/min/y or faster) in around 37% of the cases. Moreover, formulas falsely indicated around 40% of the cases with moderate or stable decline as rapid progressors. The reliability of formulas in detecting real mGFR decline was lower in the non-rapid-progressors group with respect to that in rapid-progressor patients. The performance of eGFRcys and eGFRcr-cys equations was even worse. In conclusion, eGFR decline may misrepresent mGFR decline in ADPKD in a significant percentage of patients, potentially misclassifying them as progressors or non-progressors and impacting decisions of initiation of tolvaptan therapy.


Subject(s)
Creatinine , Disease Progression , Glomerular Filtration Rate , Polycystic Kidney, Autosomal Dominant , Humans , Female , Polycystic Kidney, Autosomal Dominant/drug therapy , Polycystic Kidney, Autosomal Dominant/physiopathology , Male , Middle Aged , Adult , Creatinine/blood , Cystatin C/blood , Aged , Tolvaptan/therapeutic use , Clinical Decision-Making
5.
Transpl Immunol ; 84: 102049, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729449

ABSTRACT

INTRODUCTION: Antibody-mediated rejection (AMR) is the most common cause of immune-mediated allograft failure after kidney transplant and impacts allograft survival. Previous sensitization is a major risk factor for development of donor specific antibodies (DSA). AMR can have a wide range of clinical features such as impaired kidney function, proteinuria/hypertension or can be subclinical. HLA molecules have specific regions of antigens binding antibodies called epitopes and eplets are considered essential components responsible for immune recognition. We present a patient with subclinical AMR 1 week post transplantation. CASE REPORT: A 48-year-old, caucasian woman with end-stage kidney disease (ESKD) secondary to autosomal dominant polycystic kidney disease (ADPKD) on peritoneal dialysis was registered in deceased donor waitlist. She was a hypersensitized patient from 3 prior pregnancies with a calculated panel reactive antibody of 93,48%. She was transplanted through kidney paired exchange donation with no evidence of DSA pre transplantation. Surgery and post-op were unremarkable with excellent and immediate graft function. Per protocol DSA levels on the 5th day was DR1 of 3300 MFI, with an increase in MFI by day 13 with 7820 MFI and a new B41 1979MFI. Allograft kidney biopsy findings were diagnostic of AMR and she was treated with immunoglobulin and plasmapheresis. As early onset AMR post transplantation was observed an anamnestic response was hypothesized from a previous exposure to allo-HLA. We decided to type her husband, her son's father, which was presented with DSA. Mismatch eplet analysis revealed a shared 41 T and 67LQ eplets between the donor and husband, responsible for the reactivity and new HLA class I B41 and HLA class II DR1 DSA, respectively. DISCUSSION: Shared eplets between the patient husband and donor was responsible for the alloimmune response and early development of DSAs. This case highlights the importance of early monitoring DSA levels in highly sensitized patients after transplant in order to promptly address and lower inflammatory damage. Mismatch eplet analysis can provide a thorough and precise evaluation of immune compatibility providing a useful technique to immune risk stratification, donor selection and post-transplant immunosuppressive therapy and monitoring.


Subject(s)
Graft Rejection , Histocompatibility Testing , Isoantibodies , Kidney Failure, Chronic , Kidney Transplantation , Humans , Female , Middle Aged , Graft Rejection/immunology , Graft Rejection/diagnosis , Isoantibodies/immunology , Isoantibodies/blood , Kidney Failure, Chronic/immunology , Kidney Failure, Chronic/surgery , Kidney Failure, Chronic/therapy , HLA Antigens/immunology , Polycystic Kidney, Autosomal Dominant/immunology , Tissue Donors
6.
Genes (Basel) ; 15(5)2024 May 08.
Article in English | MEDLINE | ID: mdl-38790225

ABSTRACT

Alport Syndrome (AS) is the most common genetic glomerular disease, and it is caused by COL4A3, COL4A4, and COL4A5 pathogenic variants. The classic phenotypic spectrum associated with AS ranges from isolated hematuria to chronic kidney disease (CKD) with extrarenal abnormalities. Atypical presentation of the disorder is possible, and it can mislead the diagnosis. Polycystic kidney disease (PKD), which is most frequently associated with Autosomal Dominant PKD (ADPKD) due to PKD1 and PKD2 heterozygous variants, is emerging as a possible clinical manifestation in COL4A3-A5 patients. We describe a COL4A5 novel familial frameshift variant (NM_000495.5: c.1095dup p.(Leu366ValfsTer45)), which was associated with AS and PKD in the hemizygous proband, as well as with PKD, IgA glomerulonephritis and focal segmental glomerulosclerosis (FSGS) in the heterozygous mother. Establishing the diagnosis of AS can sometimes be difficult, especially in the context of misleading family history and atypical phenotypic features. This case study supports the emerging genotypic and phenotypic heterogeneity in COL4A3-A5-associated disorders, as well as the recently described association between PKD and collagen type IV (Col4) defects. We highlight the importance of the accurate phenotyping of all family members and the relevance of next-generation sequencing in the differential diagnosis of hereditary kidney disease.


Subject(s)
Collagen Type IV , Nephritis, Hereditary , Pedigree , Humans , Nephritis, Hereditary/genetics , Nephritis, Hereditary/diagnosis , Nephritis, Hereditary/pathology , Collagen Type IV/genetics , Male , Female , Adult , Polycystic Kidney Diseases/genetics , Polycystic Kidney Diseases/diagnosis , Frameshift Mutation , Phenotype , Polycystic Kidney, Autosomal Dominant/genetics , Polycystic Kidney, Autosomal Dominant/diagnosis
7.
BMJ Case Rep ; 17(5)2024 May 13.
Article in English | MEDLINE | ID: mdl-38740443

ABSTRACT

Alport syndrome and autosomal dominant polycystic kidney disease are monogenic causes of chronic kidney disease and end-stage kidney failure. We present a case of a man in his 60s with progressive chronic kidney disease, bilateral sensorineural hearing loss and multiple renal cysts. Genetic analysis revealed a heterozygous variant in COL4A3 (linked to Alport syndrome) and in the GANAB gene (associated with a milder form of autosomal dominant polycystic kidney disease). Although each variant confers a mild risk of developing end-stage kidney disease, the patient presented a pronounced and accelerated progression of chronic kidney disease, which goes beyond what would be predicted by adding up their individual effects. This suggests a potential synergic effect of both variants, which warrants further investigation.


Subject(s)
Collagen Type IV , Nephritis, Hereditary , Polycystic Kidney, Autosomal Dominant , Humans , Nephritis, Hereditary/genetics , Nephritis, Hereditary/complications , Nephritis, Hereditary/diagnosis , Male , Polycystic Kidney, Autosomal Dominant/genetics , Polycystic Kidney, Autosomal Dominant/complications , Collagen Type IV/genetics , Middle Aged , Autoantigens/genetics , Disease Progression , Kidney Failure, Chronic/genetics , Kidney Failure, Chronic/etiology , Hearing Loss, Sensorineural/genetics , Hearing Loss, Sensorineural/diagnosis
8.
BMJ Case Rep ; 17(5)2024 May 21.
Article in English | MEDLINE | ID: mdl-38772868

ABSTRACT

Autosomal dominant polycystic kidney disease (ADPKD) is an important cause of renal dysfunction. It is the most common genetic disorder leading to end-stage kidney disease requiring dialysis. ADPKD is a multisystem disease and is linked to several extra renal abnormalities. Splenic artery aneurysms are rare in the general population. ADPKD is associated with cerebral artery aneurysms. However, splenic artery aneurysms are not a well-recognised complication of ADPKD. We report an unusual case of a splenic artery aneurysm found incidentally on abdominal CT imaging of a woman with known ADPKD.


Subject(s)
Aneurysm , Polycystic Kidney, Autosomal Dominant , Splenic Artery , Tomography, X-Ray Computed , Humans , Polycystic Kidney, Autosomal Dominant/complications , Female , Splenic Artery/diagnostic imaging , Aneurysm/etiology , Aneurysm/diagnostic imaging , Middle Aged , Incidental Findings
10.
Physiol Rep ; 12(7): e15956, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38561249

ABSTRACT

Mutations in PKD1 and PKD2 cause autosomal dominant polycystic kidney disease (ADPKD), which is characterized by the formation of fluid-filled cysts in the kidney. In a subset of ADPKD patients, reduced blood calcium (Ca2+) and magnesium (Mg2+) concentrations are observed. As cystic fluid contains increased ATP concentrations and purinergic signaling reduces electrolyte reabsorption, we hypothesized that inhibiting ATP release could normalize blood Ca2+ and Mg2+ levels in ADPKD. Inducible kidney-specific Pkd1 knockout mice (iKsp-Pkd1-/-) exhibit hypocalcemia and hypomagnesemia in a precystic stage and show increased expression of the ATP-release channel pannexin-1. Therefore, we administered the pannexin-1 inhibitor brilliant blue-FCF (BB-FCF) every other day from Day 3 to 28 post-induction of Pkd1 gene inactivation. On Day 29, both serum Ca2+ and Mg2+ concentrations were reduced in iKsp-Pkd1-/- mice, while urinary Ca2+ and Mg2+ excretion was similar between the genotypes. However, serum and urinary levels of Ca2+ and Mg2+ were unaltered by BB-FCF treatment, regardless of genotype. BB-FCF did significantly decrease gene expression of the ion channels Trpm6 and Trpv5 in both control and iKsp-Pkd1-/- mice. Finally, no renoprotective effects of BB-FCF treatment were observed in iKsp-Pkd1-/- mice. Thus, administration of BB-FCF failed to normalize serum Ca2+ and Mg2+ levels.


Subject(s)
Polycystic Kidney, Autosomal Dominant , Animals , Humans , Mice , Adenosine Triphosphate/metabolism , Kidney/metabolism , Mice, Knockout , Mutation , Polycystic Kidney, Autosomal Dominant/metabolism , TRPP Cation Channels/genetics , TRPP Cation Channels/metabolism , TRPP Cation Channels/pharmacology , Water-Electrolyte Balance
11.
Cells ; 13(7)2024 Mar 31.
Article in English | MEDLINE | ID: mdl-38607049

ABSTRACT

Autosomal dominant polycystic kidney disease (ADPKD) occurs when the proteins Polycystin-1 (PC1, PKD1) and Polycystin-2 (PC2, PKD2) contain mutations. PC1 is a large membrane receptor that can interact and form a complex with the calcium-permeable cation channel PC2. This complex localizes to the plasma membrane, primary cilia and ER. Dysregulated calcium signalling and consequential alterations in downstream signalling pathways in ADPKD are linked to cyst formation and expansion; however, it is not completely understood how PC1 and PC2 regulate calcium signalling. We have studied Polycystin-2 mediated calcium signalling in the model organism Dictyostelium discoideum by overexpressing and knocking down the expression of the endogenous Polycystin-2 homologue, Polycystin-2. Chemoattractant-stimulated cytosolic calcium response magnitudes increased and decreased in overexpression and knockdown strains, respectively, and analysis of the response kinetics indicates that Polycystin-2 is a significant contributor to the control of Ca2+ responses. Furthermore, basal cytosolic calcium levels were reduced in Polycystin-2 knockdown transformants. These alterations in Ca2+ signalling also impacted other downstream Ca2+-sensitive processes including growth rates, endocytosis, stalk cell differentiation and spore viability, indicating that Dictyostelium is a useful model to study Polycystin-2 mediated calcium signalling.


Subject(s)
Dictyostelium , Polycystic Kidney, Autosomal Dominant , Humans , Polycystic Kidney, Autosomal Dominant/genetics , Dictyostelium/metabolism , TRPP Cation Channels/genetics , Calcium/metabolism , Calcium Signaling/physiology , Calcium Channels/metabolism
12.
Eur J Med Chem ; 271: 116428, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38653068

ABSTRACT

Recent evidence suggests that histone deacetylases (HDACs) are important regulators of autosomal dominant polycystic kidney disease (ADPKD). In the present study, a series of benzothiazole-bearing compounds were designed and synthesized as potential HDAC inhibitors. Given the multiple participation of HDACs in ADPKD cyst progression, we embarked on a targeted screen using HeLa nuclear extracts to identify potent pan-HDAC inhibitors. Compound 26 emerged as the most efficacious candidate. Subsequent pharmacological characterization showed that compound 26 effectively inhibits several HDACs, notably HDAC1, HDAC2, and HDAC6 (IC50 < 150 nM), displaying a particularly high sensitivity towards HDAC6 (IC50 = 11 nM). The selected compound significantly prevented cyst formation and expansion in an in vitro cyst model and was efficacious in reducing cyst growth in both an embryonic kidney cyst model and an in vivo ADPKD mouse model. Our results provided compelling evidence that compound 26 represents a new HDAC inhibitor for the treatment of ADPKD.


Subject(s)
Benzothiazoles , Histone Deacetylase Inhibitors , Polycystic Kidney, Autosomal Dominant , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/chemistry , Histone Deacetylase Inhibitors/chemical synthesis , Polycystic Kidney, Autosomal Dominant/drug therapy , Polycystic Kidney, Autosomal Dominant/pathology , Humans , Animals , Mice , Benzothiazoles/pharmacology , Benzothiazoles/chemistry , Benzothiazoles/chemical synthesis , Structure-Activity Relationship , Molecular Structure , Dose-Response Relationship, Drug , HeLa Cells , Histone Deacetylases/metabolism
15.
Biochem Pharmacol ; 224: 116200, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38604258

ABSTRACT

Autosomal dominant polycystic kidney disease (ADPKD) is a common monogenic kidney disease. Emerging research indicates that the Notch signaling pathway plays an indispensable role in the pathogenesis of numerous kidney diseases, including ADPKD. Herein, we identified that Notch3 but not other Notch receptors was overexpressed in renal tissues from mice with ADPKD and ADPKD patients. Inhibiting Notch3 with γ-secretase inhibitors, which block a proteolytic cleavage required for Notch3 activation, or shRNA knockdown of Notch3 significantly delayed renal cyst growth in vitro and in vivo. Subsequent mechanistic study elucidated that the cleaved intracellular domain of Notch3 (N3ICD) and Hes1 could bind to the PTEN promoter, leading to transcriptional inhibition of PTEN. This further activated the downstream PI3K-AKT-mTOR pathway and promoted renal epithelial cell proliferation. Overall, Notch3 was identified as a novel contributor to renal epithelial cell proliferation and cystogenesis in ADPKD. We envision that Notch3 represents a promising target for ADPKD treatment.


Subject(s)
Cell Proliferation , Polycystic Kidney, Autosomal Dominant , Receptor, Notch3 , Animals , Receptor, Notch3/metabolism , Receptor, Notch3/genetics , Cell Proliferation/drug effects , Cell Proliferation/physiology , Polycystic Kidney, Autosomal Dominant/metabolism , Polycystic Kidney, Autosomal Dominant/drug therapy , Polycystic Kidney, Autosomal Dominant/pathology , Polycystic Kidney, Autosomal Dominant/genetics , Mice , Humans , Mice, Inbred C57BL , Male , Kidney/metabolism , Kidney/pathology , Kidney/drug effects
16.
J Mol Med (Berl) ; 102(6): 773-785, 2024 06.
Article in English | MEDLINE | ID: mdl-38668786

ABSTRACT

Autosomal dominant polycystic kidney disease is a genetic kidney disease caused by mutations in the genes PKD1 or PKD2. Its course is characterized by the formation of progressively enlarged cysts in the renal tubules bilaterally. The basic genetic explanation for autosomal dominant polycystic kidney disease is the double-hit theory, and many of its mechanistic issues can be explained by the cilia doctrine. However, the precise molecular mechanisms underpinning this condition's occurrence are still not completely understood. Experimental evidence suggests that aquaporins, a class of transmembrane channel proteins, including aquaporin-1, aquaporin-2, aquaporin-3, and aquaporin-11, are involved in the mechanism of autosomal dominant polycystic kidney disease. Aquaporins are either a potential new target for the treatment of autosomal dominant polycystic kidney disease, and further study into the physiopathological role of aquaporins in autosomal dominant polycystic kidney disease will assist to clarify the disease's pathophysiology and increase the pool of potential treatment options. We primarily cover pertinent findings on aquaporins in autosomal dominant polycystic kidney disease in this review.


Subject(s)
Aquaporins , Polycystic Kidney, Autosomal Dominant , Humans , Polycystic Kidney, Autosomal Dominant/metabolism , Polycystic Kidney, Autosomal Dominant/genetics , Aquaporins/metabolism , Aquaporins/genetics , Animals , Mutation
17.
Biomacromolecules ; 25(5): 2749-2761, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38652072

ABSTRACT

Autosomal dominant polycystic kidney disease (ADPKD) is a complex disorder characterized by uncontrolled renal cyst growth, leading to kidney function decline. The multifaceted nature of ADPKD suggests that single-pathway interventions using individual small molecule drugs may not be optimally effective. As such, a strategy encompassing combination therapy that addresses multiple ADPKD-associated signaling pathways could offer synergistic therapeutic results. However, severe off-targeting side effects of small molecule drugs pose a major hurdle to their clinical transition. To address this, we identified four drug candidates from ADPKD clinical trials, bardoxolone methyl (Bar), octreotide (Oct), salsalate (Sal), and pravastatin (Pra), and incorporated them into peptide amphiphile micelles containing the RGD peptide (GRGDSP), which binds to the basolateral surface of renal tubules via integrin receptors on the extracellular matrix. We hypothesized that encapsulating drug combinations into RGD micelles would enable targeting to the basolateral side of renal tubules, which is the site of disease, via renal secretion, leading to superior therapeutic benefits compared to free drugs. To test this, we first evaluated the synergistic effect of drug combinations using the 20% inhibitory concentration for each drug (IC20) on renal proximal tubule cells derived from Pkd1flox/-:TSLargeT mice. Next, we synthesized and characterized the RGD micelles encapsulated with drug combinations and measured their in vitro therapeutic effects via a 3D PKD growth model. Upon both IV and IP injections in vivo, RGD micelles showed a significantly higher accumulation in the kidneys compared to NT micelles, and the renal access of RGD micelles was significantly reduced after the inhibition of renal secretion. Specifically, both Bar+Oct and Bar+Sal in the RGD micelle treatment showed enhanced therapeutic efficacy in ADPKD mice (Pkd1fl/fl;Pax8-rtTA;Tet-O-Cre) with a significantly lower KW/BW ratio and cyst index as compared to PBS and free drug-treated controls, while other combinations did not show a significant difference. Hence, we demonstrate that renal targeting through basolateral targeting micelles enhances the therapeutic potential of combination therapy in genetic kidney disease.


Subject(s)
Drug Delivery Systems , Micelles , Animals , Mice , Drug Delivery Systems/methods , Humans , Polycystic Kidney, Autosomal Dominant/drug therapy , Polycystic Kidney, Autosomal Dominant/pathology , Oligopeptides/chemistry , Polycystic Kidney Diseases/drug therapy , Polycystic Kidney Diseases/pathology
18.
Genes (Basel) ; 15(4)2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38674417

ABSTRACT

Autosomal Dominant Polycystic Kidney Disease (ADPKD) is a common monogenic disorder characterized by renal cysts and progressive renal failure. In kidney diseases, adipose tissue undergoes functional changes that have been associated with increased inflammation and insulin resistance mediated by release of adipokines. Adiponectin is involved in various cellular processes, such as energy and inflammatory and oxidative processes. However, it remains to be determined whether adiponectin is involved in the concomitant metabolic dysfunctions present in PKD. In this scenario, we aimed to analyze: (a) PPARγ, ADIPOQ, ADIPOR1 and ADIPOR2 gene variations in 92 ADPKD patients through PCR-Sanger sequencing; and (b) adiponectin levels and its oligomerization state by ELISA and Western Blot. Our results indicated that: (a) 14 patients carried the PPARγ SNP, 29 patients carried the ADIPOQ SNP rs1501299, and 25 patients carried the analyzed ADIPOR1 SNPs. Finally, 82 patients carried ADIPOR2 SNPs; and (b) Adiponectin is statistically lower in ADPKD patients compared to controls, and further statistically lower in ESRD than in non-ESRD patients. An inverse relationship between adiponectin and albumin and between adiponectin and creatinine and a direct relationship between adiponectin and eGFR were found. Interestingly, significantly lower levels of adiponectin were found in patients bearing the ADIPOQ rs1501299 SNP and associated with low levels of eGFR. In conclusion, adiponectin levels and the presence of ADIPOQ rs1501299 genotype are significantly associated with a worse ADPKD phenotype, indicating that both could potentially provide important insights into the disease. Further studies are warranted to understand the pathophysiological role of adiponectin in ADPKD patients.


Subject(s)
Adiponectin , Polycystic Kidney, Autosomal Dominant , Polymorphism, Single Nucleotide , Receptors, Adiponectin , Humans , Adiponectin/genetics , Adiponectin/metabolism , Polycystic Kidney, Autosomal Dominant/genetics , Polycystic Kidney, Autosomal Dominant/pathology , Polycystic Kidney, Autosomal Dominant/metabolism , Female , Male , Receptors, Adiponectin/genetics , Middle Aged , Adult , PPAR gamma/genetics , PPAR gamma/metabolism
19.
Clin Transplant ; 38(3): e15216, 2024 03.
Article in English | MEDLINE | ID: mdl-38450843

ABSTRACT

BACKGROUND: This study investigated whether nature of primary renal disease affects clinical outcomes after renal transplantation at a single center in the United Kingdom. METHODS: This was a retrospective cohort study of 961 renal transplant recipients followed up at a large renal center from 2000 to 2020. Separation of diseases responsible for end-stage kidney disease included glomerulonephritis, diabetic kidney disease, hypertensive nephropathy, autosomal dominant polycystic kidney disease, unknown cause, other causes and chronic pyelonephritis. Outcome data included graft loss, cardiovascular events, malignancy, post-transplant diabetes mellitus and death, analyzed according to primary disease type. RESULTS: The mean age at transplantation was 47.3 years. During a mean follow-up of 7.6 years, 18% of the overall cohort died corresponding to an annualised mortality rate of 2.3%. Death with a functioning graft occurred at a rate of 2.1% per annum, with the highest incidence observed in in patients with diabetic kidney disease (4.1%/year). Post-transplant cardiovascular events occurred in 21% of recipients (2.8% per year), again highest in recipients with diabetic kidney disease (5.1%/year) and hypertensive nephropathy (4.5%/year). Post-transplant diabetes mellitus manifested in 19% of the cohort at an annualized rate of2.1% while cancer incidence stood at 9% with an annualized rate of 1.1% . Graft loss occurred in 6.8% of recipients at the rate of1.2% per year with chronic allograft injury, acute rejection and recurrent glomerulonephritis being the predominant causative factors. Median + IQR dialysis-free survival of the whole cohort was 16.2 (9.9 - > 20) years, being shortest for diabetic kidney disease (11.0 years) and greatest for autosomal dominant polycystic kidney disease (18.2 years) .The collective mean decline in eGFR over time was -1.14ml/min/year. Recipients with Pre-transplant diabetic kidney disease exhibited the fastest rate of decline(-2.1ml/min/year) a statistically significant difference in comparison to the other native kidney diseases with Autosomal dominant polycystic kidney disease exhibiting the lowest rate of decline(-0.05ml/min/year) CONCLUSION: Primary renal disease can influence the outcome after renal transplantation, with patients with prior diabetic kidney disease having the poorest outcome in terms of dialysis-free survival and loss of transplant function. Autosomal polycystic kidney disease, other cause and unknown cause had the best outcomes compared to other primary renal disease groups.


Subject(s)
Diabetic Nephropathies , Glomerulonephritis , Hypertension, Renal , Kidney Transplantation , Nephritis , Polycystic Kidney, Autosomal Dominant , Humans , Middle Aged , Kidney Transplantation/adverse effects , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...