Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 12.029
Filter
1.
Carbohydr Polym ; 339: 122288, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38823936

ABSTRACT

This paper reports on biofunctionalisation of a poly(lactic acid) (PLA) film by surface activation through cold plasma treatment followed by coating with a chitosan-gelatin xerogel. The UV cross-linking of the xerogel precursor was simultaneously performed with the fixation onto the PLA support. This has a strong effect on surface properties, in terms of wettability, surface free energy, morphology and micromechanical features. The hydrophilic - hydrophobic character of the surface, determined by contact angle measurements, was tuned along the process, passing from moderate hydrophobic PLA to enhanced hydrophilic plasma activated surface, which favors coating adhesion, then to moderate hydrophobic chitosan-gelatin coating. The coating has a Lewis amphoteric surface, with a porous xerogel-like morphology, as revealed by scanning electron microscopy images. By riboflavin mediated UV cross-linking the chitosan-gelatin coating becomes high adhesive and with a more pronounced plasticity, as shown by AFM force-distance spectroscopy. Thus prepared surface-coated PLA supports were successfully tested for growth of dermal fibroblasts, which are known for their induction potential of chondrogenic cells, which is very important in cartilage tissue engineering.


Subject(s)
Chitosan , Fibroblasts , Gelatin , Polyesters , Chitosan/chemistry , Gelatin/chemistry , Polyesters/chemistry , Fibroblasts/drug effects , Fibroblasts/cytology , Humans , Surface Properties , Gels/chemistry , Ultraviolet Rays , Plasma Gases/chemistry , Hydrophobic and Hydrophilic Interactions , Coated Materials, Biocompatible/chemistry , Cross-Linking Reagents/chemistry , Wettability
2.
J Biomed Mater Res B Appl Biomater ; 112(6): e35411, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38773758

ABSTRACT

The ultimate goal of tissue engineering is to repair and regenerate damaged tissue or organ. Achieving this goal requires blood vessel networks to supply oxygen and nutrients to new forming tissues. Macrophages are part of the immune system whose behavior plays a significant role in angiogenesis and blood vessel formation. On the other hand, macrophages are versatile cells that change their behavior in response to environmental stimuli. Given that implantation of a biomaterial is followed by inflammation; therefore, we reasoned that this inflammatory condition in tissue spaces modulates the final phenotype of macrophages. Also, we hypothesized that anti-inflammatory glucocorticoid dexamethasone improves modulating macrophages behavior. To check these concepts, we investigated the macrophages that had matured in an inflammatory media. Furthermore, we examined macrophages' behavior after maturation on a dexamethasone-containing scaffold and analyzed how the behavioral change of maturing macrophages stimulates other macrophages in the same environment. In this study, the expression of pro-inflammatory markers TNFa and NFκB1 along with pro-healing markers IL-10 and CD163 were investigated to study the behavior of macrophages. Our results showed that macrophages that were matured in the inflammatory media in vitro increase expression of IL-10, which in turn decreased the expression of pro-inflammatory markers TNFa and NFκB in maturing macrophages. Also, macrophages that were matured on dexamethasone-containing scaffolds decreased the expression of IL-10, TNFa, and NFκB and increase the expression of CD163 compared to the control group. Moreover, the modulation of anti-inflammatory response in maturing macrophages on dexamethasone-containing scaffold resulted in increased expression of TNFa and CD163 by other macrophages in the same media. The results obtained in this study, proposing strategies to improve healing through controlling the behavior of maturing macrophages and present a promising perspective for inflammation control using tissue engineering scaffolds.


Subject(s)
Dexamethasone , Interleukin-10 , Macrophages , Polyesters , Tissue Scaffolds , Dexamethasone/pharmacology , Interleukin-10/metabolism , Macrophages/metabolism , Macrophages/drug effects , Tissue Scaffolds/chemistry , Polyesters/chemistry , Polyesters/pharmacology , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Humans , Animals , Inflammation/metabolism , Mice
3.
Molecules ; 29(9)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38731542

ABSTRACT

Bilayer electrospun fibers aimed to be used for skin tissue engineering applications were fabricated for enhanced cell attachment and proliferation. Different ratios of PHBV-PLLA (70:30, 80:20, and 90:10 w/w) blends were electrospun on previously formed electrospun PHBV membranes to produce their bilayers. The fabricated electrospun membranes were characterized with FTIR, which conformed to the characteristic peaks assigned for both PHBV and PLLA. The surface morphology was evaluated using SEM analysis that showed random fibers with porous morphology. The fiber diameter and pore size were measured in the range of 0.7 ± 0.1 µm and 1.9 ± 0.2 µm, respectively. The tensile properties of the bilayers were determined using an electrodynamic testing system. Bilayers had higher elongation at break (44.45%) compared to the monolayers (28.41%) and improved ultimate tensile strength (7.940 MPa) compared to the PHBV monolayer (2.450 MPa). In vitro cytotoxicity of each of the scaffolds was determined via culturing MC3T3 (pre-osteoblastic cell line) on the membranes. Proliferation was evaluated using the Alamar Blue assay on days 3, 7, and 14, respectively. SEM images of cells cultured on membranes were taken in addition to bright field imaging to visually show cell attachment. Fluorescent nuclear staining performed with DAPI was imaged with an inverted fluorescent microscope. The fabricated bilayer shows high mechanical strength as well as biocompatibility with good cell proliferation and cell attachment, showing potential for skin substitute applications.


Subject(s)
Biocompatible Materials , Cell Proliferation , Polyesters , Skin , Tissue Engineering , Tissue Scaffolds , Tissue Engineering/methods , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Polyesters/chemistry , Animals , Mice , Cell Proliferation/drug effects , Tissue Scaffolds/chemistry , Tensile Strength , Membranes, Artificial , Cell Line , Materials Testing , Polymers/chemistry , Cell Adhesion/drug effects
4.
Molecules ; 29(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38731560

ABSTRACT

2, 6-diisopropylaniline (2, 6-DIPA) is a crucial non-intentionally organic additive that allows the assessment of the production processes, formulation qualities, and performance variations in biodegradable mulching film. Moreover, its release into the environment may have certain effects on human health. Hence, this study developed simultaneous heating hydrolysis-extraction and amine switchable hydrophilic solvent vortex-assisted homogeneous liquid-liquid microextraction for the gas chromatography-mass spectrometry analysis of the 2, 6-DIPA additive and its corresponding isocyanates in poly(butylene adipate-co-terephthalate) (PBAT) biodegradable agricultural mulching films. The heating hydrolysis-extraction conditions and factors influencing the efficiency of homogeneous liquid-liquid microextraction, such as the type and volume of amine, homogeneous-phase and phase separation transition pH, and extraction time were investigated and optimized. The optimum heating hydrolysis-extraction conditions were found to be a H2SO4 concentration of 2.5 M, heating temperature of 87.8 °C, and hydrolysis-extraction time of 3.0 h. As a switchable hydrophilic solvent, dipropylamine does not require a dispersant. Vortex assistance is helpful to speed up the extraction. Under the optimum experimental conditions, this method exhibits a better linearity (0.0144~7.200 µg mL-1 with R = 0.9986), low limit of detection and quantification (0.0033 µg g-1 and 0.0103 µg g-1), high extraction recovery (92.5~105.4%), desirable intra- and inter-day precision (relative standard deviation less than 4.1% and 4.7%), and high enrichment factor (90.9). Finally, this method was successfully applied to detect the content of the additive 2, 6-DIPA in PBAT biodegradable agricultural mulching films, thus facilitating production process monitoring or safety assessments.


Subject(s)
Amines , Aniline Compounds , Gas Chromatography-Mass Spectrometry , Hydrophobic and Hydrophilic Interactions , Liquid Phase Microextraction , Solvents , Liquid Phase Microextraction/methods , Gas Chromatography-Mass Spectrometry/methods , Solvents/chemistry , Amines/chemistry , Amines/analysis , Aniline Compounds/chemistry , Hydrolysis , Polyesters/chemistry
5.
ACS Nano ; 18(20): 12905-12916, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38721835

ABSTRACT

For most frequent respiratory viruses, there is an urgent need for a universal influenza vaccine to provide cross-protection against intra- and heterosubtypes. We previously developed an Escherichia coli fusion protein expressed extracellular domain of matrix 2 (M2e) and nucleoprotein, named NM2e, and then combined it with an aluminum adjuvant, forming a universal vaccine. Although NM2e has demonstrated a protective effect against the influenza virus in mice to some extent, further improvement is still needed for the induction of immune responses ensuring adequate cross-protection against influenza. Herein, we fabricated a cationic solid lipid nanoadjuvant using poly(lactic acid) (PLA) and dimethyl-dioctadecyl-ammonium bromide (DDAB) and loaded NM2e to generate an NM2e@DDAB/PLA nanovaccine (Nv). In vitro experiments suggested that bone marrow-derived dendritic cells incubated with Nv exhibited ∼4-fold higher antigen (Ag) uptake than NM2e at 16 h along with efficient activation by NM2e@DDAB/PLA Nv. In vivo experiments revealed that Ag of the Nv group stayed in lymph nodes (LNs) for more than 14 days after initial immunization and DCs in LNs were evidently activated and matured. Furthermore, the Nv primed T and B cells for robust humoral and cellular immune responses after immunization. It also induced a ratio of IgG2a/IgG1 higher than that of NM2e to a considerable extent. Moreover, NM2e@DDAB/PLA Nv quickly restored body weight and improved survival of homo- and heterosubtype influenza challenged mice, and the cross-protection efficiency was over 90%. Collectively, our study demonstrated that NM2e@DDAB/PLA Nv could offer notable protection against homo- and heterosubtype influenza virus challenges, offering the potential for the development of a universal influenza vaccine.


Subject(s)
Adjuvants, Immunologic , Influenza Vaccines , Polyesters , Quaternary Ammonium Compounds , Influenza Vaccines/immunology , Influenza Vaccines/chemistry , Influenza Vaccines/administration & dosage , Animals , Mice , Polyesters/chemistry , Adjuvants, Immunologic/chemistry , Adjuvants, Immunologic/pharmacology , Quaternary Ammonium Compounds/chemistry , Female , Mice, Inbred BALB C , Orthomyxoviridae Infections/prevention & control , Orthomyxoviridae Infections/immunology , Nanoparticles/chemistry , Cross Protection/immunology , Adjuvants, Vaccine/chemistry , Viral Matrix Proteins/immunology
6.
Nanoscale ; 16(20): 9861-9874, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38712977

ABSTRACT

A guided bone regeneration (GBR) membrane can act as a barrier to prevent the invasion and interference from foreign soft tissues, promoting infiltration and proliferation of osteoblasts in the bone defect area. Herein, a composite scaffold with dual functions of osteogenesis and antibacterial effects was prepared for GBR. A polycaprolactone (PCL)/nano-hydroxyapatite (n-HA) aerogel produced by electrospinning and freeze-drying techniques was fabricated as the loose layer of the scaffold, while a PCL nanofiber membrane was used as the dense layer. Chitosan (CS) solution served as a middle layer to provide mechanical support and antibacterial effects between the two layers. Morphological results showed that the loose layer had a porous structure with n-HA successfully dispersed in the aerogels, while the dense layer possessed a sufficiently dense structure. In vitro antibacterial experiments illustrated that the CS solution in the middle layer stabilized the scaffold structure and endowed the scaffold with good antibacterial properties. The cytocompatibility results indicated that both fibroblasts and osteoblasts exhibited superior cell activity on the dense and loose layers, respectively. In particular, the dense layer made of nanofibers could work as a barrier layer to inhibit the infiltration of fibroblasts into the loose layer. In vitro osteogenesis analysis suggested that the PCL/n-HA aerogel could enhance the bone induction ability of bone mesenchymal stem cells, which was confirmed by the increased expression of the alkaline phosphatase activity. The loose structure facilitated the infiltration and migration of bone mesenchymal stem cells for better osteogenesis. In summary, such a composite scaffold exhibited excellent osteogenic and antibacterial properties as well as the barrier effect, thus holding promising potential for use as GBR materials.


Subject(s)
Anti-Bacterial Agents , Bone Regeneration , Chitosan , Durapatite , Nanofibers , Osteoblasts , Osteogenesis , Polyesters , Chitosan/chemistry , Chitosan/pharmacology , Durapatite/chemistry , Durapatite/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Bone Regeneration/drug effects , Nanofibers/chemistry , Polyesters/chemistry , Polyesters/pharmacology , Animals , Osteoblasts/cytology , Osteoblasts/drug effects , Osteoblasts/metabolism , Osteogenesis/drug effects , Mice , Tissue Scaffolds/chemistry , Gels/chemistry , Staphylococcus aureus/drug effects , Fibroblasts/drug effects , Fibroblasts/cytology
7.
Biomed Mater ; 19(4)2024 May 17.
Article in English | MEDLINE | ID: mdl-38756029

ABSTRACT

Hard tissue engineering scaffolds especially 3D printed scaffolds were considered an excellent strategy for craniomaxillofacial hard tissue regeneration, involving crania and facial bones and teeth. Porcine treated dentin matrix (pTDM) as xenogeneic extracellular matrix has the potential to promote the stem cell differentiation and mineralization as it contains plenty of bioactive factors similar with human-derived dentin tissue. However, its application might be impeded by the foreign body response induced by the damage-associated molecular patterns of pTDM, which would cause strong inflammation and hinder the regeneration. Ceria nanoparticles (CNPs) show a great promise at protecting tissue from oxidative stress and influence the macrophages polarization. Using 3D-bioprinting technology, we fabricated a xenogeneic hard tissue scaffold based on pTDM xenogeneic TDM-polycaprolactone (xTDM/PCL) and we modified the scaffolds by CNPs (xTDM/PCL/CNPs). Through series ofin vitroverification, we found xTDM/PCL/CNPs scaffolds held promise at up-regulating the expression of osteogenesis and odontogenesis related genes including collagen type 1, Runt-related transcription factor 2 (RUNX2), bone morphogenetic protein-2, osteoprotegerin, alkaline phosphatase (ALP) and DMP1 and inducing macrophages to polarize to M2 phenotype. Regeneration of bone tissues was further evaluated in rats by conducting the models of mandibular and skull bone defects. Thein vivoevaluation showed that xTDM/PCL/CNPs scaffolds could promote the bone tissue regeneration by up-regulating the expression of osteogenic genes involving ALP, RUNX2 and bone sialoprotein 2 and macrophage polarization into M2. Regeneration of teeth evaluated on beagles demonstrated that xTDM/PCL/CNPs scaffolds expedited the calcification inside the scaffolds and helped form periodontal ligament-like tissues surrounding the scaffolds.


Subject(s)
Cerium , Extracellular Matrix , Nanoparticles , Osteogenesis , Printing, Three-Dimensional , Tissue Engineering , Tissue Scaffolds , Animals , Tissue Scaffolds/chemistry , Tissue Engineering/methods , Swine , Extracellular Matrix/metabolism , Cerium/chemistry , Nanoparticles/chemistry , Rats , Polyesters/chemistry , Dentin/chemistry , Humans , Bone Regeneration/drug effects , Odontogenesis , Cell Differentiation , Regeneration , Macrophages/metabolism , Skull , Rats, Sprague-Dawley
8.
Water Environ Res ; 96(5): e11040, 2024 May.
Article in English | MEDLINE | ID: mdl-38752384

ABSTRACT

In this study, a pyrite-based autotrophic denitrification (PAD) system, a polycaprolactone (PCL)-supported heterotrophic denitrification (PHD) system, and a pyrite+PCL-based split-mixotrophic denitrification (PPMD) system were constructed. The pyrite particle size was controlled in 1-3, 3-5, or 5-8 mm in both the PAD and PPMD systems to investigate the effect of pyrite particle size on the denitrification performance of autotrophic or split-mixotrophic bioreactors. It was found that the PAD system achieved the best denitrification efficiency with an average removal rate of 98.98% in the treatment of 1- to 3-mm particle size, whereas it was only 19.24% in the treatment of 5- to 8-mm particle size. At different phases of the whole experiment, the nitrate removal rates of both the PHD and PPMD systems remained stable at a high level (>94%). Compared with the PAD or PHD system, the PPMD system reduced the concentrations of sulfate and chemical oxygen demand in the final effluent efficiently. The interconnection network diagram explained the intrinsic metabolic pathways of nitrogen, sulfur, and carbon in the three denitrification systems at different phases. In addition, the microbial community analysis showed that the PPMD system was beneficial for the enrichment of Firmicutes. Finally, the impact mechanism of pyrite particle size on the performance of the PPMD system was proposed. PRACTITIONER POINTS: The reduction of pyrite particle size was beneficial for improving the efficiency of the PAD process. The change in particle size had an effect on NO2 --N accumulation in the PAD system. The accumulation of NH4 +-N in the PPMD system increased with the decrease in particle size. The reduction of pyrite particle size increased the production of SO4 2- in the PAD and PPMD systems. The correlations among the effluent indicators of the PAD and PPMD systems could be well explained.


Subject(s)
Bioreactors , Denitrification , Iron , Particle Size , Polyesters , Sulfides , Sulfides/chemistry , Sulfides/metabolism , Polyesters/chemistry , Polyesters/metabolism , Iron/chemistry , Iron/metabolism , Autotrophic Processes , Nitrates/metabolism , Nitrates/chemistry
9.
Anal Methods ; 16(19): 3131-3141, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38712986

ABSTRACT

Plastics are ubiquitous in today's lifestyle, and their indiscriminate use has led to the accumulation of plastic waste in landfills and oceans. The waste accumulates and breaks into micro-particles that enter the food chain, causing severe threats to human health, wildlife, and the ecosystem. Environment-friendly and bio-based degradable materials offer a sustainable alternative to the vastly used synthetic materials. Here, a polylactic acid and carbon nanofiber-based membrane and a paper-based colorimetric sensor have been developed. The membrane had a surface area of 3.02 m2 g-1 and a pore size of 18.77 nm. The pores were evenly distributed with a pore volume of 0.0137 cm3 g-1. The membrane was evaluated in accordance with OECD guidelines and was found to be safe for tested aquatic and terrestrial models. The activated PLA-CNF membrane was further used as a bio-based electrode for the electrochemical detection of nitrates (NO3-) in water samples with a detection limit of 0.046 ppm and sensitivity of 1.69 × 10-4 A ppm-1 mm-2, whereas the developed paper-based colorimetric sensor had a detection limit of 156 ppm for NO3-. This study presents an environment-friendly, low-carbon footprint disposable material for sensing applications as a sustainable alternative to plastics.


Subject(s)
Carbon , Colorimetry , Nanofibers , Nitrates , Paper , Polyesters , Nanofibers/chemistry , Colorimetry/methods , Colorimetry/instrumentation , Nitrates/analysis , Nitrates/chemistry , Polyesters/chemistry , Carbon/chemistry , Electrochemical Techniques/methods , Electrochemical Techniques/instrumentation , Limit of Detection , Water Pollutants, Chemical/analysis , Electric Conductivity , Membranes, Artificial
10.
J Biomed Mater Res B Appl Biomater ; 112(5): e35410, 2024 May.
Article in English | MEDLINE | ID: mdl-38728112

ABSTRACT

The dissipative particle dynamics (DPD) simulation was used to study the morphologies and structures of the paclitaxel-loaded PLA-b-PEO-b-PLA polymeric micelle. We focused on the influences of PLA block length, PLA-b-PEO-b-PLA copolymer concentration, paclitaxel drug content on morphologies and structures of the micelle. Our simulations show that: (i) with the PLA block length increase, the self-assemble structure of PLA-b-PEO-b-PLA copolymers with paclitaxel vary between onion-like structure (core-middle layer-shell) to spherical core-shell structure. The PEO shell thins and the size of the PLA core increases. The onionlike structures are comprised of the PEO hydrophilic core, the PLA hydrophobic middle layer, and the PEO hydrophilic shell, the distribution of the paclitaxel drug predominantly occurs within the hydrophobic intermediate layer; (ii) The system forms a spherical core-shell structure when a small amount of the drug is added, and within a certain range, the size of the spherical structure increases as the drug amount increases. When the drug contents (volume fraction) cdrug = 10%, it can be observed that the PLA4-b-PEO19-b-PLA4 spherical structures connect to form rod-shaped structures. With the length of PLA block NPLA = 8, as the paclitaxel drug concentrations cdrug = 4%, PEO has been insufficient to completely encapsulate the PLA and paclitaxel drug beads. To enhance drug loading capacity while maintaining stability of the system in aqueous solution, the optimal composition for loading paclitaxel is PLA4-b-PEO19-b-PLA4; the drug content is not higher than 4%; (iii) The paclitaxel-loaded PLA4-b-PEO19-b-PLA4 micelle undergo the transition from onionlike (core-middle layer-shell) to spherical (core-shell) to rod-shaped and lamellar structure as the PLA4-b-PEO19-b-PLA4 copolymer concentration increases from ccp = 10% to 40%.


Subject(s)
Micelles , Paclitaxel , Polyesters , Polyethylene Glycols , Paclitaxel/chemistry , Paclitaxel/pharmacokinetics , Polyethylene Glycols/chemistry , Polyesters/chemistry , Hydrophobic and Hydrophilic Interactions , Molecular Dynamics Simulation , Drug Carriers/chemistry
11.
Stem Cell Res Ther ; 15(1): 135, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38715130

ABSTRACT

BACKGROUND: Biomaterials used in bone tissue engineering must fulfill the requirements of osteoconduction, osteoinduction, and osseointegration. However, biomaterials with good osteoconductive properties face several challenges, including inadequate vascularization, limited osteoinduction and barrier ability, as well as the potential to trigger immune and inflammatory responses. Therefore, there is an urgent need to develop guided bone regeneration membranes as a crucial component of tissue engineering strategies for repairing bone defects. METHODS: The mZIF-8/PLA membrane was prepared using electrospinning technology and simulated body fluid external mineralization method. Its ability to induce biomimetic mineralization was evaluated through TEM, EDS, XRD, FT-IR, zeta potential, and wettability techniques. The biocompatibility, osteoinduction properties, and osteo-immunomodulatory effects of the mZIF-8/PLA membrane were comprehensively evaluated by examining cell behaviors of surface-seeded BMSCs and macrophages, as well as the regulation of cellular genes and protein levels using PCR and WB. In vivo, the mZIF-8/PLA membrane's potential to promote bone regeneration and angiogenesis was assessed through Micro-CT and immunohistochemical staining. RESULTS: The mineralized deposition enhances hydrophilicity and cell compatibility of mZIF-8/PLA membrane. mZIF-8/PLA membrane promotes up-regulation of osteogenesis and angiogenesis related factors in BMSCs. Moreover, it induces the polarization of macrophages towards the M2 phenotype and modulates the local immune microenvironment. After 4-weeks of implantation, the mZIF-8/PLA membrane successfully bridges critical bone defects and almost completely repairs the defect area after 12-weeks, while significantly improving the strength and vascularization of new bone. CONCLUSIONS: The mZIF-8/PLA membrane with dual osteoconductive and immunomodulatory abilities could pave new research paths for bone tissue engineering.


Subject(s)
Bone Regeneration , Bone Regeneration/drug effects , Animals , Osteogenesis/drug effects , Tissue Engineering/methods , Biocompatible Materials/pharmacology , Biocompatible Materials/chemistry , Mice , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Membranes, Artificial , Guided Tissue Regeneration/methods , Tissue Scaffolds/chemistry , Polyesters/chemistry , Polyesters/pharmacology , Rats
12.
J Biomed Mater Res B Appl Biomater ; 112(6): e35409, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38786580

ABSTRACT

The challenge of integrating hydroxyapatite nanoparticles (nHAp) with polymers is hindered by the conflict between the hydrophilic and hygroscopic properties of nHAp and the hydrophobic properties of polymers. This conflict particularly affects the materials when calcium phosphates, including nHAp, are used as a filler in composites in thermal processing applications such as 3D printing with fused filament fabrication (FFF). To overcome this, we propose a one-step surface modification of nHAp with calcium stearate monolayer. Moreover, to build the scaffold with suitable mechanical strength, we tested the addition of nHAp with diverse morphology-spherical, plate- and rod-like nanoparticles. Our analysis showed that the composite of polycaprolactone (PCL) reinforced with nHAp with rod and plate morphologies modified with calcium stearate monolayer exhibited a significant increase in compressive strength. However, composites with spherical nHAp added to PCL showed a significant reduction in compressive modulus and compressive strength, but both parameters were within the applicability range of hard tissue scaffolds. None of the tested composite scaffolds showed cytotoxicity in L929 murine fibroblasts or MG-63 human osteoblast-like cells, supporting the proliferation of the latter. Additionally, PCL/nHAp scaffolds reinforced with spherical nHAp caused osteoactivation of bone marrow human mesenchymal stem cells, as indicated by alkaline phosphatase activity and COL1, RUNX2, and BGLAP expression. These results suggest that the calcium stearate monolayer on the surface of the nHAp particles allows the production of polymer/nHAp composites suitable for hard tissue engineering and personalized implant production in 3D printing using the FFF technique.


Subject(s)
Durapatite , Nanoparticles , Printing, Three-Dimensional , Tissue Engineering , Tissue Scaffolds , Tissue Scaffolds/chemistry , Durapatite/chemistry , Durapatite/pharmacology , Mice , Animals , Humans , Nanoparticles/chemistry , Cell Line , Polyesters/chemistry , Osteoblasts/metabolism , Osteoblasts/cytology , Osteogenesis/drug effects , Materials Testing
13.
Int J Nanomedicine ; 19: 4589-4605, 2024.
Article in English | MEDLINE | ID: mdl-38799695

ABSTRACT

Background: Medical imaging modalities, such as magnetic resonance imaging (MRI), ultrasound, and fluorescence imaging, have gained widespread acceptance in clinical practice for tumor diagnosis. Each imaging modality has its own unique principles, advantages, and limitations, thus necessitating a multimodal approach for a comprehensive disease understanding of the disease process. To enhance diagnostic precision, physicians frequently integrate data from multiple imaging modalities, driving research advancements in multimodal imaging technology research. Methods: In this study, hematoporphyrin-poly (lactic acid) (HP-PLLA) polymer was prepared via ring-opening polymerization and thoroughly characterized using FT-IR, 1H-NMR, XRD, and TGA. HP-PLLA based nanoparticles encapsulating perfluoropentane (PFP) and salicylic acid were prepared via emulsion-solvent evaporation. Zeta potential and mean diameter were assessed using DLS and TEM. Biocompatibility was evaluated via cell migration, hemolysis, and cytotoxicity assays. Ultrasonic imaging was performed with a dedicated apparatus, while CEST MRI was conducted using a 7.0 T animal scanner. Results: We designed and prepared a novel dual-mode nanoimaging probe SA/PFP@HP-PLLA NPs. PFP enhanced US imaging, while salicylic acid bolstered CEST imaging. With an average size of 74.43 ± 1.12 nm, a polydispersity index of 0.175 ± 0.015, and a surface zeta potential of -64.1 ± 2.11 mV. These NPs exhibit excellent biocompatibility and stability. Both in vitro and in vivo experiments confirmed the SA/PFP@HP-PLLA NP's ability to improve tumor characterization and diagnostic precision. Conclusion: The SA/PFP@HP-PLLA NPs demonstrate promising dual-modality imaging capabilities, indicating their potential for preclinical and clinical use as a contrast agent.


Subject(s)
Fluorocarbons , Hematoporphyrins , Magnetic Resonance Imaging , Nanoparticles , Polyesters , Salicylic Acid , Fluorocarbons/chemistry , Magnetic Resonance Imaging/methods , Animals , Polyesters/chemistry , Nanoparticles/chemistry , Humans , Salicylic Acid/chemistry , Salicylic Acid/pharmacokinetics , Salicylic Acid/administration & dosage , Hematoporphyrins/chemistry , Hematoporphyrins/pharmacokinetics , Hematoporphyrins/pharmacology , Mice , Ultrasonography/methods , Contrast Media/chemistry , Contrast Media/pharmacokinetics , Cell Line, Tumor , Multimodal Imaging/methods , Pentanes
14.
J Mech Behav Biomed Mater ; 155: 106564, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38749267

ABSTRACT

Polycaprolactone (PCL) nanofibers are a promising material for biomedical applications due to their biocompatibility, slow degradation rate, and thermal stability. We electrospun PCL fibers onto a striated substrate with 12 µm wide ridges and grooves and determined their mechanical properties in an aqueous solution with a combined atomic force/inverted optical microscopy technique. Fiber diameters, D, ranged from 27 to 280 nm. The hydrated PCL fibers had an extensibility (breaking strain), εmax, of 137%. The Young's modulus, E, and tensile strength, σT, showed a strong dependence on fiber diameter, D; decreasing steeply with increasing diameter, following empirical equations E(D)=(4.3∙103∙e-D51nm+1.1∙102) MPa and σT(D)=(2.6∙103∙e-D55nm+0.6∙102) MPa. Incremental stress-strain measurements were employed to investigate the viscoelastic behavior of these fibers. The fibers exhibited stress relaxation with a fast and slow relaxation time of 3.7 ± 1.2 s and 23 ± 8 s and these experiments also allowed the determination of the elastic and viscous moduli. Cyclic stress-strain curves were used to determine that the elastic limit of the fibers, εelastic, is between 19% and 36%. These curves were also used to determine that these fibers showed small energy losses (<20%) at small strains (ε < 10%), and over 50% energy loss at large strains (ε > 50%), asymptotically approaching 61%, as Eloss=61%·(1-e-0.04*ε). Our work is the first mechanical characterization of hydrated electrospun PCL nanofibers; all previous experiments were performed on dry PCL fibers, to which we will compare our data.


Subject(s)
Materials Testing , Nanofibers , Polyesters , Stress, Mechanical , Water , Polyesters/chemistry , Nanofibers/chemistry , Water/chemistry , Mechanical Phenomena , Tensile Strength , Elastic Modulus , Viscosity , Biocompatible Materials/chemistry
15.
Int J Mol Sci ; 25(10)2024 May 16.
Article in English | MEDLINE | ID: mdl-38791471

ABSTRACT

Given the widespread use of esters and polyesters in products like cosmetics, fishing nets, lubricants and adhesives, whose specific application(s) may cause their dispersion in open environments, there is a critical need for stringent eco-design criteria based on biodegradability and ecotoxicity evidence. Our approach integrates experimental and computational methods based on short oligomers, offering a screening tool for the rapid identification of sustainable monomers and oligomers, with a special focus on bio-based alternates. We provide insights into the relationships between the chemical structure and properties of bio-based oligomers in terms of biodegradability in marine environments and toxicity in benchmark organisms. The experimental results reveal that the considered aromatic monomers (terephthalic acid and 2,5-furandicarboxylic acid) accumulate under the tested conditions (OECD 306), although some slight biodegradation is observable when the inoculum derives from sites affected by industrial and urban pollution, which suggests that ecosystems adapt to non-natural chemical pollutants. While clean seas are more susceptible to toxic chemical buildup, biotic catalytic activities offer promise for plastic pollution mitigation. Without prejudice to the fact that biodegradability inherently signifies a desirable trait in plastic products, nor that it automatically grants them a sustainable "license", this study is intended to facilitate the rational design of new polymers and materials on the basis of specific uses and applications.


Subject(s)
Biodegradation, Environmental , Polyesters/chemistry , Aquatic Organisms , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/toxicity , Phthalic Acids/chemistry , Phthalic Acids/toxicity , Phthalic Acids/metabolism
16.
Molecules ; 29(10)2024 May 09.
Article in English | MEDLINE | ID: mdl-38792089

ABSTRACT

1-(3-aryl)-3-(dimethylamino)prop-2-en-1-one (enaminones) derivatives and the diazonium salt of para-chloroaniline were used to synthesize several novel disperse azo dyes with high yield and the use of an environmentally friendly approach. At 100 and 130 °C, we dyed polyester fabrics using the new synthesized disperse dyes. At various temperatures, the dyed fabrics' color intensity was assessed. The results we obtained showed that dyeing utilizing a high temperature method at 130 °C was enhanced than dyeing utilizing a low temperature method at 100 °C. Reusing dye baths once or twice was a way to achieve two goals at the same time. The first was obtaining a dyed product at no cost, and the second was a way to treat the wastewater of dyeing bath effluents and reuse it again. Good results were obtained for the fastness characteristics of polyester dyed with disperse dyes. When the disperse dyes were tested against certain types of microbes and cancer cells, they demonstrated good and encouraging findings for the potential to be used as antioxidants and antimicrobial agents.


Subject(s)
Coloring Agents , Polyesters , Textiles , Polyesters/chemistry , Polyesters/chemical synthesis , Coloring Agents/chemistry , Humans , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Anti-Infective Agents/chemical synthesis , Azo Compounds/chemistry , Azo Compounds/chemical synthesis , Microbial Sensitivity Tests
17.
Water Res ; 257: 121745, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38733965

ABSTRACT

Polyester-amide (PEA) thin film composite (TFC) NF membranes have rapidly evolved towards a competitive performance, benefiting from their remarkable antifouling capability and superior chlorine resistance. In this report, a new concept of synergistic interfacial polymerization is explored, which promptly triggers the reaction between hydramines and trimesoyl chloride (TMC) in the presence of a trace amount of diamines. This rapid-start mode enables the formation of defect-free PEA films without the requirement of catalysis. A comprehensive characterization of physicochemical properties using high-resolution mass spectrometer (HRMS) reveals that the recombination and formation of a "hydramine-diamine" coupling unit plays a decisive role in activating the synergistic interfacial polymerization reaction with TMC molecules. Taking the pair of serinol and piperazine (PIP) as an example, the PEA-NF membrane fabricated with 0.1 w/v% serinol mixed with 0.04 w/v% PIP as water-soluble monomer and 0.1 w/v% TMC as oil phase monomer was found to have a pure water permeability (PWP) of 18.5 L·m-2·h-1·bar-1 and a MgSO4 rejection of 95.5 %, which surpasses almost all the reported PEA NF membranes. Findings of the current research provide more possibilities for the low-cost and rapid synthesis of high-performance PEA membranes aiming for water purification.


Subject(s)
Membranes, Artificial , Polymerization , Diamines/chemistry , Polyesters/chemistry
18.
Int J Pharm ; 657: 124178, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38692499

ABSTRACT

Noninfective uveitis is a major cause of vision impairment, and corticosteroid medication is a mainstay clinical strategy that causes severe side effects. Rapamycin (RAPA), a potent immunomodulator, is a promising treatment for noninfective uveitis. However, because high and frequent dosages are required, it is a great challenge to implement its clinical translation for noninfective uveitis therapy owing to its serious toxicity. In the present study, we engineered an injectable microparticulate drug delivery system based on biodegradable block polymers (i.e., polycaprolactone-poly (ethylene glycol)-polycaprolactone, PCEC) for efficient ocular delivery of RAPA via a subconjunctival injection route and investigated its therapeutic efficacy in an experimental autoimmune uveitis (EAU) rat model. RAPA-PCEC microparticles were fabricated using the emulsion-evaporation method and thoroughly characterized using scanning electron microscopy, fourier transform infrared spectroscopy, X-ray diffraction, and differential scanning calorimetry. The formed microparticles exhibited slow in vitro degradation over 28 days, and provided both in vitro and in vivo sustained release of RAPA over 4 weeks. Additionally, a single subconjunctival injection of PCEC microparticles resulted in high ocular tolerance. More importantly, subconjunctival injection of RAPA-PCEC microparticles significantly attenuated the clinical signs of EAU in a dose-dependent manner by reducing inflammatory cell infiltration (i.e., CD45+ cells and Th17 cells) and inhibiting microglial activation. Overall, this injectable microparticulate system may be promising vehicle for intraocular delivery of RAPA for the treatment of noninfective uveitis.


Subject(s)
Polyesters , Polyethylene Glycols , Sirolimus , Uveitis , Animals , Uveitis/drug therapy , Sirolimus/administration & dosage , Polyethylene Glycols/chemistry , Polyethylene Glycols/administration & dosage , Polyesters/chemistry , Polyesters/administration & dosage , Rats, Inbred Lew , Rats , Immunosuppressive Agents/administration & dosage , Immunosuppressive Agents/chemistry , Female , Drug Liberation , Delayed-Action Preparations , Microspheres , Disease Models, Animal , Drug Delivery Systems , Conjunctiva/drug effects , Autoimmune Diseases/drug therapy , Drug Carriers/chemistry , Injections, Intraocular
19.
Bioresour Technol ; 402: 130794, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38703966

ABSTRACT

Carbon deficits in inflow frequently lead to inefficient nitrogen removal in constructed wetlands (CWs) treating tailwater. Solid carbon sources, commonly employed to enhance denitrification in CWs, increase carbon emissions. In this study, MnO2 was incorporated into polycaprolactone substrates within CWs, significantly enhancing NH4+-N and NO3--N removal efficiencies by 48.26-59.78 % and 96.84-137.23 %, respectively. These improvements were attributed to enriched nitrogen-removal-related enzymes and increased plant absorption. Under high nitrogen loads (9.55 ± 0.34 g/m3/d), emissions of greenhouse gases (CO2, CH4, and N2O) decreased by 147.23-202.51 %, 14.53-86.76 %, and 63.36-87.36 %, respectively. N2O emissions were reduced through bolstered microbial nitrogen removal pathways by polycaprolactone and MnO2. CH4 accumulation was mitigated by the increased methanotrophs and dampened methanogenesis, modulated by manganese. Additionally, manganese-induced increases in photosynthetic pigment contents (21.28-64.65 %) fostered CO2 sequestration through plant photosynthesis. This research provides innovative perspectives on enhancing nitrogen removal and reducing greenhouse gas emissions in constructed wetlands with polymeric substrates.


Subject(s)
Carbon , Methane , Nitrogen , Wetlands , Nitrogen/metabolism , Carbon/metabolism , Methane/metabolism , Polyesters/metabolism , Polyesters/chemistry , Manganese/pharmacology , Plants/metabolism , Denitrification , Nitrous Oxide/metabolism , Carbon Dioxide/metabolism , Biodegradation, Environmental , Photosynthesis
20.
Bioresour Technol ; 402: 130795, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38705213

ABSTRACT

Stable carbon release and coupled microbial efficacy of external carbon source solid fillers are the keys to enhanced nitrogen removal in constructed wetlands. The constructed wetland plant residue Acorus calamus was cross-linked with poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) to create composite solid carbon source fillers (Ac-BDPs). The study demonstrated the slow release of carbon sources from Ac-BDPs with 35.27 mg/g under an average release rate of 0.88 mg/(g·d). Excellent denitrification was also observed in constructed wetlands with Ac-BDPs. Moreover, the average removal rate of nitrate nitrogen (NO3--N) was increased by 1.94 and 3.85 times of the blank groups under initial NO3--N inputs of 5 and 15 mg/L, respectively. Furthermore, the relatively high abundances of nap, narG, nirKS, norB, qnorZ and nosZ guaranteed efficient denitrification performance in constructed wetlands with Ac-BDPs. The study introduced a reliable technique for biological nitrogen removal by using composite carbon source fillers in constructed wetlands.


Subject(s)
Carbon , Nitrogen , Wetlands , Polyesters/chemistry , Polyesters/metabolism , Denitrification , Biodegradation, Environmental , Nitrates , Water Purification/methods , Polyhydroxybutyrates
SELECTION OF CITATIONS
SEARCH DETAIL
...