Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.492
Filter
1.
Curr Microbiol ; 81(7): 185, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38771339

ABSTRACT

The plastic film is extensively applied with limited recycling, leading to the long-run residue accumulation in soil, which offers a distinctive habitat for microorganisms, and creates a plastisphere. In this study, traditional low-density polyethylene (LDPE) plastic film and biodegradable polybutylene adipate terephthalate (PBAT) plastic film materials were selected to test their effects on soil microbial ecology. Based on high-throughput sequencing, compared to the soil environment, the alpha-diversity of bacterial communities in plastisphere was lower, and the abundance of Actinobacteria increased. Plastic film residues, as bacterial habitats, exhibited greater heterogeneity and harbor unique bacterial communities. The communities were distinguished between plastisphere and soil environment by means of a random-forest (RF) machine-learning model. Prominent distinctions emerged among bacterial functions between soil environment and plastisphere, especially regarding organics degradation. The neutral model and null model indicated that the constitution of bacterial communities was dominated by random processes except in LDPE plastisphere. The bacterial co-occurrence network of the plastisphere exhibited higher complexity and modularity. This study contributes to our comprehending of characteristics of plastisphere bacterial communities in soil environment and the associated ecological risks of plastic film residues accumulation.


Subject(s)
Bacteria , Polyethylene , Soil Microbiology , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Polyethylene/chemistry , Polyesters/metabolism , Soil/chemistry , Soil Pollutants/analysis , Microbiota
2.
Water Environ Res ; 96(5): e11040, 2024 May.
Article in English | MEDLINE | ID: mdl-38752384

ABSTRACT

In this study, a pyrite-based autotrophic denitrification (PAD) system, a polycaprolactone (PCL)-supported heterotrophic denitrification (PHD) system, and a pyrite+PCL-based split-mixotrophic denitrification (PPMD) system were constructed. The pyrite particle size was controlled in 1-3, 3-5, or 5-8 mm in both the PAD and PPMD systems to investigate the effect of pyrite particle size on the denitrification performance of autotrophic or split-mixotrophic bioreactors. It was found that the PAD system achieved the best denitrification efficiency with an average removal rate of 98.98% in the treatment of 1- to 3-mm particle size, whereas it was only 19.24% in the treatment of 5- to 8-mm particle size. At different phases of the whole experiment, the nitrate removal rates of both the PHD and PPMD systems remained stable at a high level (>94%). Compared with the PAD or PHD system, the PPMD system reduced the concentrations of sulfate and chemical oxygen demand in the final effluent efficiently. The interconnection network diagram explained the intrinsic metabolic pathways of nitrogen, sulfur, and carbon in the three denitrification systems at different phases. In addition, the microbial community analysis showed that the PPMD system was beneficial for the enrichment of Firmicutes. Finally, the impact mechanism of pyrite particle size on the performance of the PPMD system was proposed. PRACTITIONER POINTS: The reduction of pyrite particle size was beneficial for improving the efficiency of the PAD process. The change in particle size had an effect on NO2 --N accumulation in the PAD system. The accumulation of NH4 +-N in the PPMD system increased with the decrease in particle size. The reduction of pyrite particle size increased the production of SO4 2- in the PAD and PPMD systems. The correlations among the effluent indicators of the PAD and PPMD systems could be well explained.


Subject(s)
Bioreactors , Denitrification , Iron , Particle Size , Polyesters , Sulfides , Sulfides/chemistry , Sulfides/metabolism , Polyesters/chemistry , Polyesters/metabolism , Iron/chemistry , Iron/metabolism , Autotrophic Processes , Nitrates/metabolism , Nitrates/chemistry
3.
Bioresour Technol ; 402: 130759, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38692375

ABSTRACT

This study explores the ability of methanotrophs to convert biogas into biopolymers, addressing H2S as a limitation in the utilization of biogas as a carbon source for bioconversion. Transcriptomic analysis was conducted to understand the growth and changes in the expression patterns of Type I and II methanotrophs under varying H2S concentrations. Results suggested that Type II methanotrophs can possess a native H2S utilization pathway. Both Type I and II methanotrophs were evaluated for their growth and polyhydroxybutyrate (PHB) production from biogas. Methylocystis sp. MJC1 and Methylocystis sp. OK1 exhibited a maximum biomass production of 4.0 and 4.5 gDCW/L, respectively, in fed-batch culture, aligning with the transcriptome data. Furthermore, Methylocystis sp. MJC1 produced 2.9 g PHB/L from biogas through gas fermentation. These findings underscore biogas-based biotechnology as an innovative solution for environmental and industrial challenges with further optimization and productivity enhancement research expected to broaden the potential in this field.


Subject(s)
Biofuels , Hydroxybutyrates , Hydroxybutyrates/metabolism , Fermentation , Methylocystaceae/metabolism , Biomass , Polyesters/metabolism , Methane/metabolism , Batch Cell Culture Techniques
4.
Bioresour Technol ; 402: 130789, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38703961

ABSTRACT

Wastewater phosphorus removal achieved biologically is associated with the process known as enhanced biological phosphorus removal (EBPR). In contrast with canonical EBPR operations that employ alternating anaerobic-aerobic conditions and achieve asynchronous carbon and phosphorus storage, research herein focused on phosphorus removal achieved under aerobic conditions synchronously with volatile fatty acid (VFA) storage as polyhydroxybutyrate-co-valerate (PHBV). 90.3 ± 3.4 % soluble phosphorus removal was achieved from dairy manure fermenter liquor; influent and effluent concentrations were 38.6 ± 9.5 and 3.7 ± 0.8 mgP/L, respectively. Concurrently, PHBV yield ranged from 0.17 to 0.64 mgCOD/mgCOD, yielding 147-535 mgCODPHBV/L. No evidence of EBPR mechanisms was observed, nor were canonical phosphorus accumulating organisms present; additionally, the polyphosphate kinase gene was not present in the microbial biomass. Phosphorus removal was primarily associated with biomass growth and secondarily with biomass complexation. Results demonstrate that concurrent PHBV synthesis and phosphorus recovery can be achieved microbially under aerobic dynamic feeding conditions when fed nutrient rich wastewater.


Subject(s)
Dairying , Manure , Phosphorus , Polyesters , Aerobiosis , Polyesters/metabolism , Fermentation , Animals , Bioreactors , Biomass , Biodegradation, Environmental , Fatty Acids, Volatile/metabolism , Cattle , Polyhydroxybutyrates
5.
Bioresour Technol ; 402: 130794, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38703966

ABSTRACT

Carbon deficits in inflow frequently lead to inefficient nitrogen removal in constructed wetlands (CWs) treating tailwater. Solid carbon sources, commonly employed to enhance denitrification in CWs, increase carbon emissions. In this study, MnO2 was incorporated into polycaprolactone substrates within CWs, significantly enhancing NH4+-N and NO3--N removal efficiencies by 48.26-59.78 % and 96.84-137.23 %, respectively. These improvements were attributed to enriched nitrogen-removal-related enzymes and increased plant absorption. Under high nitrogen loads (9.55 ± 0.34 g/m3/d), emissions of greenhouse gases (CO2, CH4, and N2O) decreased by 147.23-202.51 %, 14.53-86.76 %, and 63.36-87.36 %, respectively. N2O emissions were reduced through bolstered microbial nitrogen removal pathways by polycaprolactone and MnO2. CH4 accumulation was mitigated by the increased methanotrophs and dampened methanogenesis, modulated by manganese. Additionally, manganese-induced increases in photosynthetic pigment contents (21.28-64.65 %) fostered CO2 sequestration through plant photosynthesis. This research provides innovative perspectives on enhancing nitrogen removal and reducing greenhouse gas emissions in constructed wetlands with polymeric substrates.


Subject(s)
Carbon , Methane , Nitrogen , Wetlands , Nitrogen/metabolism , Carbon/metabolism , Methane/metabolism , Polyesters/metabolism , Polyesters/chemistry , Manganese/pharmacology , Plants/metabolism , Denitrification , Nitrous Oxide/metabolism , Carbon Dioxide/metabolism , Biodegradation, Environmental , Photosynthesis
6.
Bioresour Technol ; 402: 130795, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38705213

ABSTRACT

Stable carbon release and coupled microbial efficacy of external carbon source solid fillers are the keys to enhanced nitrogen removal in constructed wetlands. The constructed wetland plant residue Acorus calamus was cross-linked with poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) to create composite solid carbon source fillers (Ac-BDPs). The study demonstrated the slow release of carbon sources from Ac-BDPs with 35.27 mg/g under an average release rate of 0.88 mg/(g·d). Excellent denitrification was also observed in constructed wetlands with Ac-BDPs. Moreover, the average removal rate of nitrate nitrogen (NO3--N) was increased by 1.94 and 3.85 times of the blank groups under initial NO3--N inputs of 5 and 15 mg/L, respectively. Furthermore, the relatively high abundances of nap, narG, nirKS, norB, qnorZ and nosZ guaranteed efficient denitrification performance in constructed wetlands with Ac-BDPs. The study introduced a reliable technique for biological nitrogen removal by using composite carbon source fillers in constructed wetlands.


Subject(s)
Carbon , Nitrogen , Wetlands , Polyesters/chemistry , Polyesters/metabolism , Denitrification , Biodegradation, Environmental , Nitrates , Water Purification/methods , Polyhydroxybutyrates
7.
Arch Microbiol ; 206(6): 275, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38775940

ABSTRACT

In many European regions, both local metallic and non-metallic raw materials are poorly exploited due to their low quality and the lack of technologies to increase their economic value. In this context, the development of low cost and eco-friendly approaches, such as bioleaching of metal impurities, is crucial. The acidophilic strain Acidiphilium sp. SJH reduces Fe(III) to Fe(II) by coupling the oxidation of an organic substrate to the reduction of Fe(III) and can therefore be applied in the bioleaching of iron impurities from non-metallic raw materials. In this work, the physiology of Acidiphilium sp. SJH and the reduction of iron impurities from quartz sand and its derivatives have been studied during growth on media supplemented with various carbon sources and under different oxygenation conditions, highlighting that cell physiology and iron reduction are tightly coupled. Although the organism is known to be aerobic, maximum bioleaching performance was obtained by cultures cultivated until the exponential phase of growth under oxygen limitation. Among carbon sources, glucose has been shown to support faster biomass growth, while galactose allowed highest bioleaching. Moreover, Acidiphilium sp. SJH cells can synthesise and accumulate Poly-ß-hydroxybutyrate (PHB) during the process, a polymer with relevant application in biotechnology. In summary, this work gives an insight into the physiology of Acidiphilium sp. SJH, able to use different carbon sources and to synthesise a technologically relevant polymer (PHB), while removing metals from sand without the need to introduce modifications in the process set up.


Subject(s)
Acidiphilium , Iron , Oxidation-Reduction , Iron/metabolism , Acidiphilium/metabolism , Acidiphilium/growth & development , Hydroxybutyrates/metabolism , Polyesters/metabolism , Polymers/metabolism , Culture Media/chemistry , Biomass , Polyhydroxybutyrates
8.
Microb Cell Fact ; 23(1): 160, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822346

ABSTRACT

BACKGROUND: Wastewater treatment plants contribute approximately 6% of anthropogenic methane emissions. Methanotrophs, capable of converting methane into polyhydroxybutyrate (PHB), offer a promising solution for utilizing methane as a carbon source, using activated sludge as a seed culture for PHB production. However, maintaining and enriching PHB-accumulating methanotrophic communities poses challenges. RESULTS: This study investigated the potential of Methylosinus trichosporium OB3b to bioaugment PHB-accumulating methanotrophic consortium within activated sludge to enhance PHB production. Waste-activated sludges with varying ratios of M. trichosporium OB3b (1:0, 1:1, 1:4, and 0:1) were cultivated. The results revealed substantial growth and methane consumption in waste-activated sludge with M. trichosporium OB3b-amended cultures, particularly in a 1:1 ratio. Enhanced PHB accumulation, reaching 37.1% in the same ratio culture, indicates the dominance of Type II methanotrophs. Quantification of methanotrophs by digital polymerase chain reaction showed gradual increases in Type II methanotrophs, correlating with increased PHB production. However, while initial bioaugmentation of M. trichosporium OB3b was observed, its presence decreased in subsequent cycles, indicating the dominance of other Type II methanotrophs. Microbial community analysis highlighted the successful enrichment of Type II methanotrophs-dominated cultures due to the addition of M. trichosporium OB3b, outcompeting Type I methanotrophs. Methylocystis and Methylophilus spp. were the most abundant in M. trichosporium OB3b-amended cultures. CONCLUSIONS: Bioaugmentation strategies, leveraging M. trichosporium OB3b could significantly enhance PHB production and foster the enrichment of PHB-accumulating methanotrophs in activated sludge. These findings contribute to integrating PHB production in wastewater treatment plants, providing a sustainable solution for resource recovery.


Subject(s)
Hydroxybutyrates , Methane , Methylosinus trichosporium , Sewage , Sewage/microbiology , Methylosinus trichosporium/metabolism , Hydroxybutyrates/metabolism , Methane/metabolism , Polyesters/metabolism , Biodegradation, Environmental , Wastewater/microbiology , Polyhydroxybutyrates
9.
Mar Genomics ; 75: 101111, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38735674

ABSTRACT

Hortaea werneckii M-3, a black yeast isolated from the marine sediment of the West Pacific, can utilize polyester polyurethane (PU, Impranil DLN) as a sole carbon source. Here, we present the complete genome of Hortaea werneckii M-3 with the focus on PU degradation enzymes. The total genome size is 38,167,921 bp, consisting of 186 contigs with a N50 length of 651,266 bp and a GC content of 53.06%. Genome annotation analysis predicts a total of 13,462 coding genes, which include 99 tRNAs and 105 rRNAs. Some genes encoding PU degrading enzymes including cutinase and urease are identified in this genome. The genome analysis of Hortaea werneckii M-3 will be helpful for further understanding the degradation mechanism of polyester PU by marine yeasts.


Subject(s)
Genome, Fungal , Polyurethanes , Whole Genome Sequencing , Saccharomycetales/genetics , Polyesters/metabolism , Geologic Sediments/microbiology
10.
J Hazard Mater ; 472: 134425, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38691998

ABSTRACT

Soil health is a crucial aspect of sustainable agriculture and food production, necessitating attention to the ecological risks associated with substantial amounts of mulch film residues. Biodegradable mulch films (BDMs) carry the same risk of mulch film residues formation as low-density polyethylene (LDPE) mulch films during actual use. More information is needed to elucidate the specific impacts of mulch film residues on the soil environment. Integrated 16S rRNA gene sequencing and non-targeted metabolomics, this study revealed the response patterns of bacterial communities, metabolites, and metabolic functions in the soil from three different agricultural regions to the presence of mulch film residues. LDPE mulch film residues negatively impacted the bacterial communities in the soils of Heilongjiang (HLJ) and Yunnan (YN) and had a lesser impact on the metabolic spectrum in the soils of HLJ, YN, and Xinjiang (XJ). BDM residues had a greater negative impact on all three soils in terms of both the bacterial communities and metabolites. The impact of BDM treatment on the soils of HLJ, YN, and XJ increased sequentially in that order. It is recommended that, when promoting the use of biodegradable mulch films, a fuller assessment should be made, accounting for local soil properties.


Subject(s)
Agriculture , Bacteria , RNA, Ribosomal, 16S , Soil Microbiology , Soil Pollutants , Bacteria/metabolism , Bacteria/genetics , Soil Pollutants/metabolism , Biodegradation, Environmental , Polyethylene/chemistry , Soil/chemistry , Polyesters/metabolism , Polyesters/chemistry , Biodegradable Plastics/chemistry , Biodegradable Plastics/metabolism
11.
Appl Microbiol Biotechnol ; 108(1): 310, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38662130

ABSTRACT

Poly-hydroxybutyrate (PHB) is an environmentally friendly alternative for conventional fossil fuel-based plastics that is produced by various microorganisms. Large-scale PHB production is challenging due to the comparatively higher biomanufacturing costs. A PHB overproducer is the haloalkaliphilic bacterium Halomonas campaniensis, which has low nutritional requirements and can grow in cultures with high salt concentrations, rendering it resistant to contamination. Despite its virtues, the metabolic capabilities of H. campaniensis as well as the limitations hindering higher PHB production remain poorly studied. To address this limitation, we present HaloGEM, the first high-quality genome-scale metabolic network reconstruction, which encompasses 888 genes, 1528 reactions (1257 gene-associated), and 1274 metabolites. HaloGEM not only displays excellent agreement with previous growth data and experiments from this study, but it also revealed nitrogen as a limiting nutrient when growing aerobically under high salt concentrations using glucose as carbon source. Among different nitrogen source mixtures for optimal growth, HaloGEM predicted glutamate and arginine as a promising mixture producing increases of 54.2% and 153.4% in the biomass yield and PHB titer, respectively. Furthermore, the model was used to predict genetic interventions for increasing PHB yield, which were consistent with the rationale of previously reported strategies. Overall, the presented reconstruction advances our understanding of the metabolic capabilities of H. campaniensis for rationally engineering this next-generation industrial biotechnology platform. KEY POINTS: A comprehensive genome-scale metabolic reconstruction of H. campaniensis was developed. Experiments and simulations predict N limitation in minimal media under aerobiosis. In silico media design increased experimental biomass yield and PHB titer.


Subject(s)
Halomonas , Hydroxybutyrates , Nitrogen , Polyesters , Polyhydroxybutyrates , Halomonas/metabolism , Halomonas/genetics , Halomonas/growth & development , Nitrogen/metabolism , Hydroxybutyrates/metabolism , Polyesters/metabolism , Metabolic Networks and Pathways/genetics , Biomass , Glucose/metabolism
12.
Nat Commun ; 15(1): 3267, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38627361

ABSTRACT

In vitro biotransformation (ivBT) facilitated by in vitro synthetic enzymatic biosystems (ivSEBs) has emerged as a highly promising biosynthetic platform. Several ivSEBs have been constructed to produce poly-3-hydroxybutyrate (PHB) via acetyl-coenzyme A (acetyl-CoA). However, some systems are hindered by their reliance on costly ATP, limiting their practicality. This study presents the design of an ATP-free ivSEB for one-pot PHB biosynthesis via acetyl-CoA utilizing starch-derived maltodextrin as the sole substrate. Stoichiometric analysis indicates this ivSEB can self-maintain NADP+/NADPH balance and achieve a theoretical molar yield of 133.3%. Leveraging simple one-pot reactions, our ivSEBs achieved a near-theoretical molar yield of 125.5%, the highest PHB titer (208.3 mM, approximately 17.9 g/L) and the fastest PHB production rate (9.4 mM/h, approximately 0.8 g/L/h) among all the reported ivSEBs to date, and demonstrated easy scalability. This study unveils the promising potential of ivBT for the industrial-scale production of PHB and other acetyl-CoA-derived chemicals from starch.


Subject(s)
Hydroxybutyrates , Polyhydroxybutyrates , Polysaccharides , Starch , Acetyl Coenzyme A/metabolism , Starch/metabolism , Hydroxybutyrates/metabolism , Polyesters/metabolism , NADP/metabolism , Biotransformation
13.
J Hazard Mater ; 470: 134176, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38569347

ABSTRACT

Biodegradable microplastics (MPs) are promising alternatives to conventional MPs and are of high global concern. However, their discrepant effects on soil microorganisms and functions are poorly understood. In this study, polyethylene (PE) and polylactic acid (PLA) MPs were selected to investigate the different effects on soil microbiome and C-cycling genes using high-throughput sequencing and real-time quantitative PCR, as well as the morphology and functional group changes of MPs, using scanning electron microscopy and Fourier transform infrared spectroscopy, and the driving factors were identified. The results showed that distinct taxa with potential for MP degradation and nitrogen cycling were enriched in soils with PLA and PE, respectively. PLA, smaller size (150-180 µm), and 5% (w/w) of MPs enhanced the network complexity compared with PE, larger size (250-300 µm), and 1% (w/w) of MPs, respectively. PLA increased ß-glucosidase by up to 2.53 times, while PE (150-180 µm) reduced by 38.26-44.01% and PE (250-300 µm) increased by 19.00-22.51% at 30 days. Amylase was increased by up to 5.83 times by PLA (150-180 µm) but reduced by 40.26-62.96% by PLA (250-300 µm) and 16.11-43.92% by PE. The genes cbbL, cbhI, abfA, and Lac were enhanced by 37.16%- 1.99 times, 46.35%- 26.46 times, 8.41%- 69.04%, and 90.81%- 5.85 times by PLA except for PLA1B/5B at 30 days. These effects were associated with soil pH, NO3--N, and MP biodegradability. These findings systematically provide an understanding of the impact of biodegradable MPs on the potential for global climate change.


Subject(s)
Biodegradation, Environmental , Microbiota , Microplastics , Polyesters , Soil Microbiology , Soil Pollutants , Polyesters/metabolism , Polyesters/chemistry , Microplastics/toxicity , Soil Pollutants/metabolism , Polyethylene/chemistry , Carbon/chemistry , Biodegradable Plastics/chemistry , Bacteria/metabolism , Bacteria/genetics , Soil/chemistry
14.
PeerJ ; 12: e17165, 2024.
Article in English | MEDLINE | ID: mdl-38590706

ABSTRACT

Background: Plastic waste is a global environmental issue that impacts the well-being of humans, animals, plants, and microorganisms. Microplastic contamination has been previously reported at Kung Wiman Beach, located in Chanthaburi province along with the Eastern Gulf of Thailand. Our research aimed to study the microbial population of the sand and plastisphere and isolate microorganisms with potential plastic degradation activity. Methods: Plastic and sand samples were collected from Kung Wiman Beach for microbial isolation on agar plates. The plastic samples were identified by Fourier-transform infrared spectroscopy. Plastic degradation properties were evaluated by observing the halo zone on mineral salts medium (MSM) supplemented with emulsified plastics, including polystyrene (PS), polylactic acid (PLA), polyvinyl chloride (PVC), and bis (2-hydroxyethyl) terephthalate (BHET). Bacteria and fungi were identified by analyzing nucleotide sequence analysis of the 16S rRNA and internal transcribed spacer (ITS) regions, respectively. 16S and ITS microbiomes analysis was conducted on the total DNA extracted from each sample to assess the microbial communities. Results: Of 16 plastic samples, five were identified as polypropylene (PP), four as polystyrene (PS), four as polyethylene terephthalate (PET), two as high-density polyethylene (HDPE), and one sample remained unidentified. Only 27 bacterial and 38 fungal isolates were found to have the ability to degrade PLA or BHET on MSM agar. However, none showed degradation capabilities for PS or PVC on MSM agar. Notably, Planococcus sp. PP5 showed the highest hydrolysis capacity of 1.64 ± 0.12. The 16S rRNA analysis revealed 13 bacterial genera, with seven showing plastic degradation abilities: Salipiger, Planococcus, Psychrobacter, Shewanella, Jonesia, Bacillus, and Kocuria. This study reports, for the first time of the BHET-degrading properties of the genera Planococcus and Jonesia. Additionally, The ITS analysis identified nine fungal genera, five of which demonstrated plastic degradation abilities: Aspergillus, Penicillium, Peacilomyces, Absidia, and Cochliobolus. Microbial community composition analysis and linear discriminant analysis effect size revealed certain dominant microbial groups in the plastic and sand samples that were absent under culture-dependent conditions. Furthermore, 16S and ITS amplicon microbiome analysis revealed microbial groups were significantly different in the plastic and sand samples collected. Conclusions: We reported on the microbial communities found on the plastisphere at Kung Wiman Beach and isolated and identified microbes with the capacity to degrade PLA and BHET.


Subject(s)
Actinomycetales , Microbiota , Actinomycetales/genetics , Agar/metabolism , Bacteria/genetics , Microbiota/genetics , Plastics/metabolism , Polyesters/metabolism , Polystyrenes/metabolism , RNA, Ribosomal, 16S/genetics , Sand
15.
Int J Biol Macromol ; 268(Pt 2): 131916, 2024 May.
Article in English | MEDLINE | ID: mdl-38679264

ABSTRACT

A polylactic acid degrading triacylglycerol lipase (TGL) was identified from Bacillus safensis based on genome annotation and validated by real-time quantitative PCR. TGL displayed optimal activity at pH 9.0 and 55 °C. It maintained stability at pH 9.0 and temperatures 45 °C. The activity of TGL was found to benefit from the presence of potassium sodium ions, and low concentrations of Triton X-100. The TGL could erode the surface of polylactic acid films and increase its hydrophilicity. The hydrolysis products of polylactic acid by TGL were lactate monomer and dimer. TGL contains a classical catalytic triad structure of lipase (Ser77, Asp133, and His156) and an Ala-X-Ser-X-Gly sequence. Compared with some lipases produced by the same genus Bacillus, TGL is highly conserved in its amino acid sequence, mainly reflected in the amino acid residues that exercise the enzyme activity, including the catalytic activity center and the substrate binding sites.


Subject(s)
Bacillus , Lipase , Polyesters , Bacillus/enzymology , Lipase/chemistry , Lipase/metabolism , Lipase/genetics , Polyesters/chemistry , Polyesters/metabolism , Hydrogen-Ion Concentration , Hydrolysis , Substrate Specificity , Temperature , Enzyme Stability , Amino Acid Sequence , Catalytic Domain
16.
Appl Environ Microbiol ; 90(5): e0169423, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38624219

ABSTRACT

Given the multitude of extracellular enzymes at their disposal, many of which are designed to degrade nature's polymers (lignin, cutin, cellulose, etc.), fungi are adept at targeting synthetic polyesters with similar chemical composition. Microbial-influenced deterioration of xenobiotic polymeric surfaces is an area of interest for material scientists as these are important for the conservation of the underlying structural materials. Here, we describe the isolation and characterization of the Papiliotrema laurentii 5307AH (P. laurentii) cutinase, Plcut1. P. laurentii is basidiomycete yeast with the ability to disperse Impranil-DLN (Impranil), a colloidal polyester polyurethane, in agar plates. To test whether the fungal factor involved in this clearing was a secreted enzyme, we screened the ability of P. laurentii culture supernatants to disperse Impranil. Using size exclusion chromatography (SEC), we isolated fractions that contained Impranil-clearing activity. These fractions harbored a single ~22 kD band, which was excised and subjected to peptide sequencing. Homology searches using the peptide sequences identified, revealed that the protein Papla1 543643 (Plcut1) displays similarities to serine esterase and cutinase family of proteins. Biochemical assays using recombinant Plcut1 confirmed that this enzyme has the capability to hydrolyze Impranil, soluble esterase substrates, and apple cutin. Finally, we confirmed the presence of the Plcut1 in culture supernatants using a custom antibody that specifically recognizes this protein. The work shown here supports a major role for the Plcut1 in the fungal degradation of natural polyesters and xenobiotic polymer surfaces.IMPORTANCEFungi play a vital role in the execution of a broad range of biological processes that drive ecosystem function through production of a diverse arsenal of enzymes. However, the universal reactivity of these enzymes is a current problem for the built environment and the undesired degradation of polymeric materials in protective coatings. Here, we report the identification and characterization of a hydrolase from Papiliotrema laurentii 5307AH, an aircraft-derived fungal isolate found colonizing a biodeteriorated polymer-coated surface. We show that P. laurentii secretes a cutinase capable of hydrolyzing soluble esters as well as ester-based compounds forming solid surface coatings. These findings indicate that this fungus plays a significant role in biodeterioration through the production of a cutinase adept at degrading ester-based polymers, some of which form the backbone of protective surface coatings. The work shown here provides insights into the mechanisms employed by fungi to degrade xenobiotic polymers.


Subject(s)
Carboxylic Ester Hydrolases , Fungal Proteins , Polyesters , Recombinant Proteins , Carboxylic Ester Hydrolases/metabolism , Carboxylic Ester Hydrolases/genetics , Fungal Proteins/genetics , Fungal Proteins/metabolism , Fungal Proteins/chemistry , Recombinant Proteins/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Polyesters/metabolism , Hydrolysis
17.
Int J Biol Macromol ; 268(Pt 1): 131689, 2024 May.
Article in English | MEDLINE | ID: mdl-38642680

ABSTRACT

Plastic pollution is primarily caused by the accumulation of petroleum-derived plastics, as they tend to degrade slowly. Sustainable alternatives to these materials are bio-based and biodegradable plastics, such as polylactic acid (PLA). In this study, we assessed how turning aeration and the initial carbon/nitrogen (C/N) ratio impact PLA biodegradation. The study was carried out under controlled composting conditions, over 180 days, with the aim of decreasing the biodegradation time of the PLA. Apple pomace, rice husk, grape pomace compost, and PLA were used as substrates in the composting process. The experiments were conducted using three types of turning aeration: without turning, one turn per week, and two turns per week. Three initial C/N ratios were used: 20, 30, and 40. A stepwise temperature ramp was designed and implemented to simulate industrial composting conditions, which influence microbial activity and thus the rate of decomposition of substrates, including PLA. The data showed behavior; hence, a nonlinear regression model based on the logistic growth equation was used to predict the PLA biodegradation at the end of the composting process. The results showed that two turns per week with an initial C/N ratio of 30 or 40 led to a 90 % biodegradation of the PLA in 130 days. This degradation was verified by Fourier-Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscopy (SEM).


Subject(s)
Biodegradation, Environmental , Carbon , Nitrogen , Polyesters , Nitrogen/chemistry , Nitrogen/metabolism , Polyesters/chemistry , Polyesters/metabolism , Carbon/chemistry , Carbon/metabolism , Composting/methods , Temperature
18.
Sci Total Environ ; 931: 172771, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38670377

ABSTRACT

The persistence of conventional fossil fuel-derived plastics in marine ecosystems has raised significant environmental concerns. Biodegradable plastics are being explored as an alternative. This study investigates the biodegradation behaviour in two marine environments of melt-extruded sheets of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) bioplastic as well as blends of PHBV with a non-toxic plasticiser (triethyl citrate, TEC) and composites of PHBV with wood flour. Samples were submerged for up to 35 weeks in two subtropical marine conditions: on the sandy seabed in the sublittoral benthic zone and the sandy seabed of an open air mesocosm with pumped seawater. Rates of biodegradation, lag times and times to 95 % mass loss (T95) were determined through mass loss data and Gompertz modelling. Mechanisms of biodegradation were studied through changes in molecular weight, mechanical properties and surface features. Results reveal a rapid biodegradation rate for all PHBV samples, demonstrating a range of specific biodegradation rates relative to exposed surface area of 0.03 ± 0.01 to 0.09 ± 0.04 mg.d-1.cm-2. This rapid rate of biodegradation meant that the subtle variations in biodegradation mechanisms across different sample thicknesses and additive compositions had little effect on overall lifetimes, with the T95 for most samples being around 250-350 days, regardless of site, highlighting the robust biodegradability of PHBV in seawater. It was only the PHBV-wood flour composite that showed faster biodegradation, and that was only in the exposed ocean site. The mesocosm site was otherwise shown to be a good model for the open ocean, with very comparable biodegradation rates and changes in mechanical properties over time.


Subject(s)
Biodegradation, Environmental , Water Pollutants, Chemical/metabolism , Water Pollutants, Chemical/analysis , Polyhydroxyalkanoates/metabolism , Seawater/chemistry , Polyesters/metabolism , Biodegradable Plastics/metabolism , Polyhydroxybutyrates
19.
J Biotechnol ; 388: 83-95, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38621427

ABSTRACT

Due to the rapid increase in the world's population, many developing countries are facing malnutrition problems, including famine and food insecurity. Particularly, the deficiency of protein sources becomes a serious problem for human and animal nutrition. In this context, Single Cell Proteins, could be exploited as an alternative source of unconventional proteins. The aim of the study was to investigate SCP production and composition by Cupriavidus necator under various environmental conditions, temperature and pH values. A mono-factorial approach was implemented using batch bioreactor cultures under well-controlled conditions. Results were compared in terms of bacterial growth and SCP composition (proteins, nucleic acids, amino acids and elemental formula). Complementary analyses were performed by flow cytometry to study cell morphology, membrane permeability and the presence of Poly(3-hydroxybutyrate) (PHB) production. Our data confirmed the ability of C. necator to produce high amount of proteins (69 %DW at 30 °C and pH7). The results showed that temperature and pH independently impact SCP production and composition. This impact was particularly observed at the highest temperature (40 °C) and also the lowest pH value (pH5) providing lower growth rates, cell elongation, changes in granularity and lower amounts of proteins (down to 44 %DW at pH5) and nucleic acids. These low percentages were related to the production of PHB production (up to 44 %DW at 40 °C) which is the first report of a PHB accumulation in C. necator under nutrient unlimited conditions.


Subject(s)
Bioreactors , Cupriavidus necator , Polyesters , Temperature , Cupriavidus necator/metabolism , Cupriavidus necator/growth & development , Hydrogen-Ion Concentration , Bioreactors/microbiology , Polyesters/metabolism , Bacterial Proteins/metabolism , Hydroxybutyrates/metabolism , Prohibitins , Amino Acids/metabolism , Polyhydroxybutyrates , Dietary Proteins
20.
Ecotoxicol Environ Saf ; 277: 116378, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38663191

ABSTRACT

Pesticide residues and microplastics (MPs) in agricultural soils are two major concerns for soil health and food safety. The degradation of chlorpyrifos (CPF), an organophosphorus pesticide, releases phosphates. This process may be affected by the presence of MPs in the soil. The combination of CPF and MPs presence in the soil may thus produce interaction effects that alter the soil phosphorus (P) balance. This study explores the degradation pathways of CPF (6 mg kg-1, 12 mg kg-1 of CPF addition) in soils with different levels of polylactic acid MPs (PLA-MPs) (0.0 %, 0.1 %, 0.5 %, 1.0 % w/w), and analyzes soil P fractions and phosphatase enzyme activities to investigate soil P bioavailability under different treatments. Results show that the degradation of CPF fits to a first-order decay model, with half-lives (DT50) ranging from 11.0 to 14.8 d depending on PLA-MPs treatment. The concentration of its metabolite 3, 5, 6-trichloropyridine 2-phenol (TCP) reached a peak of 0.93-1.67 mg kg-1 within 7-14 days. Similarly, the degradation of CPF led to a significant transient increase in P bioavailability within 3-7 days (p < 0.05), with a peak range of 22.55-26.01 mg kg-1 for Olsen-P content and a peak range of 4.63-6.76 % for the proportions of available P fractions (H2O-P+NaHCO3-P+NaOH-P), before returning to prior levels (Olsen-P: 11.28-19.52 mg kg-1; available soil P fractions: 4.15-5.61 %). CPF degradation (6 mg kg-1) was significantly inhibited in soil with 1.0 % PLA-MPs addition. The effects of MPs and CPF on soil P fractions occur at different time frames, implying that their modes of action and interactions with soil microbes differ.


Subject(s)
Chlorpyrifos , Microplastics , Phosphorus , Soil Pollutants , Soil , Soil Pollutants/analysis , Soil Pollutants/metabolism , Phosphorus/analysis , Soil/chemistry , Biological Availability , Biodegradation, Environmental , Polyesters/chemistry , Polyesters/metabolism , Insecticides/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...