Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 7.266
Filter
1.
Environ Geochem Health ; 46(6): 189, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38695970

ABSTRACT

The potential effect of microplastics is an increasingly growing environmental issue. However, very little is known regarding the impact of microplastics on the vermicomposting process. The present study explored the effect of non-biodegradable (low density polyethylene; LDPE) and biodegradable (polybutylene succinate-co-adipate; PBSA) microplastics on earthworm Eisenia fetida during vermicomposting of cow dung. For this, earthworms were exposed to different concentrations (0, 0.5, 1 and 2%) of LDPE and PBSA of 2 mm size. The cow dung supported the growth and hatchlings of earthworms, and the toxicity effect of both LDPE and PBSA microplastics on Eisenia fetida was analyzed. Microplastics decreased the body weight of earthworms and there was no impact on hatchlings. The body weight of earthworm decreased from 0 to 60th day by 18.18% in 0.5% of LDPE treatment, 5.42% in 1% of LDPE, 20.58% in 2% of LDPE, 19.99% in 0.5% of PBSA, 15.09% in 1% of PBSA and 16.36% in 2% of PBSA. The physico-chemical parameters [pH (8.55-8.66), electrical conductivity (0.93-1.02 (S/m), organic matter (77.6-75.8%), total nitrogen (3.95-4.25 mg/kg) and total phosphorus (1.16-1.22 mg/kg)] do not show much significant changes with varying microplastics concentrations. Results of SEM and FTIR-ATR analysis observed the surface damage of earthworms, morphological and biochemical changes at higher concentrations of both LDPE and PBSA. The findings of the present study contribute to a better understanding of microplastics in vermicomposting system.


Subject(s)
Microplastics , Oligochaeta , Soil Pollutants , Animals , Oligochaeta/drug effects , Microplastics/toxicity , Soil Pollutants/toxicity , Composting , Polyethylene/toxicity , Biodegradable Plastics
2.
J Orthop Traumatol ; 25(1): 24, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38704499

ABSTRACT

BACKGROUND: This retrospective medium-term follow-up study compares the outcomes of medial fixed-bearing unicompartmental knee arthroplasty (mUKA) using a cemented metal-backed (MB) or an all-polyethylene (AP) tibial component. MATERIALS AND METHODS: The database of our institution was mined for primary mUKA patients implanted with an MB or an AP tibial component (the MB-UKA and AP-UKA groups, respectively) from 2015 to 2018. We compared patient demographics, patient-reported outcome measures (PROMs), and motion analysis data obtained with the Riablo™ system (CoRehab, Trento, Italy). We conducted propensity-score-matching (PSM) analysis (1:1) using multiple variables. RESULTS: PSM analysis yielded 77 pairs of MB-UKA and AP-UKA patients. At 5 years, the physical component summary (PCS) score was 52.4 ± 8.3 in MB-UKA and 48.2 ± 8.3 in AP-UKA patients (p < 0.001). The Forgotten Joint Score (FJS-12) was 82.9 ± 18.8 in MB-UKAs and 73.4 ± 22.5 in AP-UKAs (p = 0.015). Tibial pain was reported by 7.8% of the MB-UKA and 35.1% of the AP-UKA patients (p < 0.001). Static postural sway was, respectively, 3.9 ± 2.1 cm and 5.4 ± 2.3 (p = 0.0002), and gait symmetry was, respectively, 92.7% ± 3.7 cm and 90.4% ± 5.4 cm (p = 0.006). Patient satisfaction was 9.2 ± 0.8 in the MB-UKA and 8.3 ± 2.0 in the AP-UKA group (p < 0.003). CONCLUSIONS: MB-UKA patients experienced significantly better 5-year static sway and gait symmetry outcomes than AP-UKA patients. Although the PROMs of the two groups overlapped, MB-UKA patients had a lower incidence of tibial pain, better FJS-12 and PCS scores, and were more satisfied.


Subject(s)
Arthroplasty, Replacement, Knee , Knee Prosthesis , Metals , Patient Reported Outcome Measures , Propensity Score , Prosthesis Design , Humans , Retrospective Studies , Male , Female , Arthroplasty, Replacement, Knee/methods , Aged , Follow-Up Studies , Middle Aged , Tibia/surgery , Polyethylene , Treatment Outcome , Osteoarthritis, Knee/surgery
3.
J Orthop Surg (Hong Kong) ; 32(2): 10225536241251926, 2024.
Article in English | MEDLINE | ID: mdl-38733065

ABSTRACT

AIM: To explore the effects of tibial osteotomy varus angle combined with posterior tibial slope (PTS) on the stress of polyethylene liner in total knee arthroplasty (TKA) by building finite element model (FEM). METHODS: Established the FEM of standard TKA with tibial osteotomy varus angle 0° to 9° were established and divided into 10 groups. Next, each group was created 10 FEMs with 0° to 9° PTS separately. Calculated the stress on polyethylene liner in each group in Abaqus. Finally, the relevancy between tibial osteotomy angle and polyethylene liner stress was statistically analyzed using multiple regression analysis. RESULTS: As the varus angle increased, the area of maximum stress gradually shifted medially on the polyethylene liner. As the PTS increases, the percentage of surface contact forces on the medial and lateral compartmental of the polyethylene liner gradually converge to the same. When the varus angle is between 0° and 3°, the maximum stress of the medial compartmental surfaces of polyethylene liner rises smoothly with the increase of the PTS. When the varus angle is between 4° and 9°, as the increase of the PTS, the maximum stress of polyethylene liner rises first and then falls, forming a trough at PTS 5° and then rises again. Compared to the PTS, the varus angle has a large effect on the maximum stress of the polyethylene liner (p < .001). CONCLUSION: When the varus angle is 0° to 3°, PTS 0° is recommended, which will result in a more equalized stress distribution of the polyethylene liner in TKA.


Subject(s)
Arthroplasty, Replacement, Knee , Finite Element Analysis , Knee Prosthesis , Osteotomy , Polyethylene , Stress, Mechanical , Tibia , Humans , Arthroplasty, Replacement, Knee/methods , Osteotomy/methods , Tibia/surgery , Prosthesis Design
4.
Ecotoxicol Environ Saf ; 278: 116445, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38733804

ABSTRACT

Low-density polyethylene (LDPE) conduces massive environmental accumulation due to its high production and recalcitrance to environment. In this study, We successfully enriched and isolated two strains, Nitratireductor sp. Z-1 and Gordonia sp. Z-2, from coastal plastic debris capable of degrading LDPE film. After a 30-day incubation at 30 ℃, strains Z-1 and Z-2 decreased the weight of branched-LDPE (BLDPE) film by 2.59 % and 10.27 % respectively. Furthermore, high temperature gel permeation chromatography (HT-GPC) analysis revealed molecular weight reductions of 7.69 % (Z-1) and 23.22 % (Z-2) in the BLDPE film. Scanning electron microscope (SEM) image showed the presence of microbial colonization and perforations on the film's surface. Fourier transform infrared spectroscopy (FTIR) analysis indicated novel functional groups, such as carbonyl and carbon-carbon double bonds in LDPE films. During LDPE degradation, both strains produced extracellular reactive oxygen species (ROS). GC-MS analysis revealed the degradation products included short-chain alkanes, alkanols, fatty acids, and esters. Genomic analysis identified numerous extracellular enzymes potentially involved in LDPE chain scission. A model was proposed suggesting a coordinated role between ROS and extracellular enzymes in the biodegradation of LDPE. This indicates strains Z-1 and Z-2 can degrade LDPE, providing a basis for deeper exploration of biodegradation mechanisms.


Subject(s)
Biodegradation, Environmental , Plastics , Polyethylene , Bathing Beaches , Spectroscopy, Fourier Transform Infrared , Reactive Oxygen Species/metabolism , Microscopy, Electron, Scanning
5.
Curr Microbiol ; 81(7): 185, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38771339

ABSTRACT

The plastic film is extensively applied with limited recycling, leading to the long-run residue accumulation in soil, which offers a distinctive habitat for microorganisms, and creates a plastisphere. In this study, traditional low-density polyethylene (LDPE) plastic film and biodegradable polybutylene adipate terephthalate (PBAT) plastic film materials were selected to test their effects on soil microbial ecology. Based on high-throughput sequencing, compared to the soil environment, the alpha-diversity of bacterial communities in plastisphere was lower, and the abundance of Actinobacteria increased. Plastic film residues, as bacterial habitats, exhibited greater heterogeneity and harbor unique bacterial communities. The communities were distinguished between plastisphere and soil environment by means of a random-forest (RF) machine-learning model. Prominent distinctions emerged among bacterial functions between soil environment and plastisphere, especially regarding organics degradation. The neutral model and null model indicated that the constitution of bacterial communities was dominated by random processes except in LDPE plastisphere. The bacterial co-occurrence network of the plastisphere exhibited higher complexity and modularity. This study contributes to our comprehending of characteristics of plastisphere bacterial communities in soil environment and the associated ecological risks of plastic film residues accumulation.


Subject(s)
Bacteria , Polyethylene , Soil Microbiology , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Polyethylene/chemistry , Polyesters/metabolism , Soil/chemistry , Soil Pollutants/analysis , Microbiota
6.
Environ Sci Process Impacts ; 26(5): 882-890, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38693902

ABSTRACT

Microplastics can function as carriers in the environment, absorbing various toxins and spreading to diverse ecosystems. Toxins accumulated in microplastics have the potential to be re-released, posing a threat. In this study, two typical plastics, namely polyethylene (PE) and polystyrene (PS), along with the degradable plastic poly(butylene adipate-co-terephthalate) (PBAT), were subjected to a long-term ultraviolet alternating weathering experiment. The study investigated the variations in the weathering process and pollutant adsorption of microplastics of different particle sizes. Furthermore, the adsorption capacity of microplastics for various pollutants was assessed. The findings indicate that particle size significantly influences weathering, leading to variations in adsorption capacity. The weathered PE displays a higher adsorption capacity for azo dyes. Additionally, the adsorption capacity of PBAT for neutral red is double that of antibiotics. Importantly, the maximum adsorption capacity of PBAT for pollutants after aging is approximately 10 times greater than that of PE. Consequently, degradable plastics undergoing weathering in the natural environment may pose a higher ecological risk than traditional plastics.


Subject(s)
Microplastics , Water Pollutants, Chemical , Microplastics/chemistry , Adsorption , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/chemistry , Polyethylene/chemistry , Environmental Monitoring , Plastics/chemistry , Models, Chemical , Polystyrenes/chemistry , Weather
7.
Sensors (Basel) ; 24(9)2024 May 04.
Article in English | MEDLINE | ID: mdl-38733034

ABSTRACT

INTRODUCTION: The choice of materials for covering plantar orthoses or wearable insoles is often based on their hardness, breathability, and moisture absorption capacity, although more due to professional preference than clear scientific criteria. An analysis of the thermal response to the use of these materials would provide information about their behavior; hence, the objective of this study was to assess the temperature of three lining materials with different characteristics. MATERIALS AND METHODS: The temperature of three materials for covering plantar orthoses was analyzed in a sample of 36 subjects (15 men and 21 women, aged 24.6 ± 8.2 years, mass 67.1 ± 13.6 kg, and height 1.7 ± 0.09 m). Temperature was measured before and after 3 h of use in clinical activities, using a polyethylene foam copolymer (PE), ethylene vinyl acetate (EVA), and PE-EVA copolymer foam insole with the use of a FLIR E60BX thermal camera. RESULTS: In the PE copolymer (material 1), temperature increases between 1.07 and 1.85 °C were found after activity, with these differences being statistically significant in all regions of interest (p < 0.001), except for the first toe (0.36 °C, p = 0.170). In the EVA foam (material 2) and the expansive foam of the PE-EVA copolymer (material 3), the temperatures were also significantly higher in all analyzed areas (p < 0.001), ranging between 1.49 and 2.73 °C for EVA and 0.58 and 2.16 °C for PE-EVA. The PE copolymer experienced lower overall overheating, and the area of the fifth metatarsal head underwent the greatest temperature increase, regardless of the material analyzed. CONCLUSIONS: PE foam lining materials, with lower density or an open-cell structure, would be preferred for controlling temperature rise in the lining/footbed interface and providing better thermal comfort for users. The area of the first toe was found to be the least overheated, while the fifth metatarsal head increased the most in temperature. This should be considered in the design of new wearables to avoid excessive temperatures due to the lining materials.


Subject(s)
Foot Orthoses , Temperature , Humans , Female , Male , Adult , Young Adult , Polyvinyls/chemistry , Polyethylene/chemistry , Polymers/chemistry , Materials Testing
8.
Environ Pollut ; 351: 124096, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38703982

ABSTRACT

Plastic bags are currently a major component of marine litter, causing aesthetical nuisance, and undesirable effects on marine fauna that ingest them or are entangled. Plastic litter also rises concern on the ecotoxicological effects due to the potential toxicity of the chemical additives leached in aquatic environments. Conventional plastic bags are made of polyethylene, either from first use or recycled, but regulations restricting single-use plastics and limiting lightweight carrier bags (<50 µm thickness) have fostered the replacement of thin PE bags by compostable materials advertised as safer for the environment. In this study, we assess the degradation of commercially available plastic bags in marine conditions at two scales: aquariums (60 days) and outdoors flow-through mesocosm (120 days). Strength at break point and other tensile strength parameters were used as ecologically relevant endpoints to track mechanical degradation. Ecotoxicity has been assessed along the incubation period using the sensitive Paracentrotus lividus embryo test. Whereas PE bags did not substantially lose their mechanical properties within the 60 d aquarium exposures, compostable bags showed remarkable weight loss and tensile strength decay, some of them fragmenting in the aquarium after 3-4 weeks. Sediment pore water inoculum promoted a more rapid degradation of compostable bags, while nutrient addition pattern did not affect the degradation rate. Longer-term mesocosms exposures supported these findings, as well as pointed out the influence of the microbial processes on the degradation efficiency of compostable/bioplastic bags. Compostable materials, in contrast toPE, showed moderate toxicity on sea-urchin larvae, partially associated to degradation of these materials, but the environmental implications of these findings remain to be assessed. These methods proved to be useful to classify plastic materials, according to their degradability in marine conditions, in a remarkably shorter time than current standard tests and promote new materials safer for the marine fauna.


Subject(s)
Plastics , Water Pollutants, Chemical , Polyethylene/chemistry , Polyethylene/toxicity , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/toxicity , Ecotoxicology , Recycling , Composting , Plastics/chemistry , Plastics/toxicity , Seawater , Paracentrotus/embryology , Animals , Biodegradable Plastics/chemistry , Biodegradable Plastics/toxicity , Stress, Mechanical , Toxicity Tests , Embryo, Nonmammalian
9.
Waste Manag ; 183: 260-270, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38776828

ABSTRACT

The landfill is one of the most important sources of microplastics (MPs). The pretreatment method is a precondition of microplastics study for the presence of complex substances in landfills. Therefore, it is essential to examine the impact of different pretreatment methods on the microplastics detection. A literature review and a comparison experiment on digestion solutions were performed to establish a comprehensive identification method for MPs in landfills. When exposed to of 30 % H2O2, minimal mass reduction of PE, PP and PET were 4.00 %, 3.00 % and 3.00 % respectively, and the least surface damage was observed in MPs, while exhibiting the most optimal peak value for infrared spectral characteristics. It is demonstrated that the effect of 30 % H2O2 dissolution was superior compared to 10 % KOH and 65 % HNO3. The method was subsequently utilized to investigate the distribution of MPs in a landfill. The dominant MPs were polyethylene (PE, 18.56-23.91 %), polyethylene terephthalate (PET, 8.80-18.66 %), polystyrene (PS, 10.31-18.09 %), and polypropylene (PP, 11.60-14.91 %). The comprehensive identification method of "NaCl density separation + 30 % H2O2 digestion + NaI density separation + sampling microscope + Mirco-FTIR" is suitable for the detection of MPs in landfills.


Subject(s)
Solid Waste , Waste Disposal Facilities , Refuse Disposal/methods , Polyethylene/analysis , Polyethylene Terephthalates/analysis , Polystyrenes/analysis , Polypropylenes/analysis
10.
Sci Total Environ ; 931: 172949, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38703848

ABSTRACT

Biodegradable plastics (bio-plastics) are often viewed as viable option for mitigating plastic pollution. Nevertheless, the information regarding the potential risks of microplastics (MPs) released from bio-plastics in soil, particularly in flooded soils, is lacking. Here, our objective was to investigate the effect of polylactic acid MPs (PLA-MPs) and polyethylene MPs (PE-MPs) on soil properties, microbial community and plant growth under both non-flooded and flooded conditions. Our results demonstrated that PLA-MPs dramatically increased soil labile carbon (C) content and altered its composition and chemodiversity. The enrichment of labile C stimulated microbial N immobilization, resulting in a depletion of soil mineral nitrogen (N). This specialized environment created by PLA-MPs further filtered out specific microbial species, resulting in a low diversity and simplified microbial community. PLA-MPs caused an increase in denitrifiers (Noviherbaspirillum and Clostridium sensu stricto) and a decrease in nitrifiers (Nitrospira, MND1, and Ellin6067), potentially exacerbating the mineral N deficiency. The mineral N deficit caused by PLA-MPs inhibited wheatgrass growth. Conversely, PE-MPs had less effect on soil ecosystems, including soil properties, microbial community and wheatgrass growth. Overall, our study emphasizes that PLA-MPs cause more adverse effect on the ecosystem than PE-MPs in the short term, and that flooded conditions exacerbate and prolong these adverse effects. These results offer valuable insights for evaluating the potential threats of bio-MPs in both uplands and wetlands.


Subject(s)
Floods , Microbiota , Microplastics , Soil Microbiology , Soil Pollutants , Soil , Microplastics/toxicity , Soil/chemistry , Microbiota/drug effects , Biodegradable Plastics , Plant Development , Biodegradation, Environmental , Polyesters , Polyethylene
11.
Sci Total Environ ; 932: 173033, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38723954

ABSTRACT

Microplastics (MPs) pollution has emerged as a global concern, and wastewater treatment plants (WWTPs) are one of the potential sources of MPs in the environment. However, the effect of polyethylene MPs (PE) on nitrogen (N) removal in moving bed biofilm reactor (MBBR) remains unclear. We hypothesized that PE would affect N removal in MBBR by influencing its microbial community. In this study, we investigated the impacts of different PE concentrations (100, 500, and 1000 µg/L) on N removal, enzyme activities, and microbial community in MBBR. Folin-phenol and anthrone colorimetric methods, oxidative stress and enzyme activity tests, and high-throughput sequencing combined with bioinformation analysis were used to decipher the potential mechanisms. The results demonstrated that 1000 µg/L PE had the greatest effect on NH4+-N and TN removal, with a decrease of 33.5 % and 35.2 %, and nitrifying and denitrifying enzyme activities were restrained by 29.5-39.6 % and 24.6-47.4 %. Polysaccharide and protein contents were enhanced by PE, except for 1000 µg/L PE, which decreased protein content by 65.4 mg/g VSS. The positive links of species interactions under 1000 µg/L PE exposure was 52.07 %, higher than under 500 µg/L (51.05 %) and 100 µg/L PE (50.35 %). Relative abundance of some metabolism pathways like carbohydrate metabolism and energy metabolism were restrained by 0.07-0.11 % and 0.27-0.4 %. Moreover, the total abundance of nitrification and denitrification genes both decreased under PE exposure. Overall, PE reduced N removal by affecting microbial community structure and species interactions, inhibiting some key metabolic pathways, and suppressing key enzyme activity and functional gene abundance. This paper provides new insights into assessing the risk of MPs to WWTPs, contributing to ensuring the health of aquatic ecosystems.


Subject(s)
Biofilms , Bioreactors , Microbiota , Nitrogen , Polyethylene , Waste Disposal, Fluid , Water Pollutants, Chemical , Nitrogen/metabolism , Bioreactors/microbiology , Water Pollutants, Chemical/analysis , Waste Disposal, Fluid/methods , Microbiota/drug effects , Microplastics , Wastewater/chemistry
12.
Chemosphere ; 359: 142301, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38740337

ABSTRACT

Bioplastics are considered sustainable alternatives to conventional microplastics which are recognized as a threat to terrestrial ecosystems. However, little is known about the potential ecotoxicological effects of bioplastics on soil fauna and ecosystems. The present study assessed the toxicity of microplastics [Polystyrene (PS), Polyethylene (PE)] and bioplastics [Polyvinyl alcohol (PVA), Sodium polyacrylate (NaPa) on a key soil fauna Oppia nitens, a soil oribatid mite, and investigated the ecological relevance of O. nitens avoidance response as a valuable tool for the risk assessment of contaminated soils such as the Superfund sites. Findings showed that the mites' net response indicated avoidance behavior such that in most cases as concentrations of micro- and bioplastics increased, so did the avoidance responses. The avoidance EC50 endpoints showed PS < PE < PVA < NaPa, indicating higher deleterious effects of microplastics. High toxicity of PS in soils to O. nitens at EC50 of 165 (±25) mg/kg compared to bioplastics and other known contaminants poses an enormous threat to soil. For bioplastics in this study, there were no significant avoidances at concentrations up to 16,200 mg/kg compared to PS and PE which showed avoidance responses at 300 and 9000 mg/kg respectively, implying that bioplastics might be relatively safer to soil mites compared to conventional microplastics. Also, results indicated that long-term heavy metal pollution such as in contaminated Superfund sites decreased microbial biomass; a useful bioindicator of soil pollution. Furthermore, O. nitens avoidance of heavy metals contaminated sites demonstrated the ecological relevance of avoidance response test when assessing the habitat integrity of contaminated soil. The present study further supports the inclusion of the oribatid mite, O. nitens in the ecological risk assessment of contaminants in soil.


Subject(s)
Microplastics , Mites , Soil Pollutants , Animals , Microplastics/toxicity , Soil Pollutants/toxicity , Mites/drug effects , Ecotoxicology , Soil/chemistry , Environmental Monitoring/methods , Polyethylene/toxicity , Ecosystem , Risk Assessment , Plastics/toxicity , Avoidance Learning/drug effects
13.
Sci Total Environ ; 934: 173173, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38740201

ABSTRACT

Despite the well-reported occurrences and established pathways for microplastics (MPs) ingestion by humans, the eventual fate of these particles in the human gastrointestinal system is poorly understood. The present study tries to gain a better understanding of the fate of four common food-borne MPs, i.e. Polystyrene (PS), Polypropylene (PP), Low-density Polyethylene (LDPE), and Nylon, in a simulated in vitro human digestive system. Firstly, the changes in the physicochemical properties of 20-210 µm sized MPs as well as the leaching of chemicals were monitored using fluorescence microscopy, FTIR, and LC-QTOF-MS. Thereafter, the mass loss and morphological alterations in 3-4 mm sized MPs were observed after removing the organic matter. The interaction of PS and PP MPs with duodenal and bile juices manifested in a corona formation. The increase in surface roughness in PP MPs aligned with MP-enzyme dehydrogenation reactions and the addition of NO groups. A few fragments ranging from 30 to 250 µm, with negligible mass loss, were released during the MP digestion process. In addition, the leaching of compounds, e.g. capsi-amide, butanamide, and other plasticizers and monomers was also observed from MPs during digestion, and which may have the potential to accumulate and get absorbed by the digestive organs, and to subsequently impart toxic effects.


Subject(s)
Microplastics , Humans , Digestion , Polyethylene , Polypropylenes , Polystyrenes , Digestive System
14.
Int J Mol Sci ; 25(10)2024 May 07.
Article in English | MEDLINE | ID: mdl-38791107

ABSTRACT

The present study employs X-ray photoelectron spectroscopy (XPS) to analyze plastic samples subjected to degradation processes with the aim to gain insight on the relevant chemical processes and disclose fragmentation mechanisms. Two model plastics, namely polystyrene (PS) and polyethylene (PE), are selected and analyzed before and after artificial UV radiation-triggered weathering, under simulated environmental hydrodynamic conditions, in fresh and marine water for different time intervals. The object of the study is to identify and quantify chemical groups possibly evidencing the occurrence of hydrolysis and oxidation reactions, which are the basis of degradation processes in the environment, determining macroplastic fragmentation. Artificially weathered plastic samples are analyzed also by Raman and FT-IR spectroscopy. Changes in surface chemistry with weathering are revealed by XPS, involving the increase in chemical moieties (hydroxyl, carbonyl, and carboxyl functionalities) which can be correlated with the degradation processes responsible for macroplastic fragmentation. On the other hand, the absence of significant modifications upon plastics weathering evidenced by Raman and FT-IR spectroscopy confirms the importance of investigating plastics surface, which represents the very first part of the materials exposed to degradation agents, thus revealing the power of XPS studies for this purpose. The XPS data on experimentally weathered particles are compared with ones obtained on microplastics collected from real marine environment for investigating the occurring degradation processes.


Subject(s)
Photoelectron Spectroscopy , Plastics , Polyethylene , Photoelectron Spectroscopy/methods , Plastics/chemistry , Polyethylene/chemistry , Spectroscopy, Fourier Transform Infrared/methods , Spectrum Analysis, Raman/methods , Polystyrenes/chemistry , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/analysis , Seawater/chemistry , Microplastics/chemistry , Oxidation-Reduction
15.
J Hazard Mater ; 472: 134581, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38743972

ABSTRACT

Microplastics (MPs) and antibiotic resistance genes (ARGs) are two types of contaminants that are widely present in the soil environment. MPs can act as carriers of microbes, facilitating the colonization and spread of ARGs and thus posing potential hazards to ecosystem safety and human health. In the present study, we explored the microbial networks and ARG distribution characteristics in different soil types (heavy metal (HM)-contaminated soil and agricultural soil planted with different plants: Bidens pilosa L., Ipomoea aquatica F., and Brassica chinensis L.) after the application of MPs and evaluated environmental factors, potential microbial hosts, and ARGs. The microbial communities in the three rhizosphere soils were closely related to each other, and the modularity of the microbial networks was greater than 0.4. Moreover, the core taxa in the microbial networks, including Actinobacteriota, Proteobacteria, and Myxococcota, were important for resisting environmental stress. The ARG resistance mechanisms were dominated by antibiotic efflux in all three rhizosphere soils. Based on the annotation results, the MP treatments induced changes in the relative abundance of microbes carrying ARGs, and the G1-5 treatment significantly increased the abundance of MuxB in Verrucomicrobia, Elusimicrobia, Actinobacteria, Planctomycetes, and Acidobacteria. Path analysis showed that changes in MP particle size and dosage may indirectly affect soil enzyme activities by changing pH, which affects microbes and ARGs. We suggest that MPs may provide surfaces for ARG accumulation, leading to ARG enrichment in plants. In conclusion, our results demonstrate that MPs, as potentially persistent pollutants, can affect different types of soil environments and that the presence of ARGs may cause substantial environmental risks.


Subject(s)
Drug Resistance, Microbial , Ipomoea , Microplastics , Soil Microbiology , Soil Pollutants , Soil Pollutants/toxicity , Microplastics/toxicity , Ipomoea/genetics , Ipomoea/drug effects , Drug Resistance, Microbial/genetics , Rhizosphere , Polyethylene , Genes, Bacterial/drug effects , Brassica/genetics , Brassica/drug effects , Brassica/microbiology , Bacteria/drug effects , Bacteria/genetics , Bacteria/classification , Soil/chemistry , Metals, Heavy/toxicity , Microbiota/drug effects
16.
J Hazard Mater ; 472: 134425, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38691998

ABSTRACT

Soil health is a crucial aspect of sustainable agriculture and food production, necessitating attention to the ecological risks associated with substantial amounts of mulch film residues. Biodegradable mulch films (BDMs) carry the same risk of mulch film residues formation as low-density polyethylene (LDPE) mulch films during actual use. More information is needed to elucidate the specific impacts of mulch film residues on the soil environment. Integrated 16S rRNA gene sequencing and non-targeted metabolomics, this study revealed the response patterns of bacterial communities, metabolites, and metabolic functions in the soil from three different agricultural regions to the presence of mulch film residues. LDPE mulch film residues negatively impacted the bacterial communities in the soils of Heilongjiang (HLJ) and Yunnan (YN) and had a lesser impact on the metabolic spectrum in the soils of HLJ, YN, and Xinjiang (XJ). BDM residues had a greater negative impact on all three soils in terms of both the bacterial communities and metabolites. The impact of BDM treatment on the soils of HLJ, YN, and XJ increased sequentially in that order. It is recommended that, when promoting the use of biodegradable mulch films, a fuller assessment should be made, accounting for local soil properties.


Subject(s)
Agriculture , Bacteria , RNA, Ribosomal, 16S , Soil Microbiology , Soil Pollutants , Bacteria/metabolism , Bacteria/genetics , Soil Pollutants/metabolism , Biodegradation, Environmental , Polyethylene/chemistry , Soil/chemistry , Polyesters/metabolism , Polyesters/chemistry , Biodegradable Plastics/chemistry , Biodegradable Plastics/metabolism
17.
J Hazard Mater ; 472: 134488, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38703685

ABSTRACT

Bioelectrochemical systems (BES) offer significant potential for treating refractory waste and recovering bioenergy. However, their ability to mitigate microplastic pollution in wastewater remains unexplored. This study showed that BES facilitated the treatment of polyethylene (PE), polyvinyl chloride (PVC), and Mix (PE+PVC) microplastic wastewater and the methane recovery (40.61%, 20.02%, 21.19%, respectively). The lactate dehydrogenase (LDH), adenosine triphosphate (ATP), cytochrome c, and nicotinamide adenine dinucleotide (NADH/NAD+) ratios were elevated with electrical stimulation. Moreover, the applied voltage improved the polysaccharides content of the extracellular polymeric substances (EPS) in the PE-BES but decreased in PVC-BES, while the proteins showed the opposite trend. Metatranscriptomic sequencing showed that the abundance of fermentation bacteria, acetogens, electrogens, and methanogens was greatly enhanced by applying voltage, especially at the anode. Methane metabolism was dominated by the acetoclastic methanogenic pathway, with the applied voltage promoting the enrichment of Methanothrix, resulting in the direct conversion of acetate to acetyl-CoA via acetate-CoA ligase (EC: 6.2.1.1), and increased metabolic activity in the anode. Moreover, applied voltage greatly boosted the function genes expression level related to energy metabolism, tricarboxylic acid (TCA) cycle, electron transport, and transporters on the anode biofilm. Overall, these results demonstrate that BES can mitigate microplastic pollution during wastewater treatment.


Subject(s)
Biofilms , Methane , Microplastics , Wastewater , Water Pollutants, Chemical , Wastewater/chemistry , Methane/metabolism , Anaerobiosis , Water Pollutants, Chemical/metabolism , Bioreactors , Waste Disposal, Fluid/methods , Electrochemical Techniques , Polyethylene/metabolism , Polyethylene/chemistry
18.
Sci Total Environ ; 933: 172933, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38703855

ABSTRACT

Biodegradable plastics were developed to mitigate environmental pollution caused by conventional plastics. Research indicates that biodegradable microplastics still have effects on plants and microorganisms as their non-biodegradable counterparts, yet the effects on vegetable crops are not well-documented. Additionally, the function of soil microorganisms affected by biodegradable microplastics on the fate of microplastics remains unverified. In this study, Brassica chinensis was cultivated in soil previously incubated for one year with low-density polyethylene (LDPE-MPs) and poly (butylene adipate-co-terephthalate) microplastics (PBAT-MPs) at 0.05 % and 2 % concentrations. High concentrations of PBAT-MPs significantly reduced the biomass to 5.83 % of the control. The abundance of Methyloversatilis, IS-44, and UTCFX1 in the rhizosphere bacterial community increased significantly in the presence of PBAT-MPs. Moreover, these microplastics significantly enhanced soil enzyme activity. Incubation tests were performed with three PBAT plastic sheets to assess the function of the altered bacterial community in the soil of control (Control-soil) and soil treated with high concentrations of PBAT-MPs (PBAT-MPs-soil). Scanning Electron Microscopy and Atomic Transfer Microscopy (SEM/ATM) results confirmed enhanced PBAT degradation in the PBAT-MPs-soil. PICRUST2 analysis revealed that pathways related to substance degradation were upregulated in the PBAT-MPs-soil. Furthermore, a higher percentage of strains with PBAT-MPs-degrading ability was found in PBAT-MPs-soil. Our results confirm that PBAT-MPs significantly inhibit the growth of vegetable crops and that soil bacterial communities affected by PBAT-MPs are instrumental in degrading them.


Subject(s)
Biodegradation, Environmental , Microplastics , Soil Microbiology , Soil Pollutants , Soil Pollutants/toxicity , Microplastics/toxicity , Biodegradable Plastics , Soil/chemistry , Brassica/microbiology , Brassica/drug effects , Bacteria/drug effects , Polyethylene , Plastics
19.
Environ Sci Pollut Res Int ; 31(24): 34910-34921, 2024 May.
Article in English | MEDLINE | ID: mdl-38713352

ABSTRACT

The co-occurrence of heavy metals and microplastics (MPs) is an emerging issue that has attracted considerable attention. However, the interaction of nickel oxide nanoparticle (nano-NiO) combined with MPs in soil was poorly researched. Here, experiments were conducted to study the influence of nano-NiO (200 mg/kg) and polyethylene (PE) MPs with different concentrations (0.1, 1, and 10%) and sizes (13, 50, and 500 µm) on earthworms for 28 days. Compared to control, the damage was induced by PE and nano-NiO, which was evaluated by biomarker Integrated Biomarker Response index: version 2 (IBRv2) based on six biomarkers including SOD, POD, CAT, MDA, AChE, Na+/K+-ATPase and cellulase. The majority of the chosen biomarkers showed significant but complicated responses with increasing contaminant concentrations after 28 days of exposure. Moreover, the joint effect was assessed as antagonism by the effect addition index (EAI). Overall, this work expands our understanding of the combined toxicity of PE and nano-NiO in soil ecosystems.


Subject(s)
Microplastics , Nickel , Oligochaeta , Oxidative Stress , Polyethylene , Soil Pollutants , Animals , Oligochaeta/drug effects , Microplastics/toxicity , Nickel/toxicity , Oxidative Stress/drug effects , Polyethylene/toxicity , Soil Pollutants/toxicity , Nanoparticles/toxicity , Biomarkers/metabolism
20.
J Hazard Mater ; 472: 134520, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38718512

ABSTRACT

Polyethylene (PE) microplastic, which is detected in various environmental media worldwide, also inevitably enters wastewater treatment plants, which may have an impact on anaerobic processes in wastewater treatment. In this work, the effect of PE microplastics on anaerobic sulfur transformation was explored. Experimental results showed that PE microplastics addition at 0.1%- 0.5% w/w promoted H2S production by 14.8%-27.4%. PE microplastics enhanced the release of soluble organic sulfur and inorganic sulfate, and promoted the bioprocesses of organosulfur compounds hydrolysis and sulfate reduction. Mechanism analysis showed that PE microplastics increased the content of electroactive components (e.g., protein and humic acids) contained in extracellular polymeric substances (EPS). In particular, PE microplastics increased the proportion and the dipole moment of α-helix, an important component involved in electron transfer contained in extracelluar protein, which provided more electron transfer sites and promoted the α-helix mediated electron transfer. These enhanced the direct electron transfer ability of EPSs, which might explain why PE microplastics facilitated the bioprocesses of organosulfur compounds hydrolysis and sulfate reduction. Correspondingly, metagenomic analysis revealed that PE microplastics increased the relative abundance of S2- producers (e.g., Desulfobacula and Desulfonema) and the relative abundance of functional genes involved in anaerobic sulfur transformation (e.g., PepD and cysD), which were beneficial to H2S production in anaerobic system.


Subject(s)
Microplastics , Polyethylene , Sulfur , Microplastics/toxicity , Anaerobiosis , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis , Sulfates , Biodegradation, Environmental
SELECTION OF CITATIONS
SEARCH DETAIL
...