Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 8.791
Filter
1.
Sci Rep ; 14(1): 11290, 2024 05 17.
Article in English | MEDLINE | ID: mdl-38760385

ABSTRACT

Larch, a prominent afforestation, and timber species in northeastern China, faces growth limitations due to drought. To further investigate the mechanism of larch's drought resistance, we conducted full-length sequencing on embryonic callus subjected to PEG-simulated drought stress. The sequencing results revealed that the differentially expressed genes (DEGs) primarily played roles in cellular activities and cell components, with molecular functions such as binding, catalytic activity, and transport activity. Furthermore, the DEGs showed significant enrichment in pathways related to protein processing, starch and sucrose metabolism, benzose-glucuronic acid interconversion, phenylpropyl biology, flavonoid biosynthesis, as well as nitrogen metabolism and alanine, aspartic acid, and glutamic acid metabolism. Consequently, the transcription factor T_transcript_77027, which is involved in multiple pathways, was selected as a candidate gene for subsequent drought stress resistance tests. Under PEG-simulated drought stress, the LoMYB8 gene was induced and showed significantly upregulated expression compared to the control. Physiological indices demonstrated an improved drought resistance in the transgenic plants. After 48 h of PEG stress, the transcriptome sequencing results of the transiently transformed LoMYB8 plants and control plants exhibited that genes were significantly enriched in biological process, cellular component and molecular function. Function analyses indicated for the enrichment of multiple KEGG pathways, including energy synthesis, metabolic pathways, antioxidant pathways, and other relevant processes. The pathways annotated by the differential metabolites mainly encompassed signal transduction, carbohydrate metabolism, amino acid metabolism, and flavonoid metabolism.


Subject(s)
Droughts , Gene Expression Regulation, Plant , Plant Proteins , Polyethylene Glycols , Stress, Physiological , Plant Proteins/genetics , Plant Proteins/metabolism , Polyethylene Glycols/pharmacology , Transcription Factors/genetics , Transcription Factors/metabolism , Plants, Genetically Modified , Transcriptome , Gene Expression Profiling
2.
PLoS One ; 19(5): e0303145, 2024.
Article in English | MEDLINE | ID: mdl-38728268

ABSTRACT

Water stress can adversely affect seed germination and plant growth. Seed osmopriming is a pre-sowing treatment in which seeds are soaked in osmotic solutions to undergo the first stage of germination prior to radicle protrusion. Seed osmopriming enhances germination performance under stressful environmental conditions, making it an effective method to improve plant resistance and yield. This study analyzed the effect of seed osmopriming with polyethylene glycol (PEG) on seed germination and physiological parameters of Coronilla varia L. Priming treatments using 10% to 30% PEG enhanced germination percentage, germination vigor, germination index, vitality index, and seedling mass and reduced the time to reach 50% germination (T50). The PEG concentration that led to better results was 10%. The content of soluble proteins (SP), proline (Pro), soluble sugars (SS), and malondialdehyde (MDA) in Coronilla varia L. seedlings increased with the severity of water stress. In addition, under water stress, electrolyte leakage rose, and peroxidase (POD) and superoxide dismutase (SOD) activities intensified, while catalase (CAT) activity increased at mild-to-moderate water stress but declined with more severe deficiency. The 10% PEG priming significantly improved germination percentage, germination vigor, germination index, vitality index, and time to 50% germination (T50) under water stress. Across the water stress gradient here tested (8 to 12% PEG), seed priming enhanced SP content, Pro content, and SOD activity in Coronilla varia L. seedlings compared to the unprimed treatments. Under 10% PEG-induced water stress, primed seedlings displayed a significantly lower MDA content and electrolyte leakage than their unprimed counterparts and exhibited significantly higher CAT and POD activities. However, under 12% PEG-induced water stress, differences in electrolyte leakage, CAT activity, and POD activity between primed and unprimed treatments were not significant. These findings suggest that PEG priming enhances the osmotic regulation and antioxidant capacity of Coronilla varia seedlings, facilitating seed germination and seedling growth and alleviating drought stress damage, albeit with reduced efficacy under severe water deficiency.


Subject(s)
Germination , Polyethylene Glycols , Seedlings , Seeds , Polyethylene Glycols/pharmacology , Germination/drug effects , Seedlings/drug effects , Seedlings/growth & development , Seeds/drug effects , Seeds/growth & development , Dehydration , Catalase/metabolism , Malondialdehyde/metabolism , Proline/metabolism , Superoxide Dismutase/metabolism , Water/metabolism
3.
Int J Mol Sci ; 25(10)2024 May 08.
Article in English | MEDLINE | ID: mdl-38791158

ABSTRACT

Triple-negative breast cancer (TNBC) remains the most lethal subtype of breast cancer, characterized by poor response rates to current chemotherapies and a lack of additional effective treatment options. While approximately 30% of patients respond well to anthracycline- and taxane-based standard-of-care chemotherapy regimens, the majority of patients experience limited improvements in clinical outcomes, highlighting the critical need for strategies to enhance the effectiveness of anthracycline/taxane-based chemotherapy in TNBC. In this study, we report on the potential of a DNA-PK inhibitor, peposertib, to improve the effectiveness of topoisomerase II (TOPO II) inhibitors, particularly anthracyclines, in TNBC. Our in vitro studies demonstrate the synergistic antiproliferative activity of peposertib in combination with doxorubicin, epirubicin and etoposide in multiple TNBC cell lines. Downstream analysis revealed the induction of ATM-dependent compensatory signaling and p53 pathway activation under combination treatment. These in vitro findings were substantiated by pronounced anti-tumor effects observed in mice bearing subcutaneously implanted tumors. We established a well-tolerated preclinical treatment regimen combining peposertib with pegylated liposomal doxorubicin (PLD) and demonstrated strong anti-tumor efficacy in cell-line-derived and patient-derived TNBC xenograft models in vivo. Taken together, our findings provide evidence that co-treatment with peposertib has the potential to enhance the efficacy of anthracycline/TOPO II-based chemotherapies, and it provides a promising strategy to improve treatment outcomes for TNBC patients.


Subject(s)
Doxorubicin , Drug Synergism , Topoisomerase II Inhibitors , Triple Negative Breast Neoplasms , Xenograft Model Antitumor Assays , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology , Humans , Animals , Female , Mice , Topoisomerase II Inhibitors/pharmacology , Topoisomerase II Inhibitors/therapeutic use , Cell Line, Tumor , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Doxorubicin/analogs & derivatives , DNA-Activated Protein Kinase/antagonists & inhibitors , DNA-Activated Protein Kinase/metabolism , Sulfones/pharmacology , Cell Proliferation/drug effects , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Polyethylene Glycols/pharmacology , Etoposide/pharmacology , Etoposide/therapeutic use , DNA Topoisomerases, Type II/metabolism , Epirubicin/pharmacology
4.
Int J Mol Sci ; 25(10)2024 May 08.
Article in English | MEDLINE | ID: mdl-38791167

ABSTRACT

Polyethylene glycol can abrogate plant seed dormancy and alleviate salt-alkali stress damage to plants, but its role in embryonic dormancy abrogation and germination in Sorbus pohuashanensis is not yet clear. The mechanism by which polyethylene glycol promotes the release of embryonic dormancy may be related to the synthesis and metabolism of endogenous hormones, reactive oxygen species and reactive nitrogen. In this article, germination in indoor culture dishes was used, and the most suitable conditions for treating S. pohuashanensis embryos, with polyethylene glycol (PEG) and sodium carbonate (Na2CO3), were selected. Germination was observed and recorded, and related physiological indicators such as endogenous hormones, reactive oxygen species and reactive nitrogen were measured and analyzed to elucidate the mechanism of polyethylene glycol in alleviating salt-alkali stress in S. pohuashanensis embryos. The results showed that soaking seeds in 5% PEG for 5 days is the best condition to promote germination, which can increase the germination rate of embryos under salt-alkali stress by 1-2 times and improve indicators such as germination speed and the germination index. Polyethylene glycol led to an increase in gibberellin (GA), indole-3-acetic acid (IAA), ethylene (ETH), cytokinin (CTK), nitric oxide (NO), soluble protein and soluble sugar in the embryos under salt-alkali stress; increased activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), nitrate reductase (NR) and nitric oxide synthase (NOS) in the embryos; a reduction in the accumulation of abscisic acid (ABA), hydrogen peroxide (H2O2) and malondialdehyde (MDA). Therefore, it is suggested that the inhibitory effect of polyethylene glycol on the salt-alkali-stress-induced germination of S. pohuashanensis embryos is closely related to the response of endogenous hormones, reactive oxygen species and nitric oxide signalling.


Subject(s)
Germination , Nitric Oxide , Plant Growth Regulators , Polyethylene Glycols , Reactive Oxygen Species , Seeds , Polyethylene Glycols/pharmacology , Germination/drug effects , Nitric Oxide/metabolism , Reactive Oxygen Species/metabolism , Plant Growth Regulators/metabolism , Seeds/metabolism , Seeds/drug effects , Seeds/growth & development , Stress, Physiological , Alkalies , Plant Dormancy/drug effects
5.
ACS Nano ; 18(21): 13618-13634, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38739841

ABSTRACT

Postovulatory aging oocytes usually feature diminished potential for fertilization and poor embryonic development due to enhanced oxidative damage to the subcellular organelles and macromolecules, which stands as a formidable obstacle in assisted reproductive technologies (ART). Here, we developed lipoic acid (LA) and polyethylene glycol (PEG)-modified CeO2 nanoparticles (LA-PEG-CeNPs) with biocompatibility, enzyme-like autocatalytic activity, and free radical scavenging capacity. We further investigated the LA-PEG-CeNPs effect in mouse postovulatory oocytes during in vitro aging. The results showed that LA-PEG-CeNPs dramatically reduced the accumulation of ROS in aging oocytes, improving mitochondrial dysfunction; they also down-regulated the pro-apoptotic activity by rectifying cellular caspase-3, cleaved caspase-3, and Bcl-2 levels. Consistently, this nanoenzyme prominently alleviated the proportion of abnormalities in spindle structure, chromosome alignment, microtubule stability, and filamentous actin (F-actin) distribution in aging oocytes, furthermore decreased oocyte fragmentation, and improved its ability of fertilization and development to blastocyst. Taken together, our finding suggests that LA-PEG-CeNPs can alleviate oxidative stress damage on oocyte quality during postovulatory aging, implying their potential value for clinical practice in assisted reproduction.


Subject(s)
Cerium , Mitochondria , Nanoparticles , Oocytes , Oxidative Stress , Polyethylene Glycols , Thioctic Acid , Animals , Oocytes/drug effects , Oocytes/metabolism , Oxidative Stress/drug effects , Mice , Mitochondria/metabolism , Mitochondria/drug effects , Cerium/chemistry , Cerium/pharmacology , Female , Nanoparticles/chemistry , Thioctic Acid/chemistry , Thioctic Acid/pharmacology , Polyethylene Glycols/chemistry , Polyethylene Glycols/pharmacology , Reactive Oxygen Species/metabolism , Cellular Senescence/drug effects , Ovulation/drug effects , Apoptosis/drug effects
6.
ACS Appl Bio Mater ; 7(5): 2836-2850, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38717017

ABSTRACT

High-altitude regions, cold deserts, permafrost regions, and the polar region have some of the severest cold conditions on earth and pose immense perils of cold injuries to exposed individuals. Accidental and unintended exposures to severe cold, either unintentionally or due to occupational risks, can greatly increase the risk of serious conditions including hypothermia, trench foot, and cold injuries like frostbite. Cold-induced vasoconstriction and intracellular/intravascular ice crystal formation lead to hypoxic conditions at the cellular level. The condition is exacerbated in individuals having inadequate and proper covering and layering, particularly when large area of the body are exposed to extremely cold environments. There is a paucity of preventive and therapeutic pharmacological modalities that have been explored for managing and treating cold injuries. Given this, an efficient modality that can potentiate the healing of frostbite was investigated by studying various complex pathophysiological changes that occur during severe cold injuries. In the current research, we report the effectiveness and healing properties of a standardized formulation, i.e., a herbosomal-loaded PEG-poloxamer topical formulation (n-HPTF), on frostbite. The intricate mechanistic pathways modulated by the novel formulation have been elucidated by studying the pathophysiological sequelae that occur following severe cold exposures leading to frostbite. The results indicate that n-HPTF ameliorates the outcome of frostbite, as it activates positive sensory nerves widely distributed in the epidermis transient receptor potential vanilloid 1 (TRPV1), significantly (p < 0.05) upregulates cytokeratin-14, promotes angiogenesis (VEGF-A), prominently represses the expression of thromboxane formation (TXA2), and significantly (p < 0.05) restores levels of enzymatic (glutathione reductase, superoxide dismutase, and catalase) and nonenzymatic antioxidants (glutathione). Additionally, n-HPTF attenuates oxidative stress and the expression of inflammatory proteins PGF-2α, NFκB-p65, TNF-α, IL-6, IL-1ß, malondialdehyde (MDA), advanced oxidative protein products (AOPP), and protein carbonylation (PCO). Masson's Trichrome staining showed that n-HPTF stimulates cellular proliferation, and increases collagen fiber deposition, which significantly (p < 0.05) promotes the healing of frostbitten tissue, as compared to control. We conclude that protection against severe cold injuries by n-HPTF is mediated via modulation of pathways involving TRPV1, VEGF-A, TXA2, redox homeostasis, and inflammatory cascades. The study is likely to have widespread implications for the prophylaxis and management of moderate-to-severe frostbite conditions.


Subject(s)
Homeostasis , Poloxamer , Polyethylene Glycols , TRPV Cation Channels , Vascular Endothelial Growth Factor A , Vascular Endothelial Growth Factor A/metabolism , TRPV Cation Channels/metabolism , Animals , Poloxamer/chemistry , Poloxamer/pharmacology , Polyethylene Glycols/chemistry , Polyethylene Glycols/pharmacology , Homeostasis/drug effects , Oxidation-Reduction , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Rats , Materials Testing , Cold Injury/metabolism , Cold Injury/drug therapy , Particle Size , Inflammation/drug therapy , Inflammation/metabolism , Male , Liposomes/chemistry , Humans , Administration, Topical , Frostbite/metabolism , Frostbite/drug therapy
7.
Int J Mol Sci ; 25(8)2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38674153

ABSTRACT

Anti-inflammatory drugs have become the second-largest class of common drugs after anti-infective drugs in animal clinical care worldwide and are often combined with other drugs to treat fever and viral diseases caused by various factors. In our previous study, a novel serine protease inhibitor-encoding gene (MDSPI16) with improved anti-inflammatory activity was selected from a constructed suppressive subducted hybridization library of housefly larvae. This protein could easily induce an immune response in animals and had a short half-life, which limited its wide application in the clinic. Thus, in this study, mPEG-succinimidyl propionate (mPEG-SPA, Mw = 5 kDa) was used to molecularly modify the MDSPI16 protein, and the modified product mPEG-SPA-MDSPI16, which strongly inhibited elastase production, was purified. It had good stability and safety, low immunogenicity, and a long half-life, and the IC50 for elastase was 86 nM. mPEG-SPA-MDSPI16 effectively inhibited the expression of neutrophil elastase and decreased ROS levels. Moreover, mPEG-SPA-MDSPI16 exerted anti-inflammatory effects by inhibiting activation of the NF-κB signaling pathway and the MAPK signaling pathway in neutrophils. It also exerted therapeutic effects on a lipopolysaccharide (LPS)-induced acute lung injury (ALI) mouse model. In summary, mPEG-SPA-MDSPI16 is a novel anti-inflammatory protein modified with PEG that has the advantages of safety, nontoxicity, improved stability, and strong anti-inflammatory activity in vivo and in vitro and is expected to become an effective anti-inflammatory drug.


Subject(s)
Acute Lung Injury , Lipopolysaccharides , Serine Proteinase Inhibitors , Animals , Acute Lung Injury/drug therapy , Acute Lung Injury/chemically induced , Mice , Serine Proteinase Inhibitors/pharmacology , Serine Proteinase Inhibitors/chemistry , Serine Proteinase Inhibitors/therapeutic use , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/therapeutic use , Polyethylene Glycols/chemistry , Polyethylene Glycols/pharmacology , NF-kappa B/metabolism , Male , Leukocyte Elastase/metabolism , Humans , Signal Transduction/drug effects , Recombinant Fusion Proteins/pharmacology , Disease Models, Animal
8.
Biomacromolecules ; 25(5): 3112-3121, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38651274

ABSTRACT

Responsive nanomaterials hold significant promise in the treatment of bacterial infections by recognizing internal or external stimuli to achieve stimuli-responsive behavior. In this study, we present an enzyme-responsive polyelectrolyte complex micelles (PTPMN) with α-helical cationic polypeptide as a coacervate-core for the treatment of Escherichia coli (E. coli) infection. The complex was constructed through electrostatic interaction between cationic poly(glutamic acid) derivatives and phosphorylation-modified poly(ethylene glycol)-b-poly(tyrosine) (PEG-b-PPTyr) by directly dissolving them in aqueous solution. The cationic polypeptide adopted α-helical structure and demonstrated excellent broad-spectrum antibacterial activity against both Gram-negative and Gram-positive bacteria, with a minimum inhibitory concentration (MIC) as low as 12.5 µg mL-1 against E. coli. By complexing with anionic PEG-b-PPTyr, the obtained complex formed ß-sheet structures and exhibited good biocompatibility and low hemolysis. When incubated in a bacterial environment, the complex cleaved its phosphate groups triggered by phosphatases secreted by bacteria, exposing the highly α-helical conformation and restoring its effective bactericidal ability. In vivo experiments confirmed accelerated healing in E. coli-infected wounds.


Subject(s)
Anti-Bacterial Agents , Escherichia coli , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/administration & dosage , Escherichia coli/drug effects , Animals , Microbial Sensitivity Tests , Polyelectrolytes/chemistry , Polyelectrolytes/pharmacology , Peptides/chemistry , Peptides/pharmacology , Protein Conformation, alpha-Helical , Micelles , Escherichia coli Infections/drug therapy , Hemolysis/drug effects , Polyethylene Glycols/chemistry , Polyethylene Glycols/pharmacology , Mice , Polyglutamic Acid/chemistry , Polyglutamic Acid/analogs & derivatives , Polyglutamic Acid/pharmacology , Humans
9.
Cells ; 13(8)2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38667271

ABSTRACT

Even with the best infection control protocols in place, the risk of a hospital-acquired infection of the surface of an implanted device remains significant. A bacterial biofilm can form and has the potential to escape the host immune system and develop resistance to conventional antibiotics, ultimately causing the implant to fail, seriously impacting patient well-being. Here, we demonstrate a 4 log reduction in the infection rate by the common pathogen S. aureus of 3D-printed polyaryl ether ketone (PAEK) polymeric surfaces by covalently binding the antimicrobial peptide Mel4 to the surface using plasma immersion ion implantation (PIII) treatment. The surfaces with added texture created by 3D-printed processes such as fused deposition-modelled polyether ether ketone (PEEK) and selective laser-sintered polyether ketone (PEK) can be equally well protected as conventionally manufactured materials. Unbound Mel4 in solution at relevant concentrations is non-cytotoxic to osteoblastic cell line Saos-2. Mel4 in combination with PIII aids Saos-2 cells to attach to the surface, increasing the adhesion by 88% compared to untreated materials without Mel4. A reduction in mineralisation on the Mel4-containing surfaces relative to surfaces without peptide was found, attributed to the acellular portion of mineral deposition.


Subject(s)
Antimicrobial Peptides , Benzophenones , Polymers , Printing, Three-Dimensional , Prostheses and Implants , Staphylococcus aureus , Humans , Staphylococcus aureus/drug effects , Antimicrobial Peptides/pharmacology , Antimicrobial Peptides/chemistry , Antimicrobial Peptides/metabolism , Prostheses and Implants/adverse effects , Polymers/chemistry , Polymers/pharmacology , Biofilms/drug effects , Ketones/chemistry , Ketones/pharmacology , Osteoblasts/drug effects , Osteoblasts/metabolism , Polyethylene Glycols/chemistry , Polyethylene Glycols/pharmacology , Surface Properties , Bone and Bones/drug effects , Bone and Bones/metabolism , Orthopedics
10.
ACS Appl Bio Mater ; 7(5): 2993-3004, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38593411

ABSTRACT

Bacterial biofilms play a central role in the development and progression of periodontitis, a chronic inflammatory condition that affects the oral cavity. One solution to current treatment constraints is using nitric oxide (NO)─with inherent antimicrobial properties. In this study, an antimicrobial coating is developed from the NO donor S-nitroso-N-acetylpenicillamine (SNAP) embedded within polyethylene glycol (PEG) to prevent periodontitis. The SNAP-PEG coating design enabled a controlled NO release, achieving tunable NO levels for more than 24 h. Testing the SNAP-PEG composite on dental floss showed its effectiveness as a uniform and bioactive coating. The coating exhibited antibacterial properties against Streptococcus mutans and Escherichia coli, with inhibition zones measuring up to 7.50 ± 0.28 and 14.80 ± 0.46 mm2, respectively. Furthermore, SNAP-PEG coating materials were found to be stable when stored at room temperature, with 93.65% of SNAP remaining after 28 d. The coatings were biocompatible against HGF and hFOB 1.19 cells through a 24 h controlled release study. This study presents a facile method to utilize controlled NO release with dental antimicrobial coatings comprising SNAP-PEG. This coating can be easily applied to various substrates, providing a user-friendly approach for targeted self-care in managing gingival infections associated with periodontitis.


Subject(s)
Anti-Bacterial Agents , Coated Materials, Biocompatible , Escherichia coli , Materials Testing , Nitric Oxide , Streptococcus mutans , Streptococcus mutans/drug effects , Nitric Oxide/chemistry , Nitric Oxide/metabolism , Escherichia coli/drug effects , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Coated Materials, Biocompatible/chemistry , Coated Materials, Biocompatible/pharmacology , Polyethylene Glycols/chemistry , Polyethylene Glycols/pharmacology , Microbial Sensitivity Tests , Particle Size , Biofilms/drug effects , S-Nitroso-N-Acetylpenicillamine/chemistry , S-Nitroso-N-Acetylpenicillamine/pharmacology , Surface Properties , Periodontitis/drug therapy , Periodontitis/microbiology , Gingiva/cytology
11.
Int J Biol Macromol ; 268(Pt 2): 131871, 2024 May.
Article in English | MEDLINE | ID: mdl-38677691

ABSTRACT

Multifunctional hydrogels have been developed to meet the various requirements of wound healing. Herein, an innovative hydrogel (QCMC-HA-PEG) was formed through the Schiff base reaction, composed of quaternary ammonium-modified carboxymethyl chitosan (QCMC), hyaluronic acid (HA), and 8-arms Polyethylene Glycol aldehyde (8-ARM-PEG-CHO). The resulting hydrogels exhibited good mechanical and adhesive properties with improved antibacterial efficacy against both Gram-positive and Gram-negative bacteria compared to CMC hydrogels. QCMC-HA-PEG hydrogels demonstrated remarkable adhesive ability in lap-shear test. Furthermore, the incorporation of MnO2 nanosheets into the hydrogel significantly enhanced its reactive oxygen species (ROS) scavenging and oxygen generation capabilities. Finally, experimental results from a full-thickness skin wound model revealed that the QCMC-HA-PEG@MnO2 hydrogel promoted skin epithelization, collagen deposition, and inflammatory regulation significantly accelerated the wound healing process. Therefore, QCMC-HA-PEG@MnO2 hydrogel could be a promising wound dressing to promote wound healing.


Subject(s)
Anti-Bacterial Agents , Antioxidants , Chitosan , Hydrogels , Quaternary Ammonium Compounds , Wound Healing , Chitosan/chemistry , Chitosan/analogs & derivatives , Chitosan/pharmacology , Wound Healing/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Hydrogels/chemistry , Hydrogels/pharmacology , Animals , Quaternary Ammonium Compounds/chemistry , Quaternary Ammonium Compounds/pharmacology , Antioxidants/pharmacology , Antioxidants/chemistry , Reactive Oxygen Species/metabolism , Mice , Polyethylene Glycols/chemistry , Polyethylene Glycols/pharmacology , Manganese Compounds/chemistry , Manganese Compounds/pharmacology , Oxides/chemistry , Oxides/pharmacology , Hyaluronic Acid/chemistry , Hyaluronic Acid/pharmacology , Skin/drug effects
12.
Int J Mol Sci ; 25(8)2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38673976

ABSTRACT

Antagonist peptides (ANTs) of vasoactive intestinal polypeptide receptors (VIP-Rs) are shown to enhance T cell activation and proliferation in vitro, as well as improving T cell-dependent anti-tumor response in acute myeloid leukemia (AML) murine models. However, peptide therapeutics often suffer from poor metabolic stability and exhibit a short half-life/fast elimination in vivo. In this study, we describe efforts to enhance the drug properties of ANTs via chemical modifications. The lead antagonist (ANT308) is derivatized with the following modifications: N-terminus acetylation, peptide stapling, and PEGylation. Acetylated ANT308 exhibits diminished T cell activation in vitro, indicating that N-terminus conservation is critical for antagonist activity. The replacement of residues 13 and 17 with cysteine to accommodate a chemical staple results in diminished survival using the modified peptide to treat mice with AML. However, the incorporation of the constraint increases survival and reduces tumor burden relative to its unstapled counterpart. Notably, PEGylation has a significant positive effect, with fewer doses of PEGylated ANT308 needed to achieve comparable overall survival and tumor burden in leukemic mice dosed with the parenteral ANT308 peptide, suggesting that polyethylene glycol (PEG) incorporation enhances longevity, and thus the antagonist activity of ANT308.


Subject(s)
Leukemia, Myeloid, Acute , Receptors, Vasoactive Intestinal Peptide , Animals , Mice , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , Receptors, Vasoactive Intestinal Peptide/metabolism , Receptors, Vasoactive Intestinal Peptide/antagonists & inhibitors , Humans , Peptides/chemistry , Peptides/pharmacology , Polyethylene Glycols/chemistry , Polyethylene Glycols/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , T-Lymphocytes/drug effects , T-Lymphocytes/metabolism , Cell Line, Tumor
13.
In Vitro Cell Dev Biol Anim ; 60(4): 365-373, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38564118

ABSTRACT

The present study was conducted to develop a green process that provides access to the development of Schiff base derivatives of chitosan with the heterocyclic moiety as a novel class of anti-gastric cancer agent. In the present study, we have synthesized these derivatives by reacting various pyrazoles with chitosan using CAN in PEG400. The compounds were synthesized in 20 min in excellent yield by using CAN at 5% in PEG400 at 80°C in the shortest reaction time of 20 min. The PEG400 could be efficiently recycled for the three consecutive runs. The developed compounds were tested for EGFR-TK inhibition using a Kinase-Glo Plus luminescence kinase assay kit where they exhibited significant activity revealing compound 2d as the most potent analog, while other compounds showed mild to moderate inhibitory activity. MTT assay was conducted to determine the effect of the three most potent EGFR inhibitors (2b, 2c, and 2d) on the proliferation of gastric cancer cells (SGC-7901). The results showed compound 2d as the most potent anticancer agent against SGC7901 cells. The effect of compound 2d was also quantified on the apoptosis and cell phase of SGC7901 cells using flow cytometry assay at various concentrations ranging from 0, 10, 20, and 30 µM. Results suggest that compound 2d showed significant inhibition of SGC-7901 by inducing apoptosis and arresting G0/G1 cell phase. The western blot analysis also revealed that compound 2d significantly inhibited the overexpression of EGFR in SGC-7901 cells. The study successfully demonstrated the development of N­pyrazole amino chitosan as a novel class of agent against gastric cancer via inhibition of EGFR.


Subject(s)
Antineoplastic Agents , Chitosan , ErbB Receptors , Polyethylene Glycols , Pyrazoles , Stomach Neoplasms , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Chitosan/chemistry , Chitosan/pharmacology , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/metabolism , Green Chemistry Technology , Polyethylene Glycols/chemistry , Polyethylene Glycols/pharmacology , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Pyrazoles/pharmacology , Pyrazoles/chemical synthesis , Pyrazoles/chemistry , Stomach Neoplasms/drug therapy , Stomach Neoplasms/pathology
14.
Nat Commun ; 15(1): 3283, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38637507

ABSTRACT

While poly(ethylene glycol) (PEG) hydrogels are generally regarded as biologically inert blank slates, concerns over PEG immunogenicity are growing, and the implications for tissue engineering are unknown. Here, we investigate these implications by immunizing mice against PEG to stimulate anti-PEG antibody production and evaluating bone defect regeneration after treatment with bone morphogenetic protein-2-loaded PEG hydrogels. Quantitative analysis reveals that PEG sensitization increases bone formation compared to naive controls, whereas histological analysis shows that PEG sensitization induces an abnormally porous bone morphology at the defect site, particularly in males. Furthermore, immune cell recruitment is higher in PEG-sensitized mice administered the PEG-based treatment than their naive counterparts. Interestingly, naive controls that were administered a PEG-based treatment also develop anti-PEG antibodies. Sex differences in bone formation and immune cell recruitment are also apparent. Overall, these findings indicate that anti-PEG immune responses can impact tissue engineering efficacy and highlight the need for further investigation.


Subject(s)
Biocompatible Materials , Tissue Engineering , Female , Male , Mice , Animals , Biocompatible Materials/pharmacology , Osteogenesis , Bone Regeneration , Polyethylene Glycols/pharmacology , Hydrogels/pharmacology
15.
Sci Rep ; 14(1): 9270, 2024 04 23.
Article in English | MEDLINE | ID: mdl-38649421

ABSTRACT

The present study explored the anticancer activity of a Chitosan-based nanogel incorporating thiocolchicoside and lauric acid (CTL) against oral cancer cell lines (KB-1). Cell viability, AO/EtBr dual staining and Cell cycle analysis were done to evaluate the impact of CTL nanogel on oral cancer cells. Real-time PCR was performed to analyze proapoptotic and antiapoptotic gene expression in CTL-treated KB-1 cells. Further, molecular docking analysis was conducted to explore the interaction of our key ingredient, thiocolchicoside and its binding affinities. The CTL nanogel demonstrated potent anticancer activity by inhibiting oral cancer cell proliferation and inducing cell cycle arrest in cancer cells. Gene expression analysis indicated alterations in Bax and Bcl-2 genes; CTL nanogel treatment increased Bax mRNA expression and inhibited the Bcl-2 mRNA expression, which showed potential mechanisms of the CTL nanogel's anticancer action. It was found that thiocolchicoside can stabilize the protein's function or restore it as a tumour suppressor. The CTL nanogel exhibited excellent cytotoxicity and potent anticancer effects, making it a potential candidate for non-toxic chemotherapy in cancer nanomedicine. Furthermore, the nanogel's ability to modulate proapoptotic gene expression highlights its potential for targeted cancer therapy. This research contributes to the growing interest in Chitosan-based nanogels and their potential applications in cancer treatment.


Subject(s)
Antineoplastic Agents , Apoptosis , Chitosan , Colchicine , Colchicine/analogs & derivatives , Lauric Acids , Mouth Neoplasms , Nanogels , Polyethyleneimine , Humans , Chitosan/analogs & derivatives , Chitosan/chemistry , Chitosan/pharmacology , Lauric Acids/chemistry , Lauric Acids/pharmacology , Cell Line, Tumor , Nanogels/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Colchicine/pharmacology , Apoptosis/drug effects , Mouth Neoplasms/drug therapy , Mouth Neoplasms/pathology , Molecular Docking Simulation , Cell Proliferation/drug effects , Cell Survival/drug effects , Polyethylene Glycols/chemistry , Polyethylene Glycols/pharmacology
16.
ACS Nano ; 18(12): 8733-8744, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38469811

ABSTRACT

Covalent conjugation of poly(ethylene glycol) (PEG) is frequently employed to enhance the pharmacokinetics and biodistribution of various protein and nanoparticle therapeutics. Unfortunately, some PEGylated drugs can induce elevated levels of antibodies that can bind PEG, i.e., anti-PEG antibodies (APA), in some patients. APA in turn can reduce the efficacy and increase the risks of allergic reactions, including anaphylaxis. There is currently no intervention available in the clinic that specifically mitigates allergic reactions to PEGylated drugs without the use of broad immunosuppression. We previously showed that infusion of high molecular weight free PEG could safely and effectively suppress the induction of APA in mice and restore prolonged circulation of various PEGylated therapeutics. Here, we explored the effectiveness of free PEG as a prophylaxis against anaphylaxis induced by PEG-specific allergic reactions in swine. Injection of PEG-liposomes (PL) resulted in anaphylactoid shock (pseudoanaphylaxis) within 1-3 min in both naïve and PL-sensitized swine. In contrast, repeated injection of free PEG alone did not result in allergic reactions, and injection of free PEG effectively suppressed allergic reactions to PL, including in previously PL-sensitized swine. These results strongly support the further investigation of free PEG for reducing APA and allergic responses to PEGylated therapeutics.


Subject(s)
Anaphylaxis , Humans , Animals , Swine , Mice , Anaphylaxis/chemically induced , Anaphylaxis/drug therapy , Anaphylaxis/prevention & control , Tissue Distribution , Nanomedicine , Polyethylene Glycols/pharmacology , Antibodies/metabolism , Liposomes/pharmacology
17.
Acta Biomater ; 179: 272-283, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38460931

ABSTRACT

Anticancer drugs used for systemic chemotherapy often exhibit off-target toxicity and uncontrolled drug release due to their lack of targeting. To improve the bioavailability of drugs and reduce side effects, we have developed a mixed micelle of nanomedicine composed of two prodrugs with surface modified monoclonal antibody for cancer therapy. In this system, Nimotuzumab was used as targeting ligands of the mixed micelles (named as DCMMs) that is composed of polymer-doxorubicin prodrug (abbreviated as PEG-b-P(GMA-ss-DOX)) and maleimide polyethylene glycol-chlorin e6 (abbreviated as Mal-PEG-Ce6). The mixed micelles modified with Nimotuzumab (named as NTZ-DCMMs) bind to overexpressed EGFR receptors on Hepatoma-22 (H22) cells. Disulfide bonds in PEG-b-P(GMA-ss-DOX) are disrupted in tumor microenvironment, inducing the reduction-responsive release of DOX and leading to tumor cell apoptosis. Simultaneously, Chlorin e6 (Ce6) produced plenty of singlet oxygen (1O2) under laser irradiation to kill tumor cells. In vivo biological distribution and antineoplastic effect experiments demonstrate that NTZ-DCMMs enhanced drug enrichment at tumor sites through targeting function of antibody, dramatically suppressing tumor growth and mitigating cardiotoxicity of drugs. All results prove that NTZ-DCMMs have the ability to actively target H22 cells and quickly respond to tumor microenvironment, which is expected to become an intelligent and multifunctional drug delivery carrier for efficient chemotherapy and photodynamic therapy of hepatoma. STATEMENT OF SIGNIFICANCE: Anticancer drugs used for systemic chemotherapy often exhibit off-target toxicity due to their lack of targeting. Therefore, it's necessary to develop effective, targeted, and collaborative treatment strategies. We construct a mixed micelle of nanomedicine based on two polymer prodrugs and modified with monoclonal antibody on surface for cancer therapy. Under the tumor cell microenvironment, the disulfide bonds of polymer-ss-DOX were broken, effectively triggering DOX release. The photosensitizer Ce6 could generate a large amount of ROS under light, which synergistically promotes tumor cell apoptosis. By coupling antibodies to the hydrophilic segments of polymer micelles, drugs can be specifically delivered. Compared with monotherapy, the combination of chemotherapy and photodynamic therapy can significantly enhance the therapeutic effect of liver cancer.


Subject(s)
Chlorophyllides , Doxorubicin , Micelles , Nanomedicine , Photochemotherapy , Porphyrins , Prodrugs , Prodrugs/pharmacology , Prodrugs/chemistry , Prodrugs/pharmacokinetics , Doxorubicin/pharmacology , Doxorubicin/chemistry , Animals , Photochemotherapy/methods , Cell Line, Tumor , Nanomedicine/methods , Porphyrins/chemistry , Porphyrins/pharmacology , Porphyrins/pharmacokinetics , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/pharmacokinetics , Mice , Polymers/chemistry , Polymers/pharmacology , Mice, Inbred BALB C , Polyethylene Glycols/chemistry , Polyethylene Glycols/pharmacology , Apoptosis/drug effects
18.
Int J Biol Macromol ; 265(Pt 2): 130950, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38513911

ABSTRACT

Due to its outstanding qualities, particularly when it takes the shape of hydrogels, chitosan is a well-known biological macromolecule with many applications. When chitosan hydrogels are modified with other polymers, the desirable function as skin regeneration hydrogels is compromised; nevertheless, the mechanical properties can be improved, which is crucial for commercialization. In this study, for the first time, bimetallic zinc silver metal-organic frameworks (ZAg MOF) loaded with ascorbic acid were added to chitosan/polyethylene oxide (PEO) based interpenetrating polymer network (IPN) hydrogels that were crosslinked with biotin to improve their antimicrobial activity, mechanical characteristics, and sustainable treatment of wounds. Significant changes in the microstructure, hydrophilicity level, and mechanical properties were noticed. Ascorbic acid release patterns were upregulated in an acidic environment pH (5.5) that mimics the initial wound pH. Impressive cell viability (98 %), antimicrobial properties, and almost full skin healing in a short time were achieved for the non-replaceable chitosan/PEO developed hydrogels. Enhancing the wound healing of the treated animals using the prepared CS/PEO hydrogel dressing was found to be a result of the inhibition of dermal inflammation via decreasing IL-1ß, suppressing ECM degradation (MMP9), stimulating proliferation through upregulation of TGF-ß and increasing ECM synthesis as it elevates collagen 1 and α-SMA contents. The findings support the implementation of developed hydrogels as antimicrobial hydrogels dressing for fast skin regeneration.


Subject(s)
Chitosan , Animals , Chitosan/pharmacology , Chitosan/chemistry , Polyethylene Glycols/pharmacology , Anti-Bacterial Agents/chemistry , Hydrogels/pharmacology , Hydrogels/chemistry , Polymers , Ascorbic Acid
19.
ACS Biomater Sci Eng ; 10(4): 2062-2067, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38466032

ABSTRACT

Brushite calcium phosphate cement (brushite CPC) is a prospective bone repair material due to its ideal resorption rates in vivo. However, the undesirable mechanical property and bioactivity limited its availability in clinic application. To address this issue, incorporating polymeric additives has emerged as a viable solution. In this study, poly(ethylene glycol) dicarboxylic acid, PEG(COOH), was synthesized and employed as the polymeric additive. The setting behavior, anti-washout ability, mechanical property, degradation rate, and osteogenic capacity of brushite CPC were regulated by incorporating PEG(COOH). The incorporation of PEG(COOH) with carboxylic acid groups demonstrated a positive effect on both mechanical properties and osteogenic activity in bone repair. This study offers valuable insights and suggests a promising strategy for the development of materials in bone tissue engineering.


Subject(s)
Bone Cements , Polyethylene Glycols , Polyethylene Glycols/pharmacology , Prospective Studies , Bone Cements/pharmacology , Calcium Phosphates/pharmacology , Polymers , Dicarboxylic Acids/pharmacology
20.
J Environ Pathol Toxicol Oncol ; 43(2): 29-42, 2024.
Article in English | MEDLINE | ID: mdl-38505911

ABSTRACT

Withaferin A (WA) is a natural steroidal lactone with promising pharmacological activities, but its poor solubility and bioavailability hinder its clinical application. The liposomal drug delivery system has attracted considerable attention to overcome the delivery limitations of pharmacological agents. The present study investigated the effect of WA-loaded pegylated nanoliposomes (LWA) on in vitro and in vivo B16F10 melanoma tumor models. In vitro results showed that LWA had significantly (P < 0.01) higher cytotoxicity than free WA and induced ROS-mediated apoptosis in B16F10 cells. Transwell cell migration and invasion studies demonstrated that LWA treatment significantly (P < 0.01) decreased the migratory and invasive capacities of melanoma cells compared with WA. In vivo study revealed that treatment significantly (P < 0.01) reduced tumor growth in experimental animals compared with WA or tumor control. Also, LWA administration remarkably inhibited tumor cell proliferation by downregulating the expression of Ki-67 and Cyclin D1 and induced apoptosis by regulating the expression of Bax, Bcl2, and Bcl xl levels. Our results strongly suggest that LWA could be a promising therapeutic formulation for treating malignant melanoma.


Subject(s)
Melanoma, Experimental , Melanoma , Withanolides , Animals , Mice , Melanoma/drug therapy , Cell Line, Tumor , Apoptosis , Polyethylene Glycols/pharmacology , Polyethylene Glycols/therapeutic use , Melanoma, Experimental/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...