Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 937
Filter
1.
PLoS Biol ; 22(4): e3002589, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38683856

ABSTRACT

Peptidoglycan (PG) and most surface glycopolymers and their modifications are built in the cytoplasm on the lipid carrier undecaprenyl phosphate (UndP). These lipid-linked precursors are then flipped across the membrane and polymerized or directly transferred to surface polymers, lipids, or proteins. Despite its essential role in envelope biogenesis, UndP is maintained at low levels in the cytoplasmic membrane. The mechanisms by which bacteria distribute this limited resource among competing pathways is currently unknown. Here, we report that the Bacillus subtilis transcription factor SigM and its membrane-anchored anti-sigma factor respond to UndP levels and prioritize its use for the synthesis of the only essential surface polymer, the cell wall. Antibiotics that target virtually every step in PG synthesis activate SigM-directed gene expression, confounding identification of the signal and the logic of this stress-response pathway. Through systematic analyses, we discovered 2 distinct responses to these antibiotics. Drugs that trap UndP, UndP-linked intermediates, or precursors trigger SigM release from the membrane in <2 min, rapidly activating transcription. By contrasts, antibiotics that inhibited cell wall synthesis without directly affecting UndP induce SigM more slowly. We show that activation in the latter case can be explained by the accumulation of UndP-linked wall teichoic acid precursors that cannot be transferred to the PG due to the block in its synthesis. Furthermore, we report that reduction in UndP synthesis rapidly induces SigM, while increasing UndP production can dampen the SigM response. Finally, we show that SigM becomes essential for viability when the availability of UndP is restricted. Altogether, our data support a model in which the SigM pathway functions to homeostatically control UndP usage. When UndP levels are sufficiently high, the anti-sigma factor complex holds SigM inactive. When levels of UndP are reduced, SigM activates genes that increase flux through the PG synthesis pathway, boost UndP recycling, and liberate the lipid carrier from nonessential surface polymer pathways. Analogous homeostatic pathways that prioritize UndP usage are likely to be common in bacteria.


Subject(s)
Bacillus subtilis , Bacterial Proteins , Cell Wall , Peptidoglycan , Signal Transduction , Cell Wall/metabolism , Bacillus subtilis/metabolism , Bacillus subtilis/genetics , Bacillus subtilis/drug effects , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Peptidoglycan/metabolism , Peptidoglycan/biosynthesis , Polyisoprenyl Phosphates/metabolism , Anti-Bacterial Agents/pharmacology , Gene Expression Regulation, Bacterial , Cell Membrane/metabolism
2.
Int J Mol Sci ; 25(8)2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38673874

ABSTRACT

The trichothecene biosynthesis in Fusarium begins with the cyclization of farnesyl pyrophosphate to trichodiene, followed by subsequent oxygenation to isotrichotriol. This initial bicyclic intermediate is further cyclized to isotrichodermol (ITDmol), a tricyclic precursor with a toxic trichothecene skeleton. Although the first cyclization and subsequent oxygenation are catalyzed by enzymes encoded by Tri5 and Tri4, the second cyclization occurs non-enzymatically. Following ITDmol formation, the enzymes encoded by Tri101, Tri11, Tri3, and Tri1 catalyze 3-O-acetylation, 15-hydroxylation, 15-O-acetylation, and A-ring oxygenation, respectively. In this study, we extensively analyzed the metabolites of the corresponding pathway-blocked mutants of Fusarium graminearum. The disruption of these Tri genes, except Tri3, led to the accumulation of tricyclic trichothecenes as the main products: ITDmol due to Tri101 disruption; a mixture of isotrichodermin (ITD), 7-hydroxyisotrichodermin (7-HIT), and 8-hydroxyisotrichodermin (8-HIT) due to Tri11 disruption; and a mixture of calonectrin and 3-deacetylcalonectrin due to Tri1 disruption. However, the ΔFgtri3 mutant accumulated substantial amounts of bicyclic metabolites, isotrichotriol and trichotriol, in addition to tricyclic 15-deacetylcalonectrin (15-deCAL). The ΔFgtri5ΔFgtri3 double gene disruptant transformed ITD into 7-HIT, 8-HIT, and 15-deCAL. The deletion of FgTri3 and overexpression of Tri6 and Tri10 trichothecene regulatory genes did not result in the accumulation of 15-deCAL in the transgenic strain. Thus, the absence of Tri3p and/or the presence of a small amount of 15-deCAL adversely affected the non-enzymatic second cyclization and C-15 hydroxylation steps.


Subject(s)
Fusarium , Trichothecenes , Fusarium/metabolism , Fusarium/genetics , Cyclization , Trichothecenes/metabolism , Acetylation , Fungal Proteins/metabolism , Fungal Proteins/genetics , Polyisoprenyl Phosphates/metabolism , Biosynthetic Pathways
3.
Metab Eng ; 83: 183-192, 2024 May.
Article in English | MEDLINE | ID: mdl-38631459

ABSTRACT

Monoterpenes and monoterpenoids such as (S)-limonene and geraniol are valuable chemicals with a wide range of applications, including cosmetics, pharmaceuticals, and biofuels. Saccharomyces cerevisiae has proven to be an effective host to produce various terpenes and terpenoids. (S)-limonene and geraniol are produced from geranyl pyrophosphate (GPP) through the enzymatic actions of limonene synthase (LS) and geraniol synthase (GES), respectively. However, a major hurdle in their production arises from the dual functionality of the Erg20, a farnesyl pyrophosphate (FPP) synthase, responsible for generating GPP. Erg20 not only synthesizes GPP by condensing isopentenyl pyrophosphate (IPP) with dimethylallyl pyrophosphate but also catalyzes further condensation of IPP with GPP to produce FPP. In this study, we have tackled this issue by harnessing previously developed Erg20 mutants, Erg20K197G (Erg20G) and Erg20F96W, N127W (Erg20WW), which enhance GPP accumulation. Through a combination of these mutants, we generated a novel Erg20WWG mutant with over four times higher GPP accumulating capability than Erg20WW, as observed through geraniol production levels. The Erg20WWG mutant was fused to the LS from Mentha spicata or the GES from Catharanthus roseus for efficient conversion of GPP to (S)-limonene and geraniol, respectively. Further improvements were achieved by localizing the entire mevalonate pathway and the Erg20WWG-fused enzymes in peroxisomes, while simultaneously downregulating the essential ERG20 gene using the glucose-sensing HXT1 promoter. In the case of (S)-limonene production, additional Erg20WWG-LS was expressed in the cytosol. As a result, the final strains produced 1063 mg/L of (S)-limonene and 1234 mg/L of geraniol by fed-batch biphasic fermentations with ethanol feeding. The newly identified Erg20WWG mutant opens doors for the efficient production of various other GPP-derived chemicals including monoterpene derivatives and cannabinoids.


Subject(s)
Acyclic Monoterpenes , Limonene , Saccharomyces cerevisiae , Terpenes , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Limonene/metabolism , Terpenes/metabolism , Acyclic Monoterpenes/metabolism , Metabolic Engineering , Mutation , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Polyisoprenyl Phosphates/metabolism , Diterpenes/metabolism , Diphosphates
4.
Plant J ; 118(4): 1218-1231, 2024 May.
Article in English | MEDLINE | ID: mdl-38323895

ABSTRACT

Borneol, camphor, and bornyl acetate are highly promising monoterpenoids widely used in medicine, flavor, food, and chemical applications. Bornyl diphosphate (BPP) serves as a common precursor for the biosynthesis of these monoterpenoids. Although bornyl diphosphate synthase (BPPS) that catalyzes the cyclization of geranyl diphosphate (GPP) to BPP has been identified in multiple plants, the enzyme responsible for the hydrolysis of BPP to produce borneol has not been reported. Here, we conducted in vitro and in vivo functional characterization to identify the Nudix hydrolase WvNUDX24 from W. villosa, which specifically catalyzes the hydrolysis of BPP to generate bornyl phosphate (BP), and then BP forms borneol under the action of phosphatase. Subcellular localization experiments indicated that the hydrolysis of BPP likely occurs in the cytoplasm. Furthermore, site-directed mutagenesis experiments revealed that four critical residues (R84, S96, P98, and G99) for the hydrolysis activity of WvNUDX24. Additionally, the functional identification of phosphatidic acid phosphatase (PAP) demonstrated that WvPAP5 and WvPAP10 were able to hydrolyze geranylgeranyl diphosphate (GGPP) and farnesyl diphosphate (FPP) to generate geranylgeranyl phosphate (GGP) and farnesyl phosphate (FP), respectively, but could not hydrolyze BPP, GPP, and neryl diphosphate (NPP) to produce corresponding monophosphate products. These findings highlight the essential role of WvNUDX24 in the first step of BPP hydrolysis to produce borneol and provide genetic elements for the production of BPP-related terpenoids through plant metabolic engineering and synthetic biology.


Subject(s)
Camphanes , Nudix Hydrolases , Plant Proteins , Pyrophosphatases , Pyrophosphatases/metabolism , Pyrophosphatases/genetics , Plant Proteins/metabolism , Plant Proteins/genetics , Camphanes/metabolism , Brassicaceae/genetics , Brassicaceae/enzymology , Brassicaceae/metabolism , Polyisoprenyl Phosphates/metabolism
5.
Chemistry ; 30(8): e202303560, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-37947363

ABSTRACT

The analog of the diterpene precursor geranylgeranyl diphosphate with a double bond shifted from C14=C15 to C15=C16 (named iso-GGPP III) has been synthesized and enzymatically converted with six bacterial diterpene synthases; this allowed the isolation of nine unnatural diterpenes. For some of the enzyme-substrate combinations, the different reactivity implemented in the substrate analog iso-GGPP III opened reaction pathways that are not observed with natural GGPP, resulting in the formation of diterpenes with novel skeletons. A stereoselective deuteration strategy was used to assign the absolute configurations of the isolated diterpenes.


Subject(s)
Diterpenes , Diterpenes/chemistry , Polyisoprenyl Phosphates/metabolism
6.
ACS Infect Dis ; 9(12): 2394-2400, 2023 Dec 08.
Article in English | MEDLINE | ID: mdl-37937847

ABSTRACT

Cilagicin is a Gram-positive active antibiotic that has a dual polyprenyl phosphate binding mechanism that impedes resistance development. Here we bioinformatically screened predicted non-ribosomal polypeptide synthetase encoded structures to search for antibiotics that might similarly avoid resistance development. Synthesis and bioactivity screening of the predicted structures that we identified led to three antibiotics that are active against multidrug-resistant Gram-positive pathogens, two of which, paenilagicin and virgilagicin, did not lead to resistance even after prolonged antibiotic exposure.


Subject(s)
Anti-Bacterial Agents , Polyisoprenyl Phosphates , Anti-Bacterial Agents/pharmacology , Polyisoprenyl Phosphates/chemistry , Polyisoprenyl Phosphates/metabolism , Phosphates
7.
Nat Chem ; 15(8): 1188-1195, 2023 08.
Article in English | MEDLINE | ID: mdl-37308711

ABSTRACT

Terpenoids account for more than 60% of all natural products, and their carbon skeletons originate from common isoprenoid units of different lengths such as geranyl pyrophosphate and farnesyl pyrophosphate. Here we characterize a metal-dependent, bifunctional isoprenyl diphosphate synthase from the leaf beetle Phaedon cochleariae by structural and functional analyses. Inter- and intramolecular cooperative effects in the homodimer strongly depend on the provided metal ions and regulate the biosynthetic flux of terpene precursors to either biological defence or physiological development. Strikingly, a unique chain length determination domain adapts to form geranyl or farnesyl pyrophosphate by altering enzyme symmetry and ligand affinity between both subunits. In addition, we identify an allosteric geranyl-pyrophosphate-specific binding site that shares similarity with end-product inhibition in human farnesyl pyrophosphate synthase. Our combined findings elucidate a deeply intertwined reaction mechanism in the P. cochleariae isoprenyl diphosphate synthase that integrates substrate, product and metal-ion concentrations to harness its dynamic potential.


Subject(s)
Diphosphates , Terpenes , Humans , Terpenes/metabolism , Diphosphates/chemistry , Diphosphates/metabolism , Polyisoprenyl Phosphates/chemistry , Polyisoprenyl Phosphates/metabolism
8.
Clin Transl Med ; 13(1): e1167, 2023 01.
Article in English | MEDLINE | ID: mdl-36650113

ABSTRACT

Geranylgeranyl diphosphate synthase (GGDPS), an enzyme in the isoprenoid biosynthesis pathway, is responsible for the production of geranylgeranyl pyrophosphate (GGPP). GGPP serves as a substrate for the post-translational modification (geranylgeranylation) of proteins, including those belonging to the Ras superfamily of small GTPases. These proteins play key roles in signalling pathways, cytoskeletal regulation and intracellular transport, and in the absence of the prenylation modification, cannot properly localise and function. Aberrant expression of GGDPS has been implicated in various human pathologies, including liver disease, type 2 diabetes, pulmonary disease and malignancy. Thus, this enzyme is of particular interest from a therapeutic perspective. Here, we review the physiological function of GGDPS as well as its role in pathophysiological processes. We discuss the current GGDPS inhibitors under development and the therapeutic implications of targeting this enzyme.


Subject(s)
Diabetes Mellitus, Type 2 , Enzyme Inhibitors , Humans , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use , Farnesyltranstransferase/metabolism , Polyisoprenyl Phosphates/metabolism
9.
Cell Cycle ; 22(6): 666-679, 2023.
Article in English | MEDLINE | ID: mdl-36310380

ABSTRACT

This study investigated the effects of ibandronate (IBN) on cardiomyopathy remodeling in diabetic rats. A rat model of diabetic cardiomyopathy (DCM) was established by supplementing them with a high-calorie diet combined with a low dose of streptozotocin (STZ). The diabetic rats received IBN (5 µg/kg per day) or normal saline subcutaneously for 16 weeks. The hematoxylin and eosin (H&E) and Masson's trichrome staining were performed for evaluating the myocardial morphologies of the rats. Echocardiography and cardiac catheter were performed to assess their cardiac functional parameters. The protein levels of connective tissue growth factor (CTGF), farnesyl pyrophosphate synthase (FPPS), and mitogen-activated protein kinase (MAPK) were determined using Western blot analysis. RhoA activation was detected using a small GTP protease-linked immunosorbent assay (GLISA). The diabetic rats showed the development of moderate hyperglycemia, insulin resistance, hyperlipidemia, myocardial fibrosis, FPPS overexpression, cardiac systolic, and diastolic dysfunction. Inhibiting the FPPS could ameliorate myocardial hypertrophy and fibrosis. These anatomical findings were accompanied by a significant improvement in heart function. Furthermore, the inhibition of FPPS, the increased activation of RhoA, and phosphorylation of p38 and extracellular signal-regulated kinase (ERK)1/2 in DCM decreased significantly with the treatment of IBN. This study for the first time demonstrated that the upregulation of FPPS expression might be involved in diabetic myocardial remodeling in diabetes mellitus (DM). In addition, IBN might exert its inhibitory effects on myocardial tissue remodeling by suppressing the RhoA/ERK1/2 and RhoA/p38 MAPK pathways in DCM.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Cardiomyopathies , Sesquiterpenes , Rats , Animals , Diabetes Mellitus, Experimental/metabolism , Sesquiterpenes/metabolism , Sesquiterpenes/therapeutic use , Polyisoprenyl Phosphates/metabolism , Polyisoprenyl Phosphates/therapeutic use , Myocardium/pathology , Geranyltranstransferase/metabolism , Diabetic Cardiomyopathies/metabolism , Ibandronic Acid/metabolism , Ibandronic Acid/therapeutic use , Fibrosis
10.
Nature ; 613(7945): 729-734, 2023 01.
Article in English | MEDLINE | ID: mdl-36450357

ABSTRACT

Peptidoglycan and almost all surface glycopolymers in bacteria are built in the cytoplasm on the lipid carrier undecaprenyl phosphate (UndP)1-4. These UndP-linked precursors are transported across the membrane and polymerized or directly transferred to surface polymers, lipids or proteins. UndP is then flipped to regenerate the pool of cytoplasmic-facing UndP. The identity of the flippase that catalyses transport has remained unknown. Here, using the antibiotic amphomycin that targets UndP5-7, we identified two broadly conserved protein families that affect UndP recycling. One (UptA) is a member of the DedA superfamily8; the other (PopT) contains the domain DUF368. Genetic, cytological and syntenic analyses indicate that these proteins are UndP transporters. Notably, homologues from Gram-positive and Gram-negative bacteria promote UndP transport in Bacillus subtilis, indicating that recycling activity is broadly conserved among family members. Inhibitors of these flippases could potentiate the activity of antibiotics targeting the cell envelope.


Subject(s)
Bacterial Proteins , Carrier Proteins , Conserved Sequence , Evolution, Molecular , Gram-Negative Bacteria , Gram-Positive Bacteria , Polyisoprenyl Phosphates , Anti-Bacterial Agents/pharmacology , Bacillus subtilis/cytology , Bacillus subtilis/drug effects , Bacillus subtilis/genetics , Bacillus subtilis/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/classification , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Carrier Proteins/chemistry , Carrier Proteins/classification , Carrier Proteins/genetics , Carrier Proteins/metabolism , Cell Membrane/drug effects , Cell Membrane/metabolism , Gram-Negative Bacteria/cytology , Gram-Negative Bacteria/drug effects , Gram-Negative Bacteria/genetics , Gram-Negative Bacteria/metabolism , Gram-Positive Bacteria/cytology , Gram-Positive Bacteria/drug effects , Gram-Positive Bacteria/genetics , Gram-Positive Bacteria/metabolism , Polyisoprenyl Phosphates/metabolism , Synteny , Peptidoglycan/metabolism , Cell Wall/chemistry , Cell Wall/metabolism
11.
Nature ; 613(7945): 721-728, 2023 01.
Article in English | MEDLINE | ID: mdl-36450355

ABSTRACT

The microbial cell wall is essential for maintenance of cell shape and resistance to external stressors1. The primary structural component of the cell wall is peptidoglycan, a glycopolymer with peptide crosslinks located outside of the cell membrane1. Peptidoglycan biosynthesis and structure are responsive to shifting environmental conditions such as pH and salinity2-6, but the mechanisms underlying such adaptations are incompletely understood. Precursors of peptidoglycan and other cell surface glycopolymers are synthesized in the cytoplasm and then delivered across the cell membrane bound to the recyclable lipid carrier undecaprenyl phosphate7 (C55-P, also known as UndP). Here we identify the DUF368-containing and DedA transmembrane protein families as candidate C55-P translocases, filling a critical gap in knowledge of the proteins required for the biogenesis of microbial cell surface polymers. Gram-negative and Gram-positive bacteria lacking their cognate DUF368-containing protein exhibited alkaline-dependent cell wall and viability defects, along with increased cell surface C55-P levels. pH-dependent synthetic genetic interactions between DUF368-containing proteins and DedA family members suggest that C55-P transporter usage is dynamic and modulated by environmental inputs. C55-P transporter activity was required by the cholera pathogen for growth and cell shape maintenance in the intestine. We propose that conditional transporter reliance provides resilience in lipid carrier recycling, bolstering microbial fitness both inside and outside the host.


Subject(s)
Bacterial Proteins , Carrier Proteins , Genetic Fitness , Gram-Negative Bacteria , Gram-Positive Bacteria , Polyisoprenyl Phosphates , Bacterial Proteins/metabolism , Carrier Proteins/metabolism , Cell Membrane/metabolism , Cell Wall/chemistry , Cell Wall/metabolism , Lipids/analysis , Peptidoglycan/metabolism , Polyisoprenyl Phosphates/metabolism , Gram-Negative Bacteria/chemistry , Gram-Negative Bacteria/cytology , Gram-Negative Bacteria/metabolism , Gram-Positive Bacteria/chemistry , Gram-Positive Bacteria/cytology , Gram-Positive Bacteria/metabolism , Microbial Viability
12.
Angew Chem Int Ed Engl ; 61(1): e202111217, 2022 01 03.
Article in English | MEDLINE | ID: mdl-34626048

ABSTRACT

Prenyl pyrophosphate methyltransferases enhance the structural diversity of terpenoids. However, the molecular basis of their catalytic mechanisms is poorly understood. In this study, using multiple strategies, we characterized a geranyl pyrophosphate (GPP) C6-methyltransferase, BezA. Biochemical analysis revealed that BezA requires Mg2+ and solely methylates GPP. The crystal structures of BezA and its complex with S-adenosyl homocysteine were solved at 2.10 and 2.56 Å, respectively. Further analyses using site-directed mutagenesis, molecular docking, molecular dynamics simulations, and quantum mechanics/molecular mechanics calculations revealed the molecular basis of the methylation reaction. Importantly, the function of E170 as a catalytic base to complete the methylation reaction was established. We also succeeded in switching the substrate specificity by introducing a W210A substitution, resulting in an unprecedented farnesyl pyrophosphate C6-methyltransferase.


Subject(s)
Methyltransferases/metabolism , Polyisoprenyl Phosphates/metabolism , Sesquiterpenes/metabolism , Biocatalysis , Crystallography, X-Ray , Density Functional Theory , Methyltransferases/chemistry , Methyltransferases/genetics , Models, Molecular , Molecular Structure , Polyisoprenyl Phosphates/chemistry , Sesquiterpenes/chemistry , Streptomyces/enzymology , Substrate Specificity
13.
Elife ; 102021 11 29.
Article in English | MEDLINE | ID: mdl-34842525

ABSTRACT

UbiA prenyltransferase domain-containing protein-1 (UBIAD1) utilizes geranylgeranyl pyrophosphate (GGpp) to synthesize the vitamin K2 subtype menaquinone-4. The prenyltransferase has emerged as a key regulator of sterol-accelerated, endoplasmic reticulum (ER)-associated degradation (ERAD) of HMG CoA reductase, the rate-limiting enzyme in synthesis of cholesterol and nonsterol isoprenoids including GGpp. Sterols induce binding of UBIAD1 to reductase, inhibiting its ERAD. Geranylgeraniol (GGOH), the alcohol derivative of GGpp, disrupts this binding and thereby stimulates ERAD of reductase and translocation of UBIAD1 to Golgi. We now show that overexpression of Type 1 polyisoprenoid diphosphate phosphatase (PDP1), which dephosphorylates GGpp and other isoprenyl pyrophosphates to corresponding isoprenols, abolishes protein geranylgeranylation as well as GGOH-induced ERAD of reductase and Golgi transport of UBIAD1. Conversely, these reactions are enhanced in the absence of PDP1. Our findings indicate PDP1-mediated hydrolysis of GGpp significantly contributes to a feedback mechanism that maintains optimal intracellular levels of the nonsterol isoprenoid.


Subject(s)
Dimethylallyltranstransferase/metabolism , Diterpenes/metabolism , Hydroxymethylglutaryl CoA Reductases/metabolism , Phosphoric Monoester Hydrolases/metabolism , Cell Line , Endoplasmic Reticulum-Associated Degradation/physiology , Golgi Apparatus/physiology , Humans , Polyisoprenyl Phosphates/metabolism
14.
Int J Mol Sci ; 22(21)2021 Nov 07.
Article in English | MEDLINE | ID: mdl-34769472

ABSTRACT

Protein farnesylation is a post-translational modification where a 15-carbon farnesyl isoprenoid is appended to the C-terminal end of a protein by farnesyltransferase (FTase). This modification typically causes proteins to associate with the membrane and allows them to participate in signaling pathways. In the canonical understanding of FTase, the isoprenoids are attached to the cysteine residue of a four-amino-acid CaaX box sequence. However, recent work has shown that five-amino-acid sequences can be recognized, including the pentapeptide CMIIM. This paper describes a new systematic approach to discover novel peptide substrates for FTase by combining the combinatorial power of solid-phase peptide synthesis (SPPS) with the ease of matrix-assisted laser desorption ionization-mass spectrometry (MALDI-MS). The workflow consists of synthesizing focused libraries containing 10-20 sequences obtained by randomizing a synthetic peptide at a single position. Incubation of the library with FTase and farnesyl pyrophosphate (FPP) followed by mass spectrometric analysis allows the enzymatic products to be clearly resolved from starting peptides due to the increase in mass that occurs upon farnesylation. Using this method, 30 hits were obtained from a series of libraries containing a total of 80 members. Eight of the above peptides were selected for further evaluation, reflecting a mixture that represented a sampling of diverse substrate space. Six of these sequences were found to be bona fide substrates for FTase, with several meeting or surpassing the in vitro efficiency of the benchmark sequence CMIIM. Experiments in yeast demonstrated that proteins bearing these sequences can be efficiently farnesylated within live cells. Additionally, a bioinformatics search showed that a variety of pentapeptide CaaaX sequences can be found in the mammalian genome, and several of these sequences display excellent farnesylation in vitro and in yeast cells, suggesting that the number of farnesylated proteins within mammalian cells may be larger than previously thought.


Subject(s)
Farnesyltranstransferase/metabolism , Protein Prenylation , Proteome/analysis , Amino Acid Sequence , Animals , Databases, Protein , Humans , Peptide Library , Polyisoprenyl Phosphates/metabolism , Protein Interaction Domains and Motifs , Proteome/metabolism , Proteomics/methods , Rats , Saccharomyces cerevisiae , Saccharomyces cerevisiae Proteins/metabolism , Sesquiterpenes/metabolism , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Substrate Specificity
15.
Sci Rep ; 11(1): 17094, 2021 08 24.
Article in English | MEDLINE | ID: mdl-34429465

ABSTRACT

Linalool and nerolidol are terpene alcohols that occur naturally in many aromatic plants and are commonly used in food and cosmetic industries as flavors and fragrances. In plants, linalool and nerolidol are biosynthesized as a result of respective linalool synthase and nerolidol synthase, or a single linalool/nerolidol synthase. In our previous work, we have isolated a linalool/nerolidol synthase (designated as PamTps1) from a local herbal plant, Plectranthus amboinicus, and successfully demonstrated the production of linalool and nerolidol in an Escherichia coli system. In this work, the biochemical properties of PamTps1 were analyzed, and its 3D homology model with the docking positions of its substrates, geranyl pyrophosphate (C10) and farnesyl pyrophosphate (C15) in the active site were constructed. PamTps1 exhibited the highest enzymatic activity at an optimal pH and temperature of 6.5 and 30 °C, respectively, and in the presence of 20 mM magnesium as a cofactor. The Michaelis-Menten constant (Km) and catalytic efficiency (kcat/Km) values of 16.72 ± 1.32 µM and 9.57 × 10-3 µM-1 s-1, respectively, showed that PamTps1 had a higher binding affinity and specificity for GPP instead of FPP as expected for a monoterpene synthase. The PamTps1 exhibits feature of a class I terpene synthase fold that made up of α-helices architecture with N-terminal domain and catalytic C-terminal domain. Nine aromatic residues (W268, Y272, Y299, F371, Y378, Y379, F447, Y517 and Y523) outlined the hydrophobic walls of the active site cavity, whilst residues from the RRx8W motif, RxR motif, H-α1 and J-K loops formed the active site lid that shielded the highly reactive carbocationic intermediates from the solvents. The dual substrates use by PamTps1 was hypothesized to be possible due to the architecture and residues lining the catalytic site that can accommodate larger substrate (FPP) as demonstrated by the protein modelling and docking analysis. This model serves as a first glimpse into the structural insights of the PamTps1 catalytic active site as a multi-substrate linalool/nerolidol synthase.


Subject(s)
Acyclic Monoterpenes/metabolism , Alkyl and Aryl Transferases/metabolism , Plant Proteins/metabolism , Plectranthus/enzymology , Sesquiterpenes/metabolism , Alkyl and Aryl Transferases/chemistry , Catalytic Domain , Escherichia coli , Molecular Docking Simulation , Plant Proteins/chemistry , Polyisoprenyl Phosphates/metabolism , Protein Binding , Substrate Specificity
16.
Annu Rev Biochem ; 90: 659-679, 2021 06 20.
Article in English | MEDLINE | ID: mdl-34153214

ABSTRACT

The polytopic, endoplasmic reticulum (ER) membrane protein 3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA) reductase produces mevalonate, the key intermediate in the synthesis of cholesterol and many nonsterol isoprenoids including geranylgeranyl pyrophosphate (GGpp). Transcriptional, translational, and posttranslational feedback mechanisms converge on this reductase to ensure cells maintain a sufficient supply of essential nonsterol isoprenoids but avoid overaccumulation of cholesterol and other sterols. The focus of this review is mechanisms for the posttranslational regulation of HMG CoA reductase, which include sterol-accelerated ubiquitination and ER-associated degradation (ERAD) that is augmented by GGpp. We discuss how GGpp-induced ER-to-Golgi trafficking of the vitamin K2 synthetic enzyme UbiA prenyltransferase domain-containing protein-1 (UBIAD1) modulates HMG CoA reductase ERAD to balance the synthesis of sterol and nonsterol isoprenoids. We also summarize the characterization of genetically manipulated mice, which established that sterol-accelerated, UBIAD1-modulated ERAD plays a major role in regulation of HMG CoA reductase and cholesterol metabolism in vivo.


Subject(s)
Cholesterol/biosynthesis , Endoplasmic Reticulum-Associated Degradation/physiology , Hydroxymethylglutaryl CoA Reductases/metabolism , Animals , Dimethylallyltranstransferase/metabolism , Endoplasmic Reticulum-Associated Degradation/drug effects , Humans , Hydroxymethylglutaryl CoA Reductases/chemistry , Hydroxymethylglutaryl CoA Reductases/genetics , Mice , Polyisoprenyl Phosphates/metabolism , Protein Processing, Post-Translational , Sterols/metabolism , Terpenes/metabolism , Terpenes/pharmacology , Ubiquitination
17.
Nat Commun ; 12(1): 3487, 2021 06 09.
Article in English | MEDLINE | ID: mdl-34108468

ABSTRACT

Fusicoccadiene synthase from Phomopsis amygdali (PaFS) is a unique bifunctional terpenoid synthase that catalyzes the first two steps in the biosynthesis of the diterpene glycoside Fusicoccin A, a mediator of 14-3-3 protein interactions. The prenyltransferase domain of PaFS generates geranylgeranyl diphosphate, which the cyclase domain then utilizes to generate fusicoccadiene, the tricyclic hydrocarbon skeleton of Fusicoccin A. Here, we use cryo-electron microscopy to show that the structure of full-length PaFS consists of a central octameric core of prenyltransferase domains, with the eight cyclase domains radiating outward via flexible linker segments in variable splayed-out positions. Cryo-electron microscopy and chemical crosslinking experiments additionally show that compact conformations can be achieved in which cyclase domains are more closely associated with the prenyltransferase core. This structural analysis provides a framework for understanding substrate channeling, since most of the geranylgeranyl diphosphate generated by the prenyltransferase domains remains on the enzyme for cyclization to form fusicoccadiene.


Subject(s)
Alkyl and Aryl Transferases/chemistry , Diterpenes/metabolism , Fungal Proteins/chemistry , Alkyl and Aryl Transferases/metabolism , Ascomycota/chemistry , Ascomycota/enzymology , Catalysis , Catalytic Domain , Cryoelectron Microscopy , Cyclization , Dimethylallyltranstransferase/chemistry , Dimethylallyltranstransferase/metabolism , Fungal Proteins/metabolism , Glycosides/biosynthesis , Lyases/chemistry , Lyases/metabolism , Multifunctional Enzymes , Polyisoprenyl Phosphates/metabolism , Protein Conformation
18.
J Nat Prod ; 84(6): 1780-1786, 2021 06 25.
Article in English | MEDLINE | ID: mdl-34014675

ABSTRACT

A sesquiterpene synthase gene was identified from the transcriptome of Euphorbia fischeriana Steud, and the function of its product EfTPS12 was characterized by in vitro biochemical experiments and synthetic biology approaches. EfTPS12 catalyzed conversion of farnesyl diphosphate into three products, including cedrol (1) and eupho-acorenols A (2) and B (3) (two diastereoisomers of tricho-acorenol), thereby being named EfCAS herein. The structures of 2 and 3 were determined by spectroscopic methods and comparison of experimental and calculated electronic circular dichroism spectra. EfCAS is the first example of a plant-derived sesquiterpene synthase that is capable of synthesizing acorane-type alcohols. This study also documents that synthetic biology approaches enable large-scale preparation of volatile terpenes and thereby substantially facilitate characterization of corresponding terpene synthases and elucidation of the structures of their products.


Subject(s)
Alkyl and Aryl Transferases/metabolism , Euphorbia/enzymology , Polycyclic Sesquiterpenes/metabolism , China , Molecular Structure , Polyisoprenyl Phosphates/metabolism , Sesquiterpenes/metabolism , Synthetic Biology , Transcriptome
19.
J Genet Genomics ; 48(4): 300-311, 2021 04 20.
Article in English | MEDLINE | ID: mdl-34049800

ABSTRACT

Vascular development is essential for the establishment of the circulatory system during embryonic development and requires the proliferation of endothelial cells. However, the underpinning regulatory mechanisms are not well understood. Here, we report that geranylgeranyl pyrophosphate (GGPP), a metabolite involved in protein geranylgeranylation, plays an indispensable role in embryonic vascular development. GGPP is synthesized by geranylgeranyl pyrophosphate synthase (GGPPS) in the mevalonate pathway. The selective knockout of Ggpps in endothelial cells led to aberrant vascular development and embryonic lethality, resulting from the decreased proliferation and enhanced apoptosis of endothelial cells during vasculogenesis. The defect in protein geranylgeranylation induced by GGPP depletion inhibited the membrane localization of RhoA and enhanced yes-associated protein (YAP) phosphorylation, thereby prohibiting the entry of YAP into the nucleus and the expression of YAP target genes related to cell proliferation and the antiapoptosis process. Moreover, inhibition of the mevalonate pathway by simvastatin induced endothelial cell proliferation defects and apoptosis, which were ameliorated by GGPP. Geranylgeraniol (GGOH), a precursor of GGPP, ameliorated the harmful effects of simvastatin on vascular development of developing fetuses in pregnant mice. These results indicate that GGPP-mediated protein geranylgeranylation is essential for endothelial cell proliferation and the antiapoptosis process during embryonic vascular development.


Subject(s)
Apoptosis/drug effects , Cell Proliferation/drug effects , Embryonic Development/genetics , Farnesyltranstransferase/genetics , Multienzyme Complexes/genetics , Animals , Cell Differentiation/drug effects , Embryo, Mammalian , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Female , Mice , Morphogenesis/genetics , Polyisoprenyl Phosphates/metabolism , Polyisoprenyl Phosphates/pharmacology , Pregnancy , Protein Prenylation/drug effects , Protein Prenylation/genetics , YAP-Signaling Proteins/genetics , rhoA GTP-Binding Protein/genetics
20.
PLoS Biol ; 19(4): e3001134, 2021 04.
Article in English | MEDLINE | ID: mdl-33901180

ABSTRACT

Cell death is a vital event in life. Infections and injuries cause lytic cell death, which gives rise to danger signals that can further induce cell death, inflammation, and tissue damage. The mevalonate (MVA) pathway is an essential, highly conserved and dynamic metabolic pathway. Here, we discover that farnesyl pyrophosphate (FPP), a metabolic intermediate of the MVA pathway, functions as a newly identified danger signal to trigger acute cell death leading to neuron loss in stroke. Harboring both a hydrophobic 15-carbon isoprenyl chain and a heavily charged pyrophosphate head, FPP leads to acute cell death independent of its downstream metabolic pathways. Mechanistically, extracellular calcium influx and the cation channel transient receptor potential melastatin 2 (TRPM2) exhibit essential roles in FPP-induced cell death. FPP activates TRPM2 opening for ion influx. Furthermore, in terms of a mouse model constructing by middle cerebral artery occlusion (MCAO), FPP accumulates in the brain, which indicates the function of the FPP and TRPM2 danger signal axis in ischemic injury. Overall, our data have revealed a novel function of the MVA pathway intermediate metabolite FPP as a danger signal via transient receptor potential cation channels.


Subject(s)
Cell Death/drug effects , Polyisoprenyl Phosphates/pharmacology , Sesquiterpenes/pharmacology , Animals , Barium/pharmacology , Calcium/pharmacology , Cell Death/genetics , Cells, Cultured , Embryo, Mammalian , HEK293 Cells , Humans , Male , Mice , Mice, Inbred C57BL , Polyisoprenyl Phosphates/metabolism , Rats , Rats, Sprague-Dawley , Sesquiterpenes/metabolism , Signal Transduction/drug effects , Signal Transduction/genetics , Strontium/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...