Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 988
Filter
1.
Chem Pharm Bull (Tokyo) ; 72(5): 475-479, 2024.
Article in English | MEDLINE | ID: mdl-38749722

ABSTRACT

Heterologous expression of natural compound biosynthetic gene clusters (BGCs) is a robust approach for not only revealing the biosynthetic mechanisms leading to the compounds, but also for discovering new products from uncharacterized BGCs. We established a heterologous expression technique applicable to huge biosynthetic gene clusters for generating large molecular secondary metabolites such as type-I polyketides. As an example, we targeted concanamycin BGC from Streptomyces neyagawaensis IFO13477 (the cluster size of 99 kbp), and obtained a bacterial artificial chromosome (BAC) clone with an insert size of 211 kbp that contains the entire concanamycin BGC. Interestingly, heterologous expression for this BAC clone resulted in two additional aromatic polyketides, ent-gephyromycin, and a new compound designated as JBIR-157, together with the expected concanamycin. Bioinformatic and biochemical analyses revealed that a cryptic biosynthetic gene cluster in this BAC clone was responsible for the production of these type-II polyketide synthases (PKS) compounds. Here, we describe the production, isolation, and structure elucidation of JBIR-157, determined primarily by a series of NMR spectral analyses.


Subject(s)
Multigene Family , Polyketides , Streptomyces , Polyketides/chemistry , Polyketides/metabolism , Polyketides/isolation & purification , Streptomyces/genetics , Streptomyces/metabolism , Streptomyces/chemistry , Molecular Structure , Polyketide Synthases/genetics , Polyketide Synthases/metabolism , Molecular Conformation
2.
Org Biomol Chem ; 22(19): 3979-3985, 2024 05 15.
Article in English | MEDLINE | ID: mdl-38691112

ABSTRACT

Two new sesterterpenoids, sesterchaetins A and B (1 and 2), and two new diepoxide polyketides, chaetoketoics A and B (3 and 4), were characterized from the culture extract of Chaetomium globosum SD-347, a fungal strain derived from deep sea-sediment. Their structures and absolute configurations were unambiguously determined by detailed NMR, mass spectra, and X-ray crystallographic analysis. Compounds 1 and 2 contained a distinctive 5/8/6/5 tetracyclic carbon-ring-system, which represented a rarely occurring natural product framework. The new isolates 1-4 exhibited selective antimicrobial activities against human and aquatic pathogenic bacteria and plant-pathogenic fungi.


Subject(s)
Anti-Infective Agents , Chaetomium , Polyketides , Sesquiterpenes , Anti-Infective Agents/chemistry , Anti-Infective Agents/isolation & purification , Anti-Infective Agents/pharmacology , Sesquiterpenes/chemistry , Sesquiterpenes/isolation & purification , Sesquiterpenes/pharmacology , Polyketides/chemistry , Polyketides/isolation & purification , Aquatic Organisms/chemistry , Chaetomium/chemistry , Bacteria/drug effects , Crystallography, X-Ray
3.
Mar Drugs ; 22(5)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38786582

ABSTRACT

Marine-derived Penicillium fungi are productive sources of structurally unique and diverse bioactive secondary metabolites, representing a hot topic in natural product research. This review describes structural diversity, bioactivities and statistical research of 452 new natural products from marine-derived Penicillium fungi covering 2021 to 2023. Sediments are the main sources of marine-derived Penicillium fungi for producing nearly 56% new natural products. Polyketides, alkaloids, and terpenoids displayed diverse biological activities and are the major contributors to antibacterial activity, cytotoxicity, anti-inflammatory and enzyme inhibitory capacities. Polyketides had higher proportions of new bioactive compounds in new compounds than other chemical classes. The characteristics of studies in recent years are presented.


Subject(s)
Aquatic Organisms , Biological Products , Penicillium , Penicillium/chemistry , Biological Products/pharmacology , Biological Products/chemistry , Biological Products/isolation & purification , Humans , Animals , Polyketides/pharmacology , Polyketides/chemistry , Polyketides/isolation & purification , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/isolation & purification , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Alkaloids/pharmacology , Alkaloids/chemistry , Alkaloids/isolation & purification
4.
Mar Drugs ; 22(5)2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38786595

ABSTRACT

Thirty-two fungal polyketide derivatives, including eleven new compounds, namely (3R,5'R)-5-hydroxytalaroflavone (1), talaroisochromenols A-C (3, 5, and 11), (8R,9R,10aR)-5-hydroxyaltenuene (13), (8R,9R,10aS)-5-hydroxyaltenuene (14), (8R,9S,10aR)-5-hydroxyaltenuene (15), nemanecins D and E (25 and 26), 2,5-dimethyl-8-iodochromone (27), and talarofurolactone A (29), together with one new naturally occurring but previously synthesized metabolite, 6-hydroxy-4-methoxycoumarin (28), were isolated and identified from the deep-sea cold-seep-derived fungus Talaromyces sp. CS-258. Among them, racemic ((±)-11) or epimeric (13-15, 25, and 26) mixtures were successfully separated by chiral or gradient elution HPLC. Meanwhile, compound 27 represents a rarely reported naturally occurring iodinated compound. Their planar structures as well as absolute configurations were determined by extensive analysis via NMR, MS, single-crystal X-ray diffraction, Mosher's method, and ECD or NMR calculation (with DP4+ probability analysis). Possible biosynthetic routes of some isolated compounds, which are related to chromone or isochromone biosynthetic pathways, were put forward. The biological analysis results revealed that compounds 7, 9, 10, 18-22, 24, 30, and 31 showed broad-spectrum antibacterial activities against several human and aquatic pathogens with MIC ranges of 0.5-64 µg/mL.


Subject(s)
Anti-Bacterial Agents , Polyketides , Talaromyces , Talaromyces/chemistry , Talaromyces/metabolism , Polyketides/pharmacology , Polyketides/chemistry , Polyketides/isolation & purification , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Microbial Sensitivity Tests , Molecular Structure
5.
Org Biomol Chem ; 22(20): 4179-4189, 2024 05 22.
Article in English | MEDLINE | ID: mdl-38716654

ABSTRACT

Aspergillus versicolor, an endophytic fungus associated with the herbal medicine Pedicularis sylvatica, produced four new polyketides, aspeversins A-D (1-2 and 5-6) and four known compounds, O-methylaverufin (2), aversin (3), varilactone A (7) and spirosorbicillinol A (8). Their structures were elucidated by extensive spectroscopic data analysis, and their absolute configurations were determined by calculated electronic circular dichroism (ECD) and Mo2(AcO)4-induced CD data. Compound 5 was found to exhibit α-glucosidase inhibitory activity with an IC50 value of 25.57 µM. An enzyme kinetic study indicated that 5 was a typical uncompetitive inhibitor toward α-glucosidase, which was supported by a molecular docking study. Moreover, compounds 1-3 and 5 also improved the cell viability of PC12 cells on a 1-methyl-4-phenylpyridinium (MPP+)-induced Parkinson's disease model, indicating their neuroprotective potential as antiparkinsonian agents.


Subject(s)
Aspergillus , Glycoside Hydrolase Inhibitors , Molecular Docking Simulation , Neuroprotective Agents , Polyketides , alpha-Glucosidases , Aspergillus/chemistry , Neuroprotective Agents/pharmacology , Neuroprotective Agents/chemistry , Neuroprotective Agents/isolation & purification , Polyketides/pharmacology , Polyketides/chemistry , Polyketides/isolation & purification , Glycoside Hydrolase Inhibitors/pharmacology , Glycoside Hydrolase Inhibitors/chemistry , Glycoside Hydrolase Inhibitors/isolation & purification , PC12 Cells , Animals , Rats , alpha-Glucosidases/metabolism , Cell Survival/drug effects , Molecular Structure
6.
Org Lett ; 26(18): 3889-3895, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38668739

ABSTRACT

Two novel meroterpenoids, alliisativins A and B (1, 2) were discovered through a genome-based exploration of the biosynthetic gene clusters of the deep-sea-derived fungus Penicillium allii-sativi MCCC entry 3A00580. Extensive spectroscopic analysis, quantum calculations, chemical derivatization, and biogenetic considerations were utilized to establish their structures. Alliisativins A and B (1, 2) possess a unique carbon skeleton featuring a drimane sesquiterpene with a highly oxidized polyketide. Noteworthily, alliisativin A (1) showed dual activity in promoting osteogenesis and inhibiting osteoclast, indicating an antiosteoporosis potential.


Subject(s)
Penicillium , Polyketides , Penicillium/chemistry , Polyketides/chemistry , Polyketides/pharmacology , Molecular Structure , Terpenes/chemistry , Terpenes/pharmacology , Animals , Osteoclasts/drug effects , Mice , Osteogenesis/drug effects , Multigene Family
7.
Bioorg Chem ; 147: 107315, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38604017

ABSTRACT

Seven new meroterpenoids, paraphaeones A-G (1-7), and two new polyketides, paraphaeones H-I (8-9), along with eight known compounds (10-17), were isolated from the endophytic fungus Paraphaeosphaeria sp. C-XB-J-1. The structures of 1-9 were identified through the analysis of 1H, 13C, and 2D NMR spectra, assisted by HR-ESI-MS data. Compounds 1 and 7 exhibited a dose-dependent decrease in lactate dehydrogenase levels, with IC50 values of 1.78 µM and 1.54 µM, respectively. Moreover, they inhibited the secretion of IL-1ß and CASP-1, resulting in a reduction in the activity levels of NLRP3 inflammasomes. Fluorescence microscopy results indicated that compound 7 concentration-dependently attenuated cell pyroptosis. Additionally, compounds 4 and 7 showed potential inhibitory effects on the severe acute respiratory syndrome coronavirus-2 main protease (SARS-CoV-2 Mpro), with IC50 values of 10.8 ± 0.9 µM and 12.9 ± 0.7 µM, respectively.


Subject(s)
Ascomycota , Coronavirus 3C Proteases , Polyketides , SARS-CoV-2 , Terpenes , Polyketides/chemistry , Polyketides/pharmacology , Polyketides/isolation & purification , Ascomycota/chemistry , Humans , Terpenes/chemistry , Terpenes/pharmacology , Terpenes/isolation & purification , SARS-CoV-2/drug effects , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/metabolism , Coronavirus 3C Proteases/chemistry , Molecular Structure , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/isolation & purification , Animals , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/isolation & purification , Dose-Response Relationship, Drug , Structure-Activity Relationship , COVID-19 Drug Treatment , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/isolation & purification
8.
Bioorg Chem ; 147: 107329, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38608410

ABSTRACT

By co-culturing two endophytic fungi (Chaetomium virescens and Xylaria grammica) collected from the medicinal and edible plant Smilax glabra Roxb. and analyzing them with MolNetEnhancer module on GNPS platform, seven undescribed chromone-derived polyketides (chaetoxylariones A-G), including three pairs of enantiomer ones (2a/2b, 4a/4b and 6a/6b) and four optical pure ones (1, 3, 5 and 7), as well as five known structural analogues (8-12), were obtained. The structures of these new compounds were characterized by NMR spectroscopy, single-crystal X-ray diffraction, 13C NMR calculation and DP4+ probability analyses, as well as the comparison of the experimental electronic circular dichroism (ECD) data. Structurally, compound 1 featured an unprecedented chromone-derived sulfonamide tailored by two isoleucine-derived δ-hydroxy-3-methylpentenoic acids via the acylamide and NO bonds, respectively; compound 2 represented the first example of enantiomeric chromone derivative bearing a unique spiro-[3.3]alkane ring system; compound 3 featured a decane alkyl side chain that formed an undescribed five-membered lactone ring between C-7' and C-10'; compound 4 contained an unexpected highly oxidized five-membered carbocyclic system featuring rare adjacent keto groups; compound 7 featured a rare methylsulfonyl moiety. In addition, compound 10 showed a significant inhibition towards SW620/AD300 cells with an IC50 value of PTX significantly decreased from 4.09 µM to 120 nM, and a further study uncovered that compound 10 could obviously reverse the MDR of SW620/AD300 cells.


Subject(s)
Antineoplastic Agents , Chaetomium , Chromones , Drug Screening Assays, Antitumor , Polyketides , Xylariales , Chromones/chemistry , Chromones/pharmacology , Chromones/isolation & purification , Polyketides/chemistry , Polyketides/pharmacology , Polyketides/isolation & purification , Molecular Structure , Xylariales/chemistry , Chaetomium/chemistry , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification , Structure-Activity Relationship , Dose-Response Relationship, Drug , Cell Line, Tumor , Coculture Techniques , Cell Proliferation/drug effects
9.
J Agric Food Chem ; 72(17): 9555-9566, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38648511

ABSTRACT

The filamentous fungus Penicillium sclerotiorum is significant in ecological and industrial domains due to its vast supply of secondary metabolites that have a diverse array of biological functions. We have gathered the metabolic potential and biological activities associated with P. sclerotiorum metabolites of various structures, based on extensive research of the latest literature. The review incorporated literature spanning from 2000 to 2023, drawing from reputable databases including Google Scholar, ScienceDirect, Scopus, and PubMed, among others. Ranging from azaphilones, meroterpenoids, polyketides, and peptides group exhibits fascinating potential pharmacological activities such as antimicrobial, anti-inflammatory, and antitumor effects, holding promise in pharmaceutical and industrial sectors. Additionally, P. sclerotiorum showcases biotechnological potential through the production of enzymes like ß-xylosidases, ß-d-glucosidase, and xylanases, pivotal in various industrial processes. This review underscores the need for further exploration into its genetic foundations and cultivation conditions to optimize the yield of valuable compounds and enzymes, highlighting the unexplored potential of P. sclerotiorum in diverse applications across industries.


Subject(s)
Penicillium , Secondary Metabolism , Penicillium/metabolism , Humans , Animals , Polyketides/metabolism , Polyketides/chemistry , Fungal Proteins/metabolism , Fungal Proteins/genetics , Anti-Infective Agents/metabolism , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Anti-Inflammatory Agents/metabolism , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology
10.
Mar Drugs ; 22(4)2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38667782

ABSTRACT

(-)-Doliculide, a marine cyclodepsipeptide derived from the Japanese sea hare, Dolabella auricularia, exhibits potent cytotoxic properties, sparking interest in the field of synthetic chemistry. It is comprised of a peptide segment and a polyketide moiety, rendering it amenable to Matteson's homologation methodology. This technique facilitates the diversification of the distinctive polyketide side chain, thereby permitting the introduction of functional groups in late stages for modifications of the derived compounds and studies on structure-activity relationships.


Subject(s)
Depsipeptides , Depsipeptides/chemistry , Depsipeptides/chemical synthesis , Depsipeptides/pharmacology , Structure-Activity Relationship , Animals , Polyketides/chemistry , Polyketides/pharmacology , Humans , Molecular Structure
11.
Phytochemistry ; 222: 114101, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38636687

ABSTRACT

Bafilomycins are macrocyclic polyketides with intriguing structures and therapeutic value. Genomic analysis of Streptomyces sp. SCSIO 66814 revealed a type I polyketide synthase biosynthetic gene cluster (BGC), namely blm, which encoded bafilomycins and featured rich post-modification genes. The One strain many compounds (OSMAC) strategy led to the discovery of six compounds related to the blm BGC from the strain, including two previously undescribed 6,6-spiroketal polyketides, streptospirodienoic acids D (1) and E (2), and four known bafilomycins, bafilomycins P (3), Q (4), D (5), and G (6). The structures of 1 and 2 were determined by extensive spectroscopic analysis, quantum calculation, and biosynthetic analysis. Additionally, the absolute configurations of the 6/5/5 tricyclic ring moiety containing six consecutive chiral carbons in the putative structures of 3 and 4 were corrected through NOE analysis, DP4+ calculation, and single-crystal X-ray diffraction data. Bioinformatic analysis uncovered a plausible biosynthetic pathway for compounds 1-6, indicating that both streptospirodienoic acids and bafilomycins were derived from the same blm BGC. Additionally, sequence analysis revealed that the KR domains of module 2 from blm BGC was B1-type, further supporting the configurations of 1-4. Notably, compounds 3 and 4 displayed significant cytotoxic activities against A-549 human non-small cell lung cancer cells and HCT-116 human colon cancer cells.


Subject(s)
Polyketides , Streptomyces , Streptomyces/chemistry , Streptomyces/metabolism , Streptomyces/genetics , Polyketides/chemistry , Polyketides/pharmacology , Polyketides/isolation & purification , Humans , Stereoisomerism , Drug Screening Assays, Antitumor , Molecular Structure , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification , Macrolides/chemistry , Macrolides/pharmacology , Macrolides/isolation & purification , Macrolides/metabolism , Cell Proliferation/drug effects , Spiro Compounds/chemistry , Spiro Compounds/pharmacology , Spiro Compounds/isolation & purification , Structure-Activity Relationship , Polyketide Synthases/metabolism , Polyketide Synthases/genetics , Cell Line, Tumor , Genome, Bacterial , Multigene Family
12.
Fitoterapia ; 175: 105884, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38460855

ABSTRACT

There are >350 species of the Ophiobolus genus, which is not yet very well-known and lacks research reports on secondary metabolites. Three new 3,4-benzofuran polyketides 1-3, a new 3,4-benzofuran polyketide racemate 4, two new pairs of polyketide enantiomers (±)-5 and (±)-7, two new acetophenone derivatives 6 and 8, and three novel 1,4-dioxane aromatic polyketides 9-11, were isolated from a fungus Ophiobolus cirsii LZU-1509 derived from an important medicinal and economic crop Anaphalis lactea. The isolation was guided by LC-MS/MS-based GNPS molecular networking analysis. The planar structures and relative configurations were mainly elucidated by NMR and HR-ESI-MS data. Their absolute configurations were determined by using X-ray diffraction analysis and via comparing computational and experimental ECD, NMR, and specific optical rotation data. 9 possesses an unreported 5/6/6/6/5 five-ring framework with a 1,4-dioxane, and 10 and 11 feature unprecedented 6/6/6/5 and 6/6/5/6 four-ring frames containing a 1,4-dioxane. The biosynthetic pathways of 9-11 were proposed. 1-11 were nontoxic in HT-1080 and HepG2 tumor cells at a concentration of 20 µM, whereas 3 and 5 exerted higher antioxidant properties in the hydrogen peroxide-stimulated model in the neuron-like PC12 cells. They could be potential antioxidant agents for neuroprotection.


Subject(s)
Antioxidants , Ascomycota , Polyketides , Molecular Structure , Antioxidants/pharmacology , Antioxidants/isolation & purification , Polyketides/isolation & purification , Polyketides/pharmacology , Polyketides/chemistry , Humans , Ascomycota/chemistry , Cell Line, Tumor , Animals , China
13.
J Nat Prod ; 87(4): 831-836, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38551509

ABSTRACT

Two novel polyketides, accraspiroketides A (1) and B (2), which feature unprecedented [6 + 6+6 + 6] + [5 + 5] spiro chemical architectures, were isolated from Streptomyces sp. MA37 ΔaccJ mutant strain. Compounds 1-2 exhibit excellent activity against Gram-positive bacteria (MIC = 1.5-6.3 µg/mL). Notably, 1 and 2 have superior activity against clinically isolated Enterococcus faecium K60-39 (MIC = 4.0 µg/mL and 4.7 µg/mL, respectively) than ampicillin (MIC = 25 µg/mL).


Subject(s)
Anti-Bacterial Agents , Enterococcus faecium , Microbial Sensitivity Tests , Polyketides , Streptomyces , Polyketides/pharmacology , Polyketides/chemistry , Polyketides/isolation & purification , Streptomyces/chemistry , Molecular Structure , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Enterococcus faecium/drug effects , Gram-Positive Bacteria/drug effects , Spiro Compounds/chemistry , Spiro Compounds/pharmacology , Spiro Compounds/isolation & purification , Naphthacenes/chemistry , Naphthacenes/pharmacology
14.
Science ; 383(6689): 1312-1317, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38513027

ABSTRACT

Bacterial multimodular polyketide synthases (PKSs) are giant enzymes that generate a wide range of therapeutically important but synthetically challenging natural products. Diversification of polyketide structures can be achieved by engineering these enzymes. However, notwithstanding successes made with textbook cis-acyltransferase (cis-AT) PKSs, tailoring such large assembly lines remains challenging. Unlike textbook PKSs, trans-AT PKSs feature an extraordinary diversity of PKS modules and commonly evolve to form hybrid PKSs. In this study, we analyzed amino acid coevolution to identify a common module site that yields functional PKSs. We used this site to insert and delete diverse PKS parts and create 22 engineered trans-AT PKSs from various pathways and in two bacterial producers. The high success rates of our engineering approach highlight the broader applicability to generate complex designer polyketides.


Subject(s)
Acyltransferases , Bacterial Proteins , Directed Molecular Evolution , Polyketide Synthases , Polyketides , Recombinant Fusion Proteins , Acyltransferases/genetics , Acyltransferases/chemistry , Polyketide Synthases/chemistry , Polyketide Synthases/genetics , Polyketides/chemistry , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Serratia , Amino Acid Motifs , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics
15.
J Nat Prod ; 87(4): 1222-1229, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38447096

ABSTRACT

Utilizing a gene evolution-oriented approach for gene cluster mining, a cryptic cytochalasin-like gene cluster (sla) in Antarctic-derived Simplicillium lamelliciola HDN13430 was identified. Compared with the canonical cytochalasin biosynthetic gene clusters (BGCs), the sla gene cluster lacks the key α,ß-hydrolase gene. Heterologous expression of the sla gene cluster led to the discovery of a new compound, slamysin (1), characterized by an N-acylated amino acid structure and demonstrating weak anti-Bacillus cereus activity. These findings underscore the potential of genetic evolution in uncovering novel compounds and indicating specific adaptive evolution within specialized habitats.


Subject(s)
Cytochalasins , Multigene Family , Cytochalasins/chemistry , Cytochalasins/pharmacology , Molecular Structure , Polyketides/chemistry , Polyketides/pharmacology , Antarctic Regions , Bacillus cereus , Evolution, Molecular
16.
J Nat Prod ; 87(3): 591-599, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38442389

ABSTRACT

A new polyol polyketide, named retinestatin (1), was obtained and characterized from the culture of a Streptomyces strain, which was isolated from a subterranean nest of the termite Reticulitermes speratus kyushuensis Morimoto. The planar structure of 1 was elucidated on the basis of the cumulative analysis of ultraviolet, infrared, mass spectrometry, and nuclear magnetic resonance spectroscopic data. The absolute configuration of 1 at 12 chiral centers was successfully assigned by employing a J-based configuration analysis in combination with ROESY correlations, a quantum mechanics-based computational approach to calculate NMR chemical shifts, and a 3 min flash esterification by Mosher's reagents followed by NMR analysis. Biological evaluation of retinestatin (1) using an in vitro model of Parkinson's disease revealed that 1 protected SH-SY5Y dopaminergic cells from MPP+-induced cytotoxicity, indicating its neuroprotective effects.


Subject(s)
Isoptera , Neuroblastoma , Polyketides , Polymers , Streptomyces , Animals , Humans , Polyketides/chemistry , Molecular Structure , Streptomyces/chemistry
17.
J Am Chem Soc ; 146(9): 6189-6198, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38386630

ABSTRACT

Polyketides with the isochroman-3-one pharmacophore are rare among fungal natural products as their biosynthesis requires an unorthodox S-type aromatic ring cyclization. Genome mining uncovered a conserved gene cluster in select leotiomycetous fungi that encodes the biosynthesis of cytosporones, including isochroman-3-one congeners. Combinatorial biosynthesis in total biosynthetic and biocatalytic formats in Saccharomyces cerevisiae and in vitro reconstitution of key reactions with purified enzymes revealed how cytosporone structural and bioactivity diversity is generated. The S-type acyl dihydroxyphenylacetic acid (ADA) core of cytosporones is assembled by a collaborating polyketide synthase pair. Thioesterase domain-catalyzed transesterification releases ADA esters, some of which are known Nur77 modulators. Alternatively, hydrolytic release allows C6 hydroxylation by a flavin-dependent monooxygenase, yielding a trihydroxybenzene moiety. Reduction of the C9 carbonyl by a short chain dehydrogenase/reductase initiates isochroman-3-one formation, affording cytosporones with cytotoxic and antimicrobial activity. Enoyl di- or trihydroxyphenylacetic acids are generated as shunt products, while isocroman-3,4-diones are formed by autoxidation. The cytosporone pathway offers novel polyketide biosynthetic enzymes for combinatorial synthetic biology to advance the production of "unnatural" natural products for drug discovery.


Subject(s)
Biological Products , Polyketides , Fungi/genetics , Saccharomyces cerevisiae/metabolism , Polyketide Synthases/metabolism , Polyketides/chemistry , Biological Products/metabolism
18.
Mar Drugs ; 22(2)2024 Jan 28.
Article in English | MEDLINE | ID: mdl-38393041

ABSTRACT

Marine fungi, such as species from the Penicillium and Aspergillus genera, are prolific producers of a diversity of natural products with cytotoxic properties. These fungi have been successfully isolated and identified from various marine sources, including sponges, coral, algae, mangroves, sediment, and seawater. The cytotoxic compounds derived from marine fungi can be categorized into five distinct classes: polyketides, peptides, terpenoids and sterols, hybrids, and other miscellaneous compounds. Notably, the pre-eminent group among these compounds comprises polyketides, accounting for 307 out of 642 identified compounds. Particularly, within this collection, 23 out of the 642 compounds exhibit remarkable cytotoxic potency, with IC50 values measured at the nanomolar (nM) or nanogram per milliliter (ng/mL) levels. This review elucidates the originating fungal strains, the sources of isolation, chemical structures, and the noteworthy antitumor activity of the 642 novel natural products isolated from marine fungi. The scope of this review encompasses the period from 1991 to 2023.


Subject(s)
Antineoplastic Agents , Biological Products , Polyketides , Fungi/chemistry , Aspergillus , Antineoplastic Agents/pharmacology , Biological Products/chemistry , Polyketides/chemistry
19.
Molecules ; 29(3)2024 Jan 27.
Article in English | MEDLINE | ID: mdl-38338359

ABSTRACT

In this study, two previously undescribed nitrogen-containing compounds, penisimplicins A (1) and B (2), were isolated from Penicillium simplicissimum JXCC5. The structures of 1 and 2 were elucidated on the basis of comprehensive spectroscopic data analysis, including 1D and 2D NMR and HRESIMS data. The absolute configuration of 2 was determined by Marfey's method, ECD calculation, and DP4+ analysis. Both structures of 1 and 2 feature an unprecedented manner of amino acid-derivatives attaching to a polyketide moiety by C-C bond. The postulated biosynthetic pathways for 1 and 2 were discussed. Additionally, compound 1 exhibited significant acetylcholinesterase inhibitory activity, with IC50 values of 6.35 µM.


Subject(s)
Alkaloids , Penicillium , Polyketides , Molecular Structure , Polyketides/chemistry , Acetylcholinesterase/metabolism , Penicillium/chemistry , Peptides/metabolism , Alkaloids/chemistry
20.
Chem Biodivers ; 21(4): e202400002, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38411310

ABSTRACT

Seven new polyketides including three chromone derivatives (1-3) and four linear ones incorporating a tetrahydrofuran ring (4-7), along with three known compounds (8-10), were obtained from the fermentation of an endophytic fungus (Chaetomium sp. UJN-EF006) isolated from the leaves of Vaccinium bracteatum. The structures of these fungal metabolites have been elucidated by spectroscopic means including MS, NMR and electronic circular dichroism. A preliminary anti-inflammatory screening with the lipopolysaccharide (LPS) induced RAW264.7 cell model revealed moderate NO production inhibitory activity for compounds 1 and 4. In addition, the expression of three LPS-induced inflammatory factors IL-6, iNOS and COX-2 was also blocked by 1 and 4.


Subject(s)
Chaetomium , Polyketides , Vaccinium myrtillus , Chaetomium/chemistry , Polyketides/chemistry , Lipopolysaccharides/pharmacology , Molecular Structure
SELECTION OF CITATIONS
SEARCH DETAIL
...