Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 372
Filter
1.
Chem Pharm Bull (Tokyo) ; 72(5): 475-479, 2024.
Article in English | MEDLINE | ID: mdl-38749722

ABSTRACT

Heterologous expression of natural compound biosynthetic gene clusters (BGCs) is a robust approach for not only revealing the biosynthetic mechanisms leading to the compounds, but also for discovering new products from uncharacterized BGCs. We established a heterologous expression technique applicable to huge biosynthetic gene clusters for generating large molecular secondary metabolites such as type-I polyketides. As an example, we targeted concanamycin BGC from Streptomyces neyagawaensis IFO13477 (the cluster size of 99 kbp), and obtained a bacterial artificial chromosome (BAC) clone with an insert size of 211 kbp that contains the entire concanamycin BGC. Interestingly, heterologous expression for this BAC clone resulted in two additional aromatic polyketides, ent-gephyromycin, and a new compound designated as JBIR-157, together with the expected concanamycin. Bioinformatic and biochemical analyses revealed that a cryptic biosynthetic gene cluster in this BAC clone was responsible for the production of these type-II polyketide synthases (PKS) compounds. Here, we describe the production, isolation, and structure elucidation of JBIR-157, determined primarily by a series of NMR spectral analyses.


Subject(s)
Multigene Family , Polyketides , Streptomyces , Polyketides/chemistry , Polyketides/metabolism , Polyketides/isolation & purification , Streptomyces/genetics , Streptomyces/metabolism , Streptomyces/chemistry , Molecular Structure , Polyketide Synthases/genetics , Polyketide Synthases/metabolism , Molecular Conformation
2.
Mar Drugs ; 22(5)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38786582

ABSTRACT

Marine-derived Penicillium fungi are productive sources of structurally unique and diverse bioactive secondary metabolites, representing a hot topic in natural product research. This review describes structural diversity, bioactivities and statistical research of 452 new natural products from marine-derived Penicillium fungi covering 2021 to 2023. Sediments are the main sources of marine-derived Penicillium fungi for producing nearly 56% new natural products. Polyketides, alkaloids, and terpenoids displayed diverse biological activities and are the major contributors to antibacterial activity, cytotoxicity, anti-inflammatory and enzyme inhibitory capacities. Polyketides had higher proportions of new bioactive compounds in new compounds than other chemical classes. The characteristics of studies in recent years are presented.


Subject(s)
Aquatic Organisms , Biological Products , Penicillium , Penicillium/chemistry , Biological Products/pharmacology , Biological Products/chemistry , Biological Products/isolation & purification , Humans , Animals , Polyketides/pharmacology , Polyketides/chemistry , Polyketides/isolation & purification , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/isolation & purification , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Alkaloids/pharmacology , Alkaloids/chemistry , Alkaloids/isolation & purification
3.
Mar Drugs ; 22(5)2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38786595

ABSTRACT

Thirty-two fungal polyketide derivatives, including eleven new compounds, namely (3R,5'R)-5-hydroxytalaroflavone (1), talaroisochromenols A-C (3, 5, and 11), (8R,9R,10aR)-5-hydroxyaltenuene (13), (8R,9R,10aS)-5-hydroxyaltenuene (14), (8R,9S,10aR)-5-hydroxyaltenuene (15), nemanecins D and E (25 and 26), 2,5-dimethyl-8-iodochromone (27), and talarofurolactone A (29), together with one new naturally occurring but previously synthesized metabolite, 6-hydroxy-4-methoxycoumarin (28), were isolated and identified from the deep-sea cold-seep-derived fungus Talaromyces sp. CS-258. Among them, racemic ((±)-11) or epimeric (13-15, 25, and 26) mixtures were successfully separated by chiral or gradient elution HPLC. Meanwhile, compound 27 represents a rarely reported naturally occurring iodinated compound. Their planar structures as well as absolute configurations were determined by extensive analysis via NMR, MS, single-crystal X-ray diffraction, Mosher's method, and ECD or NMR calculation (with DP4+ probability analysis). Possible biosynthetic routes of some isolated compounds, which are related to chromone or isochromone biosynthetic pathways, were put forward. The biological analysis results revealed that compounds 7, 9, 10, 18-22, 24, 30, and 31 showed broad-spectrum antibacterial activities against several human and aquatic pathogens with MIC ranges of 0.5-64 µg/mL.


Subject(s)
Anti-Bacterial Agents , Polyketides , Talaromyces , Talaromyces/chemistry , Talaromyces/metabolism , Polyketides/pharmacology , Polyketides/chemistry , Polyketides/isolation & purification , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Microbial Sensitivity Tests , Molecular Structure
4.
Org Biomol Chem ; 22(19): 3979-3985, 2024 05 15.
Article in English | MEDLINE | ID: mdl-38691112

ABSTRACT

Two new sesterterpenoids, sesterchaetins A and B (1 and 2), and two new diepoxide polyketides, chaetoketoics A and B (3 and 4), were characterized from the culture extract of Chaetomium globosum SD-347, a fungal strain derived from deep sea-sediment. Their structures and absolute configurations were unambiguously determined by detailed NMR, mass spectra, and X-ray crystallographic analysis. Compounds 1 and 2 contained a distinctive 5/8/6/5 tetracyclic carbon-ring-system, which represented a rarely occurring natural product framework. The new isolates 1-4 exhibited selective antimicrobial activities against human and aquatic pathogenic bacteria and plant-pathogenic fungi.


Subject(s)
Anti-Infective Agents , Chaetomium , Polyketides , Sesquiterpenes , Anti-Infective Agents/chemistry , Anti-Infective Agents/isolation & purification , Anti-Infective Agents/pharmacology , Sesquiterpenes/chemistry , Sesquiterpenes/isolation & purification , Sesquiterpenes/pharmacology , Polyketides/chemistry , Polyketides/isolation & purification , Aquatic Organisms/chemistry , Chaetomium/chemistry , Bacteria/drug effects , Crystallography, X-Ray
5.
Org Biomol Chem ; 22(20): 4179-4189, 2024 05 22.
Article in English | MEDLINE | ID: mdl-38716654

ABSTRACT

Aspergillus versicolor, an endophytic fungus associated with the herbal medicine Pedicularis sylvatica, produced four new polyketides, aspeversins A-D (1-2 and 5-6) and four known compounds, O-methylaverufin (2), aversin (3), varilactone A (7) and spirosorbicillinol A (8). Their structures were elucidated by extensive spectroscopic data analysis, and their absolute configurations were determined by calculated electronic circular dichroism (ECD) and Mo2(AcO)4-induced CD data. Compound 5 was found to exhibit α-glucosidase inhibitory activity with an IC50 value of 25.57 µM. An enzyme kinetic study indicated that 5 was a typical uncompetitive inhibitor toward α-glucosidase, which was supported by a molecular docking study. Moreover, compounds 1-3 and 5 also improved the cell viability of PC12 cells on a 1-methyl-4-phenylpyridinium (MPP+)-induced Parkinson's disease model, indicating their neuroprotective potential as antiparkinsonian agents.


Subject(s)
Aspergillus , Glycoside Hydrolase Inhibitors , Molecular Docking Simulation , Neuroprotective Agents , Polyketides , alpha-Glucosidases , Aspergillus/chemistry , Neuroprotective Agents/pharmacology , Neuroprotective Agents/chemistry , Neuroprotective Agents/isolation & purification , Polyketides/pharmacology , Polyketides/chemistry , Polyketides/isolation & purification , Glycoside Hydrolase Inhibitors/pharmacology , Glycoside Hydrolase Inhibitors/chemistry , Glycoside Hydrolase Inhibitors/isolation & purification , PC12 Cells , Animals , Rats , alpha-Glucosidases/metabolism , Cell Survival/drug effects , Molecular Structure
6.
Phytochemistry ; 222: 114101, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38636687

ABSTRACT

Bafilomycins are macrocyclic polyketides with intriguing structures and therapeutic value. Genomic analysis of Streptomyces sp. SCSIO 66814 revealed a type I polyketide synthase biosynthetic gene cluster (BGC), namely blm, which encoded bafilomycins and featured rich post-modification genes. The One strain many compounds (OSMAC) strategy led to the discovery of six compounds related to the blm BGC from the strain, including two previously undescribed 6,6-spiroketal polyketides, streptospirodienoic acids D (1) and E (2), and four known bafilomycins, bafilomycins P (3), Q (4), D (5), and G (6). The structures of 1 and 2 were determined by extensive spectroscopic analysis, quantum calculation, and biosynthetic analysis. Additionally, the absolute configurations of the 6/5/5 tricyclic ring moiety containing six consecutive chiral carbons in the putative structures of 3 and 4 were corrected through NOE analysis, DP4+ calculation, and single-crystal X-ray diffraction data. Bioinformatic analysis uncovered a plausible biosynthetic pathway for compounds 1-6, indicating that both streptospirodienoic acids and bafilomycins were derived from the same blm BGC. Additionally, sequence analysis revealed that the KR domains of module 2 from blm BGC was B1-type, further supporting the configurations of 1-4. Notably, compounds 3 and 4 displayed significant cytotoxic activities against A-549 human non-small cell lung cancer cells and HCT-116 human colon cancer cells.


Subject(s)
Polyketides , Streptomyces , Streptomyces/chemistry , Streptomyces/metabolism , Streptomyces/genetics , Polyketides/chemistry , Polyketides/pharmacology , Polyketides/isolation & purification , Humans , Stereoisomerism , Drug Screening Assays, Antitumor , Molecular Structure , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification , Macrolides/chemistry , Macrolides/pharmacology , Macrolides/isolation & purification , Macrolides/metabolism , Cell Proliferation/drug effects , Spiro Compounds/chemistry , Spiro Compounds/pharmacology , Spiro Compounds/isolation & purification , Structure-Activity Relationship , Polyketide Synthases/metabolism , Polyketide Synthases/genetics , Cell Line, Tumor , Genome, Bacterial , Multigene Family
7.
Bioorg Chem ; 147: 107315, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38604017

ABSTRACT

Seven new meroterpenoids, paraphaeones A-G (1-7), and two new polyketides, paraphaeones H-I (8-9), along with eight known compounds (10-17), were isolated from the endophytic fungus Paraphaeosphaeria sp. C-XB-J-1. The structures of 1-9 were identified through the analysis of 1H, 13C, and 2D NMR spectra, assisted by HR-ESI-MS data. Compounds 1 and 7 exhibited a dose-dependent decrease in lactate dehydrogenase levels, with IC50 values of 1.78 µM and 1.54 µM, respectively. Moreover, they inhibited the secretion of IL-1ß and CASP-1, resulting in a reduction in the activity levels of NLRP3 inflammasomes. Fluorescence microscopy results indicated that compound 7 concentration-dependently attenuated cell pyroptosis. Additionally, compounds 4 and 7 showed potential inhibitory effects on the severe acute respiratory syndrome coronavirus-2 main protease (SARS-CoV-2 Mpro), with IC50 values of 10.8 ± 0.9 µM and 12.9 ± 0.7 µM, respectively.


Subject(s)
Ascomycota , Coronavirus 3C Proteases , Polyketides , SARS-CoV-2 , Terpenes , Polyketides/chemistry , Polyketides/pharmacology , Polyketides/isolation & purification , Ascomycota/chemistry , Humans , Terpenes/chemistry , Terpenes/pharmacology , Terpenes/isolation & purification , SARS-CoV-2/drug effects , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/metabolism , Coronavirus 3C Proteases/chemistry , Molecular Structure , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/isolation & purification , Animals , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/isolation & purification , Dose-Response Relationship, Drug , Structure-Activity Relationship , COVID-19 Drug Treatment , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/isolation & purification
8.
Bioorg Chem ; 147: 107329, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38608410

ABSTRACT

By co-culturing two endophytic fungi (Chaetomium virescens and Xylaria grammica) collected from the medicinal and edible plant Smilax glabra Roxb. and analyzing them with MolNetEnhancer module on GNPS platform, seven undescribed chromone-derived polyketides (chaetoxylariones A-G), including three pairs of enantiomer ones (2a/2b, 4a/4b and 6a/6b) and four optical pure ones (1, 3, 5 and 7), as well as five known structural analogues (8-12), were obtained. The structures of these new compounds were characterized by NMR spectroscopy, single-crystal X-ray diffraction, 13C NMR calculation and DP4+ probability analyses, as well as the comparison of the experimental electronic circular dichroism (ECD) data. Structurally, compound 1 featured an unprecedented chromone-derived sulfonamide tailored by two isoleucine-derived δ-hydroxy-3-methylpentenoic acids via the acylamide and NO bonds, respectively; compound 2 represented the first example of enantiomeric chromone derivative bearing a unique spiro-[3.3]alkane ring system; compound 3 featured a decane alkyl side chain that formed an undescribed five-membered lactone ring between C-7' and C-10'; compound 4 contained an unexpected highly oxidized five-membered carbocyclic system featuring rare adjacent keto groups; compound 7 featured a rare methylsulfonyl moiety. In addition, compound 10 showed a significant inhibition towards SW620/AD300 cells with an IC50 value of PTX significantly decreased from 4.09 µM to 120 nM, and a further study uncovered that compound 10 could obviously reverse the MDR of SW620/AD300 cells.


Subject(s)
Antineoplastic Agents , Chaetomium , Chromones , Drug Screening Assays, Antitumor , Polyketides , Xylariales , Chromones/chemistry , Chromones/pharmacology , Chromones/isolation & purification , Polyketides/chemistry , Polyketides/pharmacology , Polyketides/isolation & purification , Molecular Structure , Xylariales/chemistry , Chaetomium/chemistry , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification , Structure-Activity Relationship , Dose-Response Relationship, Drug , Cell Line, Tumor , Coculture Techniques , Cell Proliferation/drug effects
9.
J Nat Prod ; 87(4): 831-836, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38551509

ABSTRACT

Two novel polyketides, accraspiroketides A (1) and B (2), which feature unprecedented [6 + 6+6 + 6] + [5 + 5] spiro chemical architectures, were isolated from Streptomyces sp. MA37 ΔaccJ mutant strain. Compounds 1-2 exhibit excellent activity against Gram-positive bacteria (MIC = 1.5-6.3 µg/mL). Notably, 1 and 2 have superior activity against clinically isolated Enterococcus faecium K60-39 (MIC = 4.0 µg/mL and 4.7 µg/mL, respectively) than ampicillin (MIC = 25 µg/mL).


Subject(s)
Anti-Bacterial Agents , Enterococcus faecium , Microbial Sensitivity Tests , Polyketides , Streptomyces , Polyketides/pharmacology , Polyketides/chemistry , Polyketides/isolation & purification , Streptomyces/chemistry , Molecular Structure , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Enterococcus faecium/drug effects , Gram-Positive Bacteria/drug effects , Spiro Compounds/chemistry , Spiro Compounds/pharmacology , Spiro Compounds/isolation & purification , Naphthacenes/chemistry , Naphthacenes/pharmacology
10.
Fitoterapia ; 175: 105884, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38460855

ABSTRACT

There are >350 species of the Ophiobolus genus, which is not yet very well-known and lacks research reports on secondary metabolites. Three new 3,4-benzofuran polyketides 1-3, a new 3,4-benzofuran polyketide racemate 4, two new pairs of polyketide enantiomers (±)-5 and (±)-7, two new acetophenone derivatives 6 and 8, and three novel 1,4-dioxane aromatic polyketides 9-11, were isolated from a fungus Ophiobolus cirsii LZU-1509 derived from an important medicinal and economic crop Anaphalis lactea. The isolation was guided by LC-MS/MS-based GNPS molecular networking analysis. The planar structures and relative configurations were mainly elucidated by NMR and HR-ESI-MS data. Their absolute configurations were determined by using X-ray diffraction analysis and via comparing computational and experimental ECD, NMR, and specific optical rotation data. 9 possesses an unreported 5/6/6/6/5 five-ring framework with a 1,4-dioxane, and 10 and 11 feature unprecedented 6/6/6/5 and 6/6/5/6 four-ring frames containing a 1,4-dioxane. The biosynthetic pathways of 9-11 were proposed. 1-11 were nontoxic in HT-1080 and HepG2 tumor cells at a concentration of 20 µM, whereas 3 and 5 exerted higher antioxidant properties in the hydrogen peroxide-stimulated model in the neuron-like PC12 cells. They could be potential antioxidant agents for neuroprotection.


Subject(s)
Antioxidants , Ascomycota , Polyketides , Molecular Structure , Antioxidants/pharmacology , Antioxidants/isolation & purification , Polyketides/isolation & purification , Polyketides/pharmacology , Polyketides/chemistry , Humans , Ascomycota/chemistry , Cell Line, Tumor , Animals , China
11.
Fitoterapia ; 168: 105546, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37217021

ABSTRACT

Phoma fungi are known to produce a diverse range of natural products which possess various biological activities such as antifungal, antimicrobial, insecticidal, cytotoxic, and immunomodulatory effects. In our present study, we have isolated two novel polyketides (1 and 3), one new sesquiterpenoid (2), and eight known compounds (4-11) from the culture of Phoma sp. 3A00413, a deep-sea sulphide-derived fungus. The structures of compounds 1-3 were elucidated using NMR, MS, NMR calculation, and ECD calculation. In vitro antibacterial activities of all the isolated compounds were evaluated against Escherichia coli, Vibrio parahaemolyticus vp-HL, Vibrio parahaemolyticus, Staphylococcus aureus, Vibrio vulnificus, and Salmonella enteritidis. Compounds 1, 7, and 8 exhibited weak inhibition against Staphylococcus aureus growth, while compounds 3 and 7 showed weak inhibition against Vibrio vulnificus growth. Importantly, compound 3 demonstrated exceptional potency against Vibrio parahaemolyticus, with a minimum inhibitory concentration (MIC) of 3.1 µM.


Subject(s)
Phoma , Polyketides , Sesquiterpenes , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests , Molecular Structure , Phoma/chemistry , Polyketides/chemistry , Polyketides/isolation & purification , Polyketides/pharmacology , Sesquiterpenes/chemistry , Sesquiterpenes/isolation & purification , Sesquiterpenes/pharmacology , Magnetic Resonance Spectroscopy , Bacteria/drug effects
12.
Org Lett ; 24(40): 7328-7333, 2022 Oct 14.
Article in English | MEDLINE | ID: mdl-36200745

ABSTRACT

Molecular network analysis of Streptomyces sp. CMB-MW079 detected rare phosphorylated natural products. Miniaturized cultivation profiling (MATRIX) established optimal conditions for the production, isolation, and identification of the polyketide δ-lactone phoslactomycin E (1) and new ester homologues, phoslactomycins J and K (2 and 3), as well as unprecedented heterocyclic analogues, the tetrahydrofuran cyclolactomycins A-D (4-7) and γ-lactone isocyclolactomycins A-C (8-10). We propose a biogenetic relationship linking these cometabolites with the known lactomycins A-C which were tentatively identified as minor cometabolites.


Subject(s)
Biological Products , Lactones , Organophosphorus Compounds , Polyketides , Streptomyces , Wasps , Animals , Australia , Biological Products/chemistry , Biological Products/isolation & purification , Biological Products/pharmacology , Cell Line, Tumor , Esters/chemistry , Furans/chemistry , Humans , Lactones/chemistry , Lactones/isolation & purification , Lactones/pharmacology , Molecular Structure , Organophosphorus Compounds/chemistry , Organophosphorus Compounds/isolation & purification , Organophosphorus Compounds/pharmacology , Polyketides/chemistry , Polyketides/isolation & purification , Polyketides/pharmacology , Streptomyces/chemistry , Streptomyces/metabolism , Wasps/microbiology
13.
Mar Drugs ; 20(3)2022 Feb 28.
Article in English | MEDLINE | ID: mdl-35323476

ABSTRACT

An unusual sesquiterpene glycoside trichoacorside A (1) and two novel sorbicillinoid glycosides sorbicillisides A (2) and B (3), together with a known compound sorbicillin (4), were isolated and identified from the culture extract of an endophytic fungus Trichoderma longibrachiatum EN-586, obtained from the marine red alga Laurencia obtusa. Trichoacorside A (1) is the first representative of a glucosamine-coupled acorane-type sesquiterpenoid. Their structures were elucidated based on detailed interpretation of NMR and mass spectroscopic data. The absolute configurations were determined by X-ray crystallographic analysis, chemical derivatization, and DP4+ probability analysis. The antimicrobial activities of compounds 1-4 against several human, aquatic, and plant pathogens were evaluated.


Subject(s)
Anti-Infective Agents , Endophytes/chemistry , Glycosides , Hypocreales/chemistry , Laurencia/microbiology , Polyketides , Resorcinols , Sesquiterpenes , Anti-Infective Agents/chemistry , Anti-Infective Agents/isolation & purification , Anti-Infective Agents/pharmacology , Bacteria/drug effects , Bacteria/growth & development , Glycosides/chemistry , Glycosides/isolation & purification , Glycosides/pharmacology , Mitosporic Fungi/drug effects , Mitosporic Fungi/growth & development , Molecular Structure , Polyketides/chemistry , Polyketides/isolation & purification , Polyketides/pharmacology , Resorcinols/chemistry , Resorcinols/isolation & purification , Resorcinols/pharmacology , Sesquiterpenes/chemistry , Sesquiterpenes/isolation & purification , Sesquiterpenes/pharmacology
14.
Mar Drugs ; 20(3)2022 Feb 28.
Article in English | MEDLINE | ID: mdl-35323477

ABSTRACT

One new depsidone derivative, aspergillusidone H (3), along with seven known biosynthetically related chlorinated polyketides, were obtained from the Beibu Gulf coral-derived fungus Aspergillus unguis GXIMD 02505. Their structures were determined by comprehensive physicochemical and spectroscopic data interpretation. Notably, the X-ray crystal structure of 2 and the previously unknown absolute configuration of 8, assigned by ECD calculations, are described here for the first time. Compounds 1-5, 7 and 8 exhibited inhibition of lipopolysaccharide (LPS)-induced NF-κB in RAW 264.7 macrophages at 20 µM. In addition, the two potent inhibitors (2 and 7) dose-dependently suppressed RANKL-induced osteoclast differentiation without any evidence of cytotoxicity in bone marrow macrophages cells (BMMs). This is the first report of osteoclastogenesis inhibitory activity for the metabolites of these kinds. Besides, compounds 1, 2, 4, and 6-8 showed inhibitory activity against marine biofilm-forming bacteria, methicillin-resistant Staphylococcus aureus, Microbulbifer variabilis, Marinobacterium jannaschii, and Vibrio pelagius, with their MIC values ranging from 2 to 64 µg/mL. These findings provide a basis for further development of chlorinated polyketides as potential inhibitors of osteoclast differentiation and/or for use as anti-fouling agents.


Subject(s)
Anthozoa/microbiology , Anti-Bacterial Agents , Aspergillus/chemistry , Biological Products , Osteogenesis/drug effects , Polyketides , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Bacteria/growth & development , Biological Products/chemistry , Biological Products/isolation & purification , Biological Products/pharmacology , Cells, Cultured , Lipopolysaccharides/pharmacology , Macrophages/cytology , Macrophages/drug effects , Mice , Molecular Structure , NF-kappa B/metabolism , Oceans and Seas , Polyketides/chemistry , Polyketides/isolation & purification , Polyketides/pharmacology , RANK Ligand
15.
Mar Drugs ; 20(3)2022 Mar 17.
Article in English | MEDLINE | ID: mdl-35323512

ABSTRACT

Four new dimeric sorbicillinoids (1-3 and 5) and a new monomeric sorbicillinoid (4) as well as six known analogs (6-11) were purified from the fungal strain Hypocrea jecorina H8, which was obtained from mangrove sediment, and showed potent inhibitory activity against the tea pathogenic fungus Pestalotiopsis theae (P. theae). The planar structures of 1-5 were assigned by analyses of their UV, IR, HR-ESI-MS, and NMR spectroscopic data. All the compounds were evaluated for growth inhibition of tea pathogenic fungus P. theae. Compounds 5, 6, 8, 9, and 10 exhibited more potent inhibitory activities compared with the positive control hexaconazole with an ED50 of 24.25 ± 1.57 µg/mL. The ED50 values of compounds 5, 6, 8, 9, and 10 were 9.13 ± 1.25, 2.04 ± 1.24, 18.22 ± 1.29, 1.83 ± 1.37, and 4.68 ± 1.44 µg/mL, respectively. Additionally, the effects of these compounds on zebrafish embryo development were also evaluated. Except for compounds 5 and 8, which imparted toxic effects on zebrafish even at 0.625 µM, the other isolated compounds did not exhibit significant toxicity to zebrafish eggs, embryos, or larvae. Taken together, sorbicillinoid derivatives (6, 9, and 10) from H. jecorina H8 displayed low toxicity and high anti-tea pathogenic fungus potential.


Subject(s)
Ascomycota/drug effects , Biological Control Agents , Hypocreales/chemistry , Polyketides , Animals , Ascomycota/growth & development , Biological Control Agents/chemistry , Biological Control Agents/isolation & purification , Biological Control Agents/pharmacology , Biological Control Agents/toxicity , Camellia sinensis/microbiology , Embryo, Nonmammalian , Molecular Structure , Polyketides/chemistry , Polyketides/isolation & purification , Polyketides/pharmacology , Polyketides/toxicity , Zebrafish
16.
Mar Drugs ; 20(2)2022 Feb 03.
Article in English | MEDLINE | ID: mdl-35200649

ABSTRACT

Oxygen heterocycles are units that are abundant in a great number of marine natural products. Among them, marine polyketides containing tetrahydrofuran rings have attracted great attention within the scientific community due to their challenging structures and promising biological activities. An overview of the most important marine tetrahydrofuran polyketides, with a focused discussion on their isolation, structure determination, approaches to their total synthesis, and biological studies is provided.


Subject(s)
Biological Products/pharmacology , Furans/pharmacology , Polyketides/pharmacology , Animals , Aquatic Organisms , Biological Products/chemistry , Biological Products/isolation & purification , Furans/chemistry , Furans/isolation & purification , Humans , Polyketides/chemistry , Polyketides/isolation & purification
17.
Fitoterapia ; 156: 105095, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34896204

ABSTRACT

Marine-derived fungi can usually produce structurally novel and biologically potent metabolites. In this study, a new diketopiperazine alkaloid (1) and two new polyketides (10 and 11), along with 8 known diketopiperazine alkaloids (2-9) were isolated from marine-derived fungus Penicillium sp. TW58-16. Their structures were fully elucidated by analyzing UV, IR, HR-ESI-MS, 1D, and 2D NMR spectroscopic data. The absolute configurations of the new compounds 1, 10 and 11 were ascertained by X-ray diffraction (Cu Kα radiation) and comparing their CD data with those reported. In addition, the antibacterial activities of these compounds against Helicobacter pylori in vitro were assessed. Results showed that compounds 3, 6, 8 and 9 displayed moderate antibacterial activity against standard strains and drug-resistant clinical isolates of H. pylori in vitro. This result demonstrates that diketopiperazine alkaloids could be lead compounds to be explored for the treatment of H. pylori infection.


Subject(s)
Alkaloids/pharmacology , Anti-Bacterial Agents/pharmacology , Diketopiperazines/pharmacology , Helicobacter pylori/drug effects , Penicillium/chemistry , Polyketides/pharmacology , Alkaloids/chemistry , Alkaloids/isolation & purification , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Chromatography, Gel , Chromatography, Liquid , Crystallography, X-Ray , Diketopiperazines/chemistry , Diketopiperazines/isolation & purification , Magnetic Resonance Spectroscopy , Optical Rotation , Polyketides/chemistry , Polyketides/isolation & purification , Seawater , Spectrophotometry, Infrared , Spectrophotometry, Ultraviolet , Spectroscopy, Fourier Transform Infrared , Taiwan
18.
J Nat Prod ; 84(12): 3131-3137, 2021 12 24.
Article in English | MEDLINE | ID: mdl-34854682

ABSTRACT

p53 is frequently mutated in tumor cells. Mutant p53 (mut p53) accumulates in cells to promote cancer progression, invasion, and metastasis, and it is attracting attention as a target for cancer therapies. In this study, we used immunofluorescence staining of Saos-2 cells harboring doxycycline-inducible p53R175H [Saos-2 (p53R175H) cells] to search for compounds from natural sources that can target mut p53 and found an extract of Colletotrichum sp. (13S020) that was active. Bioassay-guided fractionation of the extract afforded a known polyketide, colletofragarone A2 (1), and three new analogues, colletoins A-C (2-4). The relative and absolute configurations of 1 were determined by the spectroscopic method and DFT calculation. Compounds 1 and 2 inhibited the growth of Saos-2 (p53R175H) cells and decreased mut p53 in the cells.


Subject(s)
Colletotrichum/chemistry , Mutation , Polyketides/isolation & purification , Tumor Suppressor Protein p53/antagonists & inhibitors , Cell Line, Tumor , Humans , Polyketides/pharmacology , Tumor Suppressor Protein p53/genetics
19.
Int J Mol Sci ; 22(22)2021 Nov 17.
Article in English | MEDLINE | ID: mdl-34830260

ABSTRACT

Axenic fermentation on solid rice of the saprobic fungus Sparticola junci afforded two new highly oxidized naphthalenoid polyketide derivatives, sparticatechol A (1) and sparticolin H (2) along with sparticolin A (3). The structures of 1 and 2 were elucidated on the basis of their NMR and HR-ESIMS spectroscopic data. Assignment of absolute configurations was performed using electronic circular dichroism (ECD) experiments and Time-Dependent Density Functional Theory (TDDFT) calculations. Compounds 1-3 were evaluated for COX inhibitory, antiproliferative, cytotoxic and antimicrobial activities. Compounds 1 and 2 exhibited strong inhibitory activities against COX-1 and COX-2. Molecular docking analysis of 1 conferred favorable binding against COX-2. Sparticolin H (2) and A (3) showed a moderate antiproliferative effect against myelogenous leukemia K-562 cells and weak cytotoxicity against HeLa and mouse fibroblast cells.


Subject(s)
Anti-Infective Agents/pharmacology , Antineoplastic Agents/pharmacology , Ascomycota/metabolism , Cyclooxygenase Inhibitors/pharmacology , Fibroblasts/drug effects , Polyketides/pharmacology , Animals , Anti-Infective Agents/chemistry , Anti-Infective Agents/isolation & purification , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification , Axenic Culture/methods , Cell Proliferation/drug effects , Cell Survival/drug effects , Circular Dichroism/methods , Cyclooxygenase Inhibitors/chemistry , Cyclooxygenase Inhibitors/isolation & purification , Fermentation , Fibroblasts/metabolism , HeLa Cells , Human Umbilical Vein Endothelial Cells , Humans , Mice , Microbial Sensitivity Tests , Molecular Docking Simulation/methods , Molecular Structure , Polyketides/chemistry , Polyketides/isolation & purification
20.
J Nat Prod ; 84(11): 2875-2884, 2021 11 26.
Article in English | MEDLINE | ID: mdl-34784196

ABSTRACT

Angucyclines and angucyclinones are aromatic polyketides with intriguing structures and therapeutic value. Genome mining of the rare marine actinomycete Saccharothrix sp. D09 led to the identification of a type II polyketide synthase biosynthetic gene cluster, sxn, which encodes several distinct subclasses of oxidoreductases, implying that this strain has the potential to produce novel polycyclic aromatic polyketides with unusual redox modifications. The "one strain-many compounds" (OSMAC) strategy and comparative metabolite analysis facilitated the discovery of 20 angucycline derivatives from the D09 strain, including six new highly oxygenated saccharothrixins D-I (1-6), four new glycosylated saccharothrixins J-M (7-10), and 10 known analogues (11-20). Their structures were elucidated based on detailed HRESIMS, NMR spectroscopic, and X-ray crystallographic analysis. With the help of gene disruption and heterologous expression, we proposed their plausible biosynthetic pathways. In addition, compounds 3, 4, and 8 showed antibacterial activity against Helicobacter pylori with MIC values ranging from 16 to 32 µg/mL. Compound 3 also revealed anti-inflammatory activity by inhibiting the production of NO with an IC50 value of 28 µM.


Subject(s)
Actinobacteria/metabolism , Polyketide Synthases/genetics , Polyketides/isolation & purification , Actinobacteria/genetics , Anti-Bacterial Agents/pharmacology , Anti-Inflammatory Agents/pharmacology , Biosynthetic Pathways , Drug Discovery , Genome, Bacterial , Multigene Family , Polyketides/chemistry , Polyketides/pharmacology , Water Microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...