Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.282
Filter
1.
Carbohydr Polym ; 337: 122135, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38710549

ABSTRACT

The biggest obstacle to treating wound healing continues to be the production of simple, inexpensive wound dressings that satisfy the demands associated with full process of repair at the same time. Herein, a series of injectable composite hydrogels were successfully prepared by a one-pot method by utilizing the Schiff base reaction as well as hydrogen bonding forces between hydroxypropyl chitosan (HCS), ε-poly-l-lysine (EPL), and 2,3,4-trihydroxybenzaldehyde (TBA), and multiple cross-links formed by the reversible coordination between iron (III) and pyrogallol moieties. Notably, hydrogel exhibits excellent physicochemical properties, including injectability, self-healing, water retention, and adhesion, which enable to fill irregular wounds for a long period, providing a suitable moist environment for wound healing. Interestingly, the excellent hemostatic properties of the hydrogel can quickly stop bleeding and avoid the serious sequelae of massive blood loss in acute trauma. Moreover, the powerful antimicrobial and antioxidant properties also protect against bacterial infections and reduce inflammation at the wound site, thus promoting healing at all stages of the wound. The study of biohydrogel with multifunctional integration of wound treatment and smart medical treatment is clarified by this line of research.


Subject(s)
Chitosan , Hemostatics , Hydrogels , Polylysine , Wound Healing , Wound Healing/drug effects , Hydrogels/chemistry , Hydrogels/pharmacology , Chitosan/chemistry , Chitosan/pharmacology , Chitosan/analogs & derivatives , Polylysine/chemistry , Polylysine/pharmacology , Animals , Hemostatics/chemistry , Hemostatics/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Mice , Staphylococcus aureus/drug effects , Escherichia coli/drug effects , Humans , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Schiff Bases/chemistry , Schiff Bases/pharmacology , Rats
2.
Food Res Int ; 187: 114390, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38763652

ABSTRACT

In light of the commendable advantages inherent in natural polymers such as biocompatibility, biodegradability, and cost-effectiveness, researchers are actively engaged in the development of biopolymer-based biodegradable food packaging films (BFPF). However, a notable limitation is that most biopolymers lack intrinsic antimicrobial activity, thereby restricting their efficacy in food preservation. To address this challenge, various active substances with antibacterial properties have been explored as additives to BFPF. Among these, ε-polylysine has garnered significant attention in BFPF applications owing to its outstanding antibacterial properties. This study provides a brief overview of the synthesis method and chemical properties of ε-polylysine, and comprehensively examines its impact as an additive on the properties of BFPF derived from diverse biopolymers, including polysaccharides, proteins, aliphatic polyesters, etc. Furthermore, the practical applications of various BFPF functionalized with ε-polylysine in different food preservation scenarios are summarized. The findings underscore that ε-polylysine, functioning as an antibacterial agent, not only directly enhances the antimicrobial activity of BFPF but also serves as a cross-linking agent, interacting with biopolymer molecules to influence the physical and mechanical properties of BFPF, thereby enhancing their efficacy in food preservation.


Subject(s)
Anti-Bacterial Agents , Food Packaging , Food Preservation , Polylysine , Polylysine/chemistry , Food Packaging/methods , Biopolymers/chemistry , Food Preservation/methods , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Edible Films
3.
Eur Biophys J ; 53(4): 205-224, 2024 May.
Article in English | MEDLINE | ID: mdl-38703210

ABSTRACT

Unicellular organisms such as yeast can survive in very different environments, thanks to a polysaccharide wall that reinforces their extracellular membrane. This wall is not a static structure, as it is expected to be dynamically remodeled according to growth stage, division cycle, environmental osmotic pressure and ageing. It is therefore of great interest to study the mechanics of these organisms, but they are more difficult to study than other mammalian cells, in particular because of their small size (radius of a few microns) and their lack of an adhesion machinery. Using flat cantilevers, we perform compression experiments on single yeast cells (S. cerevisiae) on poly-L-lysine-coated grooved glass plates, in the limit of small deformation using an atomic force microscope (AFM). Thanks to a careful decomposition of force-displacement curves, we extract local scaling exponents that highlight the non-stationary characteristic of the yeast behavior upon compression. Our multi-scale nonlinear analysis of the AFM force-displacement curves provides evidence for non-stationary scaling laws. We propose to model these phenomena based on a two-component elastic system, where each layer follows a different scaling law..


Subject(s)
Elasticity , Microscopy, Atomic Force , Models, Biological , Saccharomyces cerevisiae , Saccharomyces cerevisiae/cytology , Polylysine/chemistry , Compressive Strength
4.
ACS Appl Mater Interfaces ; 16(20): 25909-25922, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38716677

ABSTRACT

Indocyanine green (ICG), as the sole near-infrared dye FDA-approved, is limited in biomedical applications because of its poor photostability, lack of targeting, and rapid removal in vivo. Herein, we presented a nanoformulation of poly-l-lysine-indocyanine green-hyaluronic acid (PIH) and demonstrated that it can image orthodox endometriosis (EM) lesions with a negative contrast. The PIH nanocluster, with an average diameter of approximately 200 nm, exhibited improved fluorescence photostability and antioxidant ability compared to free ICG. In the in vivo imaging, EM lesions were visualized, featuring apparent voids and clear boundaries. After colocalizing with the green fluorescent protein, we concluded that the contrast provided by PIH peaked at 4 h postinjection and was observable for at least 8 h. The negative contrast, clear boundaries, and enhanced observable time might be due to the low permeation of PIH to lesions and the enhanced retention on the surfaces of lesions. Thus, our findings suggest an ICG-based nanoprobe with the potential to diagnose abdominal diseases.


Subject(s)
Endometriosis , Hyaluronic Acid , Indocyanine Green , Indocyanine Green/chemistry , Endometriosis/diagnostic imaging , Female , Animals , Hyaluronic Acid/chemistry , Humans , Mice , Polylysine/chemistry , Contrast Media/chemistry , Nanoparticles/chemistry , Optical Imaging , Fluorescent Dyes/chemistry
5.
J Nanobiotechnology ; 22(1): 218, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38698435

ABSTRACT

Approximately 80 percent of the total RNA in cells is ribosomal RNA (rRNA), making it an abundant and inexpensive natural source of long, single-stranded nucleic acid, which could be used as raw material for the fabrication of molecular origami. In this study, we demonstrate efficient and robust construction of 2D and 3D origami nanostructures utilizing cellular rRNA as a scaffold and DNA oligonucleotide staples. We present calibrated protocols for the robust folding of contiguous shapes from one or two rRNA subunits that are efficient to allow folding using crude extracts of total RNA. We also show that RNA maintains stability within the folded structure. Lastly, we present a novel and comprehensive analysis and insights into the stability of RNA:DNA origami nanostructures and demonstrate their enhanced stability when coated with polylysine-polyethylene glycol in different temperatures, low Mg2+ concentrations, human serum, and in the presence of nucleases (DNase I or RNase H). Thus, laying the foundation for their potential implementation in emerging biomedical applications, where folding rRNA into stable structures outside and inside cells would be desired.


Subject(s)
Nanostructures , Nucleic Acid Conformation , RNA, Ribosomal , RNA, Ribosomal/chemistry , Nanostructures/chemistry , Humans , RNA Folding , DNA/chemistry , Polylysine/chemistry , Polyethylene Glycols/chemistry
6.
ACS Appl Mater Interfaces ; 16(21): 27102-27113, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38745465

ABSTRACT

Interleukin-6 (IL-6) is known to play a critical role in the progression of inflammatory diseases such as cardiovascular disease, cancer, sepsis, viral infection, neurological disease, and autoimmune diseases. Emerging diagnostic and prognostic tools, such as optical nanosensors, experience challenges in translation to the clinic in part due to protein corona formation, dampening their selectivity and sensitivity. To address this problem, we explored the rational screening of several classes of biomolecules to be employed as agents in noncovalent surface passivation as a strategy to screen interference from nonspecific proteins. Findings from this screening were applied to the detection of IL-6 by a fluorescent-antibody-conjugated single-walled carbon nanotube (SWCNT)-based nanosensor. The IL-6 nanosensor exhibited highly sensitive and specific detection after passivation with a polymer, poly-l-lysine, as demonstrated by IL-6 detection in human serum within a clinically relevant range of 25 to 25,000 pg/mL, exhibiting a limit of detection over 3 orders of magnitude lower than prior antibody-conjugated SWCNT sensors. This work holds potential for the rapid and highly sensitive detection of IL-6 in clinical settings with future application to other cytokines or disease-specific biomarkers.


Subject(s)
Biosensing Techniques , Interleukin-6 , Nanotubes, Carbon , Interleukin-6/blood , Interleukin-6/analysis , Humans , Nanotubes, Carbon/chemistry , Biosensing Techniques/methods , Limit of Detection , Polylysine/chemistry
7.
J Control Release ; 369: 420-443, 2024 May.
Article in English | MEDLINE | ID: mdl-38575075

ABSTRACT

Wound healing involves distinct phases, including hemostasis, inflammation, proliferation, and remodeling, which is a complex and dynamic process. Conventional preparations often fail to meet multiple demands and provide prompt information about wound status. Here, a pH/ROS dual-responsive hydrogel (OHA-PP@Z-CA@EGF) was constructed based on oxidized hyaluronic acid (OHA), phenylboronic acid-grafted ε-polylysine (PP), chlorogenic acid (CA)-loaded ZIF-8 (Z-CA), and epidermal growth factor (EGF), which possesses intrinsic antibacterial, antioxidant, and angiogenic capacities. Due to the Schiff base and Phenylboronate ester bonds, the hydrogel exhibited excellent mechanical properties, strong adhesion, good biodegradability, high biocompatibility, stable rheological properties, and self-healing ability. Moreover, introducing Z-CA as an initiator and nanofiller led to the additional cross-linking of hydrogel through coordination bonds, which further improved the mechanical properties and antioxidant capabilities. Bleeding models of liver and tail amputations demonstrated rapid hemostatic properties of the hydrogel. Besides, the hydrogel regulated macrophage phenotypes via the NF-κB/JAK-STAT pathways, relieved oxidative stress, promoted cell migration and angiogenesis, and accelerated diabetic wound healing. The hydrogel also enabled real-time monitoring of the wound healing stages by colorimetric detection. This multifunctional hydrogel opens new avenues for the treatment and management of full-thickness diabetic wounds.


Subject(s)
Chlorogenic Acid , Hydrogels , Macrophages , Nanocomposites , Wound Healing , Wound Healing/drug effects , Animals , Chlorogenic Acid/administration & dosage , Chlorogenic Acid/chemistry , Chlorogenic Acid/pharmacology , Hydrogels/chemistry , Nanocomposites/chemistry , Nanocomposites/administration & dosage , RAW 264.7 Cells , Mice , Macrophages/drug effects , Antioxidants/pharmacology , Antioxidants/chemistry , Antioxidants/administration & dosage , Male , Phenotype , Rats, Sprague-Dawley , Polylysine/chemistry , Hyaluronic Acid/chemistry
8.
Int J Biol Macromol ; 268(Pt 2): 131963, 2024 May.
Article in English | MEDLINE | ID: mdl-38688343

ABSTRACT

Alginate-based dressings have been shown to promote wound healing, leveraging the unique properties of alginate. This work aimed to develop and characterize flexible individual and bilayered films to deliver bacteriophages (phages) and ε-Poly-l-lysine (ε-PLL). Films varied in different properties. The moisture content, swelling and solubility increased with higher alginate concentrations. The water vapour permeability, crucial in biomedical films to balance moisture levels for effective wound healing, reached optimal levels in bilayer films, indicating these will be able to sustain an ideal moist environment. The bilayer films showed improved ductility (lower tensile strength and increased elongation at break) compared to individual films. The incorporated phages maintained viability for 12 weeks under vacuum and refrigerated conditions, and their release was sustained and gradual. Antibacterial immersion tests showed that films with phages and ε-PLL significantly inhibited Pseudomonas aeruginosa PAO1 growth (>3.1 Log CFU/cm2). Particle release was influenced by the swelling degree and diffusional processes within the polymer network, providing insights into controlled release mechanisms for particles of varying size (50 nm to 6 µm) and charge. The films developed, demonstrated modulated release capabilities for active agents, and may show potential as controlled delivery systems for phages and wound healing adjuvants.


Subject(s)
Bacteriophages , Polylysine , Pseudomonas aeruginosa , Wound Healing , Polylysine/chemistry , Pseudomonas aeruginosa/virology , Pseudomonas aeruginosa/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Alginates/chemistry , Bandages , Steam , Permeability , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology
9.
Biomater Adv ; 160: 213840, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38579520

ABSTRACT

Combating antimicrobial resistance is one of the biggest health challenges because of the ineffectiveness of standard biocide treatments. This challenge could be approached using natural products, which have demonstrated powerful therapeutics against multidrug-resistant microbes. In the present work, a nanodevice consisting of mesoporous silica nanoparticles loaded with an essential oil component (cinnamaldehyde) and functionalized with the polypeptide ε-poly-l-lysine is developed and used as an antimicrobial agent. In the presence of the corresponding stimuli (i.e., exogenous proteolytic enzymes from bacteria or fungi), the polypeptide is hydrolyzed, and the cinnamaldehyde delivery is enhanced. The nanodevice's release mechanism and efficacy are evaluated in vitro against the pathogenic microorganisms Escherichia coli, Staphylococcus aureus, and Candida albicans. The results demonstrate that the new device increases the delivery of the cinnamaldehyde via a biocontrolled uncapping mechanism triggered by proteolytic enzymes. Moreover, the nanodevice notably improves the antimicrobial efficacy of cinnamaldehyde when compared to the free compound, ca. 52-fold for E. coli, ca. 60-fold for S. aureus, and ca. 7-fold for C. albicans. The enhancement of the antimicrobial activity of the essential oil component is attributed to the decrease of its volatility due to its encapsulation in the porous silica matrix and the increase of its local concentration when released due to the presence of microorganisms.


Subject(s)
Acrolein , Acrolein/analogs & derivatives , Anti-Infective Agents , Candida albicans , Escherichia coli , Nanoparticles , Silicon Dioxide , Staphylococcus aureus , Acrolein/pharmacology , Acrolein/chemistry , Nanoparticles/chemistry , Escherichia coli/drug effects , Candida albicans/drug effects , Silicon Dioxide/chemistry , Silicon Dioxide/pharmacology , Staphylococcus aureus/drug effects , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Anti-Infective Agents/administration & dosage , Porosity , Microbial Sensitivity Tests , Polylysine/chemistry , Polylysine/pharmacology
10.
Nat Commun ; 15(1): 3564, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38670952

ABSTRACT

Biomolecular condensates play an important role in cellular organization. Coacervates are commonly used models that mimic the physicochemical properties of biomolecular condensates. The surface of condensates plays a key role in governing molecular exchange between condensates, accumulation of species at the interface, and the stability of condensates against coalescence. However, most important surface properties, including the surface charge and zeta potential, remain poorly characterized and understood. The zeta potential of coacervates is often measured using laser doppler electrophoresis, which assumes a size-independent electrophoretic mobility. Here, we show that this assumption is incorrect for liquid-like condensates and present an alternative method to study the electrophoretic mobility of coacervates and in vitro condensate models by microelectrophoresis and single-particle tracking. Coacervates have a size-dependent electrophoretic mobility, originating from their fluid nature, from which a well-defined zeta potential is calculated. Interestingly, microelectrophoresis measurements reveal that polylysine chains are enriched at the surface of polylysine/polyaspartic acid complex coacervates, which causes the negatively charged protein ɑ-synuclein to adsorb and accumulate at the interface. Addition of ATP inverts the surface charge, displaces ɑ-synuclein from the surface and may help to suppress its interface-catalyzed aggregation. Together, these findings show how condensate surface charge can be measured and altered, making this microelectrophoresis platform combined with automated single-particle tracking a promising characterization technique for both biomolecular condensates and coacervate protocells.


Subject(s)
Electrophoresis , Surface Properties , Electrophoresis/methods , Biomolecular Condensates/chemistry , Biomolecular Condensates/metabolism , alpha-Synuclein/chemistry , alpha-Synuclein/metabolism , Polylysine/chemistry , Adenosine Triphosphate/chemistry , Adenosine Triphosphate/metabolism , Humans , Static Electricity
11.
Biomolecules ; 14(4)2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38672448

ABSTRACT

In cancer therapy, photodynamic therapy (PDT) has attracted significant attention due to its high potential for tumor-selective treatment. However, PDT agents often exhibit poor physicochemical properties, including solubility, necessitating the development of nanoformulations. In this study, we developed two cationic peptide-based self-assembled nanomaterials by using a PDT agent, chlorin e6 (Ce6). To manufacture biocompatible nanoparticles based on peptides, we used the cationic poly-L-lysine peptide, which is rich in primary amines. We prepared low- and high-molecular-weight poly-L-lysine, and then evaluated the formation and performance of nanoparticles after chemical conjugation with Ce6. The results showed that both molecules formed self-assembled nanoparticles by themselves in saline. Interestingly, the high-molecular-weight poly-L-lysine and Ce6 conjugates (HPLCe6) exhibited better self-assembly and PDT performance than low-molecular-weight poly-L-lysine and Ce6 conjugates (LPLCe6). Moreover, the HPLCe6 conjugates showed superior cellular uptake and exhibited stronger cytotoxicity in cell toxicity experiments. Therefore, it is functionally beneficial to use high-molecular-weight poly-L-lysine in the manufacturing of poly-L-lysine-based self-assembling biocompatible PDT nanoconjugates.


Subject(s)
Chlorophyllides , Molecular Weight , Nanoparticles , Photochemotherapy , Photosensitizing Agents , Polylysine , Porphyrins , Polylysine/chemistry , Porphyrins/chemistry , Porphyrins/pharmacology , Humans , Nanoparticles/chemistry , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemical synthesis , Cell Survival/drug effects
12.
J Colloid Interface Sci ; 668: 132-141, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38669991

ABSTRACT

A key challenge to enhance the therapeutic outcome of photothermal therapy (PTT) is to improve the efficiency of passive targeted accumulation of photothermal agents at tumor sites. Carbon dots (CDs) are an ideal choice for application as photothermal agents because of their advantages such as adjustable fluorescence, high photothermal conversion efficiency, and excellent biocompatibility. Here, we synthesized polylysine-modified near-infrared (NIR)-emitting CDs assemblies (plys-CDs) through post-solvothermal reaction of NIR-emitting CDs with polylysine. The encapsulated structure of plys-CDs was confirmed by determining morphological, chemical, and luminescent properties. The particle size of CDs increased to approximately 40 ± 8 nm after polylysine modification and was within the size range appropriate for achieving superior enhanced permeability and retention effect. Plys-CDs maintained a high photothermal conversion efficiency of 54.9 %, coupled with increased tumor site accumulation, leading to a high efficacy in tumor PTT. Thus, plys-CDs have a great potential for application in photothermal ablation therapy of tumors.


Subject(s)
Carbon , Infrared Rays , Particle Size , Photothermal Therapy , Polylysine , Quantum Dots , Polylysine/chemistry , Carbon/chemistry , Animals , Quantum Dots/chemistry , Mice , Humans , Mice, Inbred BALB C , Surface Properties , Female , Cell Survival/drug effects , Neoplasms/therapy , Neoplasms/pathology
13.
Int J Biol Macromol ; 266(Pt 2): 131330, 2024 May.
Article in English | MEDLINE | ID: mdl-38570003

ABSTRACT

The challenge of drug resistance in bacteria caused by the over use of biotics is increasing during the therapy process, which has attracted great attentions of the clinicians and scientists around the world. Recently, photodynamic therapy (PDT) triggered by photosensitizer (PS) has become a promising treatment method because of its high efficacy, easy operation, and low side effect. Herein, the poly-l-lysine (PLL) modified metal-organic framework (MOF) nanoparticles, ZIF/PLL-CIP/CUR, were synthesized to allow both reactive oxygen species (ROS) responsive drug release and photodynamic effect for synergistic therapy against drug resistant bacterial infections. The PLL was modified on the shell of the zeolite imidazole framework (ZIF) by the ROS-responsive thioketal linker for controllable CIP release. CUR were encapsulated in ZIF as the photosensitizer for blue light mediated photodynamic effect to produce singlet oxygen (1O2) and superoxide anion radical (O2-) for efficient inhibition towards methicillin-resistant Staphylococcus aureus (MRSA). The charge conversion from negative charge (-4.6 mV) to positive charge (2.6 mV) was observed at pH 7.4 and pH 5.5, and 70.9 % CIP was found released at pH 5.5 in the presence of H2O2, which suggests the good biosafety at physiological pH and ROS-responsive drug release of the as-prepared nanoparticle in the bacterial microenvironment. The as-prepared nanoparticles could effectively kill MRSA and disrupt bacterial biofilm by combination of chemo- and photodynamic therapy. In mice model, the as-prepared nanoparticles exhibited excellent biosafety and synergistic effect with 98.81 % healing rate in treatment of MRSA infection, which is considered as a promising candidate in combating drug resistant bacterial infection.


Subject(s)
Metal-Organic Frameworks , Methicillin-Resistant Staphylococcus aureus , Nanoparticles , Photochemotherapy , Photosensitizing Agents , Polylysine , Reactive Oxygen Species , Polylysine/chemistry , Polylysine/pharmacology , Photochemotherapy/methods , Metal-Organic Frameworks/chemistry , Metal-Organic Frameworks/pharmacology , Nanoparticles/chemistry , Animals , Mice , Reactive Oxygen Species/metabolism , Hydrogen-Ion Concentration , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , Methicillin-Resistant Staphylococcus aureus/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Drug Liberation , Curcumin/pharmacology , Curcumin/chemistry , Staphylococcal Infections/drug therapy
14.
Int J Biol Macromol ; 266(Pt 2): 131383, 2024 May.
Article in English | MEDLINE | ID: mdl-38580030

ABSTRACT

The development of antibiotic-loaded microneedles has been hindered for years by limited excipient options, restricted drug-loading space, poor microneedle formability, and short-term drug retention. Therefore, this study proposes a dissolving microneedle fabricated from the host-defense peptide ε-poly-l-lysine (EPL) as an antibacterial adjuvant system for delivering antibiotics. EPL serves not only as a major matrix material for the microneedle tips, but also as a broad-spectrum antibacterial agent that facilitates the intracellular accumulation of the antibiotic doxycycline (DOX) by increasing bacterial cell membrane permeability. Furthermore, the formation of physically crosslinked networks of EPL affords microneedle tips with improved formability, good mechanical properties, and amorphous nanoparticles (approximately 7.2 nm) of encapsulated DOX. As a result, a high total loading content of both antimicrobials up to 2319.1 µg/patch is achieved for efficient transdermal drug delivery. In a Pseudomonas aeruginosa-induced deep cutaneous infection model, the EPL microneedles demonstrates potent and long-term effects by synergistically enhancing antibiotic activities and prolonging drug retention in infected lesions, resulting in remarkable therapeutic efficacy with 99.91 % (3.04 log) reduction in skin bacterial burden after a single administration. Overall, our study highlights the distinct advantages of EPL microneedles and their potential in clinical antibacterial practice when loaded with amorphous DOX nanoparticles.


Subject(s)
Anti-Bacterial Agents , Doxycycline , Nanoparticles , Needles , Polylysine , Polylysine/chemistry , Doxycycline/administration & dosage , Doxycycline/pharmacology , Doxycycline/chemistry , Nanoparticles/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/chemistry , Animals , Pseudomonas aeruginosa/drug effects , Mice , Drug Delivery Systems , Administration, Cutaneous , Skin/drug effects , Skin/microbiology , Pseudomonas Infections/drug therapy
15.
Int J Biol Macromol ; 266(Pt 2): 131395, 2024 May.
Article in English | MEDLINE | ID: mdl-38582460

ABSTRACT

Diabetic wounds are a significant clinical challenge. Developing effective antibacterial dressings is crucial for preventing wound ulcers caused by bacterial infections. In this study, a self-healing antibacterial hydrogel (polyvinyl alcohol (PVA)-polylysine-gum arabic, PLG hydrogels) with near-infrared photothermal response was prepared by linking PVA and a novel polysaccharide-amino acid compound (PG) through borate bonding combined with freeze-thaw cycling. Subsequently, the hydrogel was modified by incorporating inorganic nanoparticles (modified graphene oxide (GM)). The experimental results showed that the PLGM3 hydrogels (PLG@GM hydrogels, 3.0 wt%) could effectively kill bacteria and promote diabetic wound tissue healing under 808-nm near-infrared laser irradiation. Therefore, this hydrogel system provides a new idea for developing novel dressings for treating diabetic wounds.


Subject(s)
Gum Arabic , Hydrogels , Polylysine , Polyvinyl Alcohol , Wound Healing , Wound Healing/drug effects , Polyvinyl Alcohol/chemistry , Hydrogels/chemistry , Hydrogels/pharmacology , Animals , Polylysine/chemistry , Polylysine/pharmacology , Gum Arabic/chemistry , Gum Arabic/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Diabetes Mellitus, Experimental , Rats , Sterilization/methods , Male , Mice , Graphite/chemistry , Graphite/pharmacology
16.
ACS Biomater Sci Eng ; 10(5): 3057-3068, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38641433

ABSTRACT

Blood-contacting catheters play a pivotal role in contemporary medical treatments, particularly in the management of cardiovascular diseases. However, these catheters exhibit inappropriate wettability and lack antimicrobial characteristics, which often lead to catheter-related infections and thrombosis. Therefore, there is an urgent need for blood contact catheters with antimicrobial and anticoagulant properties. In this study, we employed tannic acid (TA) and 3-aminopropyltriethoxysilane (APTES) to create a stable hydrophilic coating under mild conditions. Heparin (Hep) and poly(lysine) (PL) were then modified on the TA-APTES coating surface using the layer-by-layer (LBL) technique to create a superhydrophilic TA/APTES/(LBL)4 coating on silicone rubber (SR) catheters. Leveraging the superhydrophilic nature of this coating, it can be effectively applied to blood-contacting catheters to impart antibacterial, antiprotein adsorption, and anticoagulant properties. Due to Hep's anticoagulant attributes, the activated partial thromboplastin time and thrombin time tests conducted on SR/TA-APTES/(LBL)4 catheters revealed remarkable extensions of 276 and 103%, respectively, when compared to uncoated commercial SR catheters. Furthermore, the synergistic interaction between PL and TA serves to enhance the resistance of SR/TA-APTES/(LBL)4 catheters against bacterial adherence, reducing it by up to 99.9% compared to uncoated commercial SR catheters. Remarkably, the SR/TA-APTES/(LBL)4 catheter exhibits good biocompatibility with human umbilical vein endothelial cells in culture, positioning it as a promising solution to address the current challenges associated with blood-contact catheters.


Subject(s)
Catheters , Coated Materials, Biocompatible , Heparin , Polyphenols , Tannins , Coated Materials, Biocompatible/chemistry , Coated Materials, Biocompatible/pharmacology , Humans , Catheters/microbiology , Polyphenols/chemistry , Polyphenols/pharmacology , Heparin/chemistry , Heparin/pharmacology , Tannins/chemistry , Tannins/pharmacology , Silanes/chemistry , Silanes/pharmacology , Anticoagulants/chemistry , Anticoagulants/pharmacology , Propylamines/chemistry , Amines/chemistry , Amines/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Polylysine/chemistry , Polylysine/pharmacology , Surface Properties , Hydrophobic and Hydrophilic Interactions , Human Umbilical Vein Endothelial Cells/drug effects , Silicone Elastomers/chemistry , Adsorption , Escherichia coli/drug effects
17.
J Agric Food Chem ; 72(15): 8805-8816, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38566515

ABSTRACT

Traditional petroleum-based food-packaging materials have poor permeability, limited active packaging properties, and difficulty in biodegradation, limiting their application. We developed a carboxymethylated tamarind seed polysaccharide composite film incorporated with ε-polylysine (CTPε) for better application in fresh-cut agricultural products. The CTPε films exhibit excellent water vapor barrier properties, but the mechanical properties are slightly reduced. Fourier transform infrared spectroscopy and X-ray diffraction spectra indicate the formation of hydrogen bonds between ε-PL and CTP, leading to their internal reorganization and dense network structure. With the increase of ε-PL concentration, composite films showed notable inhibition of postharvest pathogenic fungi and bacteria, a significant enhancement of 2,2'- azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) radical-scavenging activity, and gradual improvement of wettability performance. Cytotoxicity experiments confirmed the favorable biocompatibility when ε-PL was added at 0.3% (CTPε2). In fresh-cut bell pepper preservation experiments, the CTPε2 coating effectively delayed weight loss and malondialdehyde increase preserved the hardness, color, and nutrients of fresh-cut peppers and prolonged the shelf life of the fresh-cut peppers, as compared with the control group. Therefore, CTPε composite films are expected to be a valuable packaging material for extending the shelf life of freshly cut agricultural products.


Subject(s)
Capsicum , Chitosan , Tamarindus , Antioxidants/pharmacology , Antioxidants/analysis , Polylysine/pharmacology , Polylysine/chemistry , Capsicum/microbiology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Food Packaging , Polysaccharides/pharmacology , Seeds/chemistry , Chitosan/chemistry
18.
Carbohydr Polym ; 336: 122102, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38670773

ABSTRACT

Skin wounds are susceptible to infection, leading to severe inflammatory reactions that can progress to chronic wounds, ultimately causing significant physical and mental distress to the patient. In this study, we propose an injectable composite hydrogel achieved through one-pot gelation of oxidized xyloglucan (OXG), cationic polyamide ε-poly-l-lysine (EPL), and surface amino-rich silicon nanoparticles (SiNPs). OXG exhibits commendable anti-inflammatory properties and provides crosslinking sites. SiNPs serve as mechanically reinforced crosslinkers, facilitating the construction of a dynamic Schiff base network. SiNPs significantly reduced the gelation time to 3 s and tripled the storage modulus of the hydrogels. Additionally, the combination of EPL and SiNPs demonstrated synergistic antimicrobial activity against both S. aureus and E. coli. Notably, the hydrogel effectively halted liver bleeding within 30 s. The hydrogel demonstrated outstanding shear-thinning and self-healing properties, crucial considerations for the design of injectable hydrogels. Furthermore, its efficacy was evaluated as a wound dressing in a mouse model with S. aureus infection. The results indicated that, compared to commercial products, the hydrogel exhibited a shorter wound healing time, decreased inflammation, thinner epithelium, increased hair follicles, enhanced neovascularization, and more substantial collagen deposition. These findings strongly suggest the promising potential of the proposed hydrogel as an effective wound dressing for the treatment of infected wounds.


Subject(s)
Anti-Bacterial Agents , Escherichia coli , Glucans , Hydrogels , Nanoparticles , Polylysine , Staphylococcus aureus , Wound Healing , Xylans , Glucans/chemistry , Glucans/pharmacology , Animals , Wound Healing/drug effects , Xylans/chemistry , Xylans/pharmacology , Hydrogels/chemistry , Hydrogels/pharmacology , Polylysine/chemistry , Polylysine/pharmacology , Mice , Nanoparticles/chemistry , Escherichia coli/drug effects , Staphylococcus aureus/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/administration & dosage , Staphylococcal Infections/drug therapy , Cross-Linking Reagents/chemistry , Wound Infection/drug therapy , Male
19.
Sci Bull (Beijing) ; 69(9): 1249-1262, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38522998

ABSTRACT

Adequate drug delivery across the blood-brain barrier (BBB) is a critical factor in treating central nervous system (CNS) disorders. Inspired by swimming fish and the microstructure of the nasal cavity, this study is the first to develop swimming short fibrous nasal drops that can directly target the nasal mucosa and swim in the nasal cavity, which can effectively deliver drugs to the brain. Briefly, swimming short fibrous nasal drops with charged controlled drug release were fabricated by electrospinning, homogenization, the π-π conjugation between indole group of fibers, the benzene ring of leucine-rich repeat kinase 2 (LRRK2) inhibitor along with charge-dipole interaction between positively charged poly-lysine (PLL) and negatively charged surface of fibers; this enabled these fibers to stick to nasal mucosa, prolonged the residence time on mucosa, and prevented rapid mucociliary clearance. In vitro, swimming short fibrous nasal drops were biocompatible and inhibited microglial activation by releasing an LRRK2 inhibitor. In vivo, luciferase-labelled swimming short fibrous nasal drops delivered an LRRK2 inhibitor to the brain through the nasal mucosa, alleviating cognitive dysfunction caused by sepsis-associated encephalopathy by inhibiting microglial inflammation and improving synaptic plasticity. Thus, swimming short fibrous nasal drops is a promising strategy for the treatment of CNS diseases.


Subject(s)
Administration, Intranasal , Nasal Mucosa , Animals , Administration, Intranasal/methods , Nasal Mucosa/metabolism , Nasal Mucosa/drug effects , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/drug effects , Drug Delivery Systems/methods , Mice , Nasal Cavity/drug effects , Nasal Cavity/metabolism , Polylysine/chemistry , Polylysine/analogs & derivatives , Swimming , Male , Brain/metabolism , Brain/drug effects , Brain/pathology , Mucociliary Clearance/drug effects , Microglia/drug effects , Microglia/metabolism , Humans
20.
Food Chem ; 447: 138951, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38489883

ABSTRACT

Biocomplex materials formed by oppositely charged biopolymers (proteins) tend to be sensitive to environmental conditions and may lose part functional properties of original proteins, and one of the approaches to address these weaknesses is protein modification. This study established an electrostatic composite system using succinylated ovalbumin (SOVA) and ε-polylysine (ε-PL) and investigated the impact of varying degrees of succinylation and ε-PL addition on microstructure, environmental responsiveness and functional properties. Molecular docking illustrated that the most favorable binding conformation was that ε-PL binds to OVA groove, which was contributed by the multi­hydrogen bonding and hydrophobic interactions. Transmission electron microscopy observed that SOVA/ε-PL had a compact spherical structure with 100 nm. High-degree succinylation reduced complex sensitivity to heat, ionic strength, and pH changes. ε-PL improved the gel strength and antibacterial properties of SOVA. The study suggests possible uses of SOVA/ε-PL complex as multifunctional protein complex systems in the field of food additives.


Subject(s)
Anti-Bacterial Agents , Polylysine , Polylysine/chemistry , Ovalbumin , Static Electricity , Molecular Docking Simulation
SELECTION OF CITATIONS
SEARCH DETAIL
...