Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.225
Filter
1.
Acta Odontol Scand ; 83: 238-248, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38700145

ABSTRACT

OBJECTIVE: The aim of this work was to explore the potential of polyphenol supplement consumption in enhancing the treatment of periodontitis and diabetes mellitus in both diabetic animals and humans. MATERIALS AND METHODS: A comprehensive search across eight databases (MEDLINE, EBSCO, Taylor & Francis, PRIMO, Web of Science, Wiley Online Library, ScienceDirect, and SAGE Journals) and two registers (ClinicalTrials.gov and Cochrane Library Trials) was conducted. Methodological quality assessment employed the Cochrane Collaboration Risk of Bias Assessment Tool for randomised controlled trials and the Systematic Review Centre for Laboratory Animal Experimentation Risk of Bias Tool for experimental animal studies. RESULTS: Ten articles meeting inclusion criteria were identified. Three clinical studies demonstrated significant reductions in probing depth (PD) and clinical attachment loss (CAL). Ginger supplementation showed a decrease in CAL (-0.57 ± 0.50 vs. -0.14 ± 0.35, p = 0.003) and PD (-0.52 ± 0.51 vs. -0.19 ± 0.51, p = 0.04), while resveratrol supplementation exhibited a reduction in PD (-1.1 ± 0.58 vs. -0.6 ± 0.47, p < 0.001). Additionally, cranberry juice supplementation led to a decrease in PD (-0.56 ± 0.03, p < 0.001). However, there was no significant improvement in inflammation status. Although polyphenol supplementation did not impact fasting blood glucose levels, it did result in improved insulin resistance (3.66 ± 0.97 vs. 4.49 ± 1.56, p = 0.045). In diabetic animals, six studies reported a significant reduction (p < 0.05) in bone loss along with marked improvements in inflammation status. CONCLUSIONS: Despite the promising results observed in the included studies, the overall evidence supporting the positive effects of polyphenols on periodontal and diabetes mellitus status, along with their anti-inflammatory properties, remains inadequate.


Subject(s)
Periodontitis , Polyphenols , Polyphenols/administration & dosage , Polyphenols/therapeutic use , Periodontitis/drug therapy , Periodontitis/complications , Humans , Animals , Diabetes Mellitus/drug therapy , Dietary Supplements
2.
Medicina (Kaunas) ; 60(4)2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38674244

ABSTRACT

Background and Objectives: Hormonal changes physiologically occurring in menopausal women may increase the risk of developing metabolic and vasomotor disturbances, which contribute to increase the risk of developing other concomitant pathologies, such as metabolic syndrome (MetS). Materials and Methods: Retrospective data from 200 menopausal women with MetS and vasomotor symptoms taking one sachet per day of the dietary supplement INOFOLIC® NRT (Farmares srl, Rome, Italy) were collected. Each sachet consisted of myo-Inositol (2000 mg), cocoa polyphenols (30 mg), and soy isoflavones (80 mg, of which 50 mg is genistin). Patients recorded their symptoms through a medical questionnaire at the beginning of the administration (T0) and after 6 months (T1). Results: We observed an improvement in both the frequency and the severity of hot flushes: increased percentage of 2-3 hot flushes (28 at T0 vs. 65% at T1, p value < 0.001) and decreased percentage of 4-9 hot flushes (54% at T0 vs. 18% at T1, p value < 0.001). Moreover, symptoms of depression improved after supplementation (87% at T0 vs. 56% at T1 of patients reported moderate depression symptoms, p value < 0.001). Regarding metabolic profile, women improved body mass index and waist circumference with a reduction in the percentage of overweight and obesity women (88% at T0 vs. 51% at T1, p value = 0.01; 14% at T0 vs. 9% at T1, p value = 0.04). In addition, the number of women suffering from non-insulin dependent diabetes reduced (26% at T0 vs. 16% at T1, p value = 0.04). Conclusions: These data corroborate previously observed beneficial effects of the oral administration of myo-Inositol, cocoa polyphenols, and soy isoflavones against menopausal symptoms in the study population. Considering the promising results of the present study, further prospective controlled clinical trials are needed to deeply understand and support the efficacy of these natural compounds for the management of menopausal symptoms.


Subject(s)
Dietary Supplements , Glycine max , Hot Flashes , Inositol , Isoflavones , Menopause , Metabolic Syndrome , Polyphenols , Humans , Female , Metabolic Syndrome/drug therapy , Retrospective Studies , Isoflavones/therapeutic use , Isoflavones/pharmacology , Isoflavones/administration & dosage , Middle Aged , Polyphenols/administration & dosage , Polyphenols/therapeutic use , Polyphenols/analysis , Inositol/therapeutic use , Inositol/administration & dosage , Inositol/analysis , Hot Flashes/drug therapy , Menopause/drug effects , Menopause/physiology , Cacao , Metabolome/drug effects
3.
Med Oncol ; 41(5): 116, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38625672

ABSTRACT

Liver cancer currently represents the leading cause of cancer-related death worldwide. The majority of liver cancer arises in the context of chronic inflammation and cirrhosis. Surgery, radiation therapy, and chemotherapy have been the guideline-recommended treatment options for decades. Despite enormous advances in the field of liver cancer therapy, an effective cure is yet to be found. Plant-derived polyphenols constitute a large family of phytochemicals, with pleiotropic effects and little toxicity. They can drive cellular events and modify multiple signaling pathways which involves initiation, progression and metastasis of liver cancer and play an important role in contributing to anti-liver cancer drug development. The potential of plant-derived polyphenols for treating liver cancer has gained attention from research clinicians and pharmaceutical scientists worldwide in the last decades. This review overviews hepatic carcinogenesis and briefly discusses anti-liver cancer mechanisms associated with plant-derived polyphenols, specifically involving cell proliferation, apoptosis, autophagy, angiogenesis, oxidative stress, inflammation, and metastasis. We focus on plant-derived polyphenols with experiment-based chemopreventive and chemotherapeutic properties against liver cancer and generalize their basic molecular mechanisms of action. We also discuss potential opportunities and challenges in translating plant-derived polyphenols from preclinical success into clinical applications.


Subject(s)
Liver Neoplasms , Polyphenols , Humans , Polyphenols/pharmacology , Polyphenols/therapeutic use , Liver Neoplasms/drug therapy , Apoptosis , Inflammation
4.
Wei Sheng Yan Jiu ; 53(1): 71-87, 2024 Jan.
Article in Chinese | MEDLINE | ID: mdl-38443175

ABSTRACT

OBJECTIVE: To investigate the effect of tea polyphenols(TP) on improving depression-like behavior in aged type 2 diabetes(T2DM) model rats. METHODS: A total of 40 8-week-old SD male rats were randomly divided into the control group(n=10) and the modeling group(n=30) according to the body weight. The rats in the modeling group were fed with high-glucose and high-fat diet and treated with 50 mg/kg D-galactose by intraperitoneal injection daily until the end of the experiment, while the rats in the control group were fed with the standard diet and treated with an equal volume of saline by intraperitoneal injection. After 4 weeks, the rats in the modeling group were injected with 25 mg/kg STZ, meanwhile the rats in the control group were injected with an equal volume of citric acid buffer. The level of fasting blood glucose(FBG) was measured on the 14~(th) day. When FBG≥16.7 mmol/L, the rats were identified as successful model of the T2DM rats. Then, the model rats were randomly divided into the model group, 150, 300 mg/kg TP groups(n=10, respectively), and the rats were given intragastric intervention for 8 weeks. The levels of the FBG were detected, and the depression-like behavior of rats was assessed by the open field test(OFT) and forced swimming test(FST). The density of microglia in hippocampus CA1 region was assessed by immunofluorescence staining, and protein expressions of P53, Iba1, iNOS, Arg-1 and BDNF were determined by western blot. RESULTS: Compared with the control group, the levels of FBG in the rats of the model group were obviously increased(P<0.01). In the OFT, the frequencies of rearing and grooming in the rats of model group markedly was decreased, while in the FST, the immobility time extensively was increased(P<0.01). The density of microglia in hippocampus CA1 region was increased(P<0.01). The expressions of P53, Iba1 and iNOS were increased, and the expressions of Arg-1 and BDNF were decreased(P<0.01). Additionally, compared with the model group, in the OFT, the frequencies of rearing and grooming were increased in the rats in 150 and 300 mg/kg TP group(P<0.01). The density of microglia in hippocampus CA1 region was decreased(P<0.01). The expressions of P53, Iba1 and iNOS were down-regulated, and the expression of BDNF was up-regulated(P<0.01). Additionally, compared with the model group, the levels of FBG was decreased in the rats in the 300 mg/kg TP group(P<0.01). The immobility time was decreased in the FST(P<0.01). The expression of Arg-1 was down-regulated(P<0.01). CONCLUSION: TP can improve depression-like behavior in aged T2DM model rats, and its mechanism may be related to regulate microglia M1/M2 polarization and up-regulate expression of BDNF in hippocampus.


Subject(s)
Brain-Derived Neurotrophic Factor , Diabetes Mellitus, Type 2 , Male , Animals , Rats , Depression/drug therapy , Microglia , Tumor Suppressor Protein p53 , Polyphenols/pharmacology , Polyphenols/therapeutic use , Tea
5.
Georgian Med News ; (346): 152-155, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38501641

ABSTRACT

The article explains the biochemical aspects of interaction of natural polyphenol resveratrol and immune system. The molecular mechanisms of action of resveratrol are given. The anti-inflammatory effect of resveratrol is described in detail. The relationship between resveratrol and tumor macrophages was analyzed. It has been shown that resveratrol can have an activating, suppressive and modeling effect on the cells of immune system, as well as exhibit a suppressive effect on inflammatory and tumor processes.


Subject(s)
Neoplasms , Polyphenols , Humans , Resveratrol/pharmacology , Polyphenols/pharmacology , Polyphenols/therapeutic use , Antioxidants/pharmacology , Macrophages , Neoplasms/drug therapy
6.
J Ovarian Res ; 17(1): 69, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38539230

ABSTRACT

Polycystic ovary syndrome (PCOS) is a common reproductive and metabolic condition in women of childbearing age and a major cause of anovulatory infertility. The pathophysiology of PCOS is complex. Recent studies have reported that apart from hyperandrogenism, insulin resistance, systemic chronic inflammation, and ovarian dysfunction, gut microbiota dysbiosis is also involved in PCOS development and may aggravate inflammation and metabolic dysfunction, forming a vicious cycle. As naturally occurring plant secondary metabolites, polyphenols have been demonstrated to have anticancer, antibacterial, vasodilator, and analgesic properties, mechanistically creating putative bioactive, low-molecular-weight metabolites in the human gut. Here, we summarize the role of gut microbiota dysbiosis in the development of PCOS and demonstrate the ability of different polyphenols - including anthocyanin, catechins, and resveratrol - to regulate gut microbes and alleviate chronic inflammation, thus providing new insights that may assist in the development of novel therapeutic strategies to treat women with PCOS.


Subject(s)
Gastrointestinal Microbiome , Hyperandrogenism , Insulin Resistance , Polycystic Ovary Syndrome , Female , Humans , Polycystic Ovary Syndrome/complications , Gastrointestinal Microbiome/physiology , Polyphenols/pharmacology , Polyphenols/therapeutic use , Dysbiosis/complications , Insulin Resistance/physiology , Inflammation/drug therapy , Inflammation/metabolism
7.
Pharmacol Rep ; 76(2): 307-327, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38498260

ABSTRACT

The COVID-19 pandemic that started in 2019 and resulted in significant morbidity and mortality continues to be a significant global health challenge, characterized by inflammation, oxidative stress, and immune system dysfunction.. Developing therapies for preventing or treating COVID-19 remains an important goal for pharmacology and drug development research. Polyphenols are effective against various viral infections and can be extracted and isolated from plants without losing their therapeutic potential. Researchers have developed methods for separating and isolating polyphenols from complex matrices. Polyphenols are effective in treating common viral infections, including COVID-19, and can also boost immunity. Polyphenolic-based antiviral medications can mitigate SARS-CoV-2 enzymes vital to virus replication and infection. Individual polyphenolic triterpenoids, flavonoids, anthraquinonoids, and tannins may also inhibit the SARS-CoV-2 protease. Polyphenol pharmacophore structures identified to date can explain their action and lead to the design of novel anti-COVID-19 compounds. Polyphenol-containing mixtures offer the advantages of a well-recognized safety profile with few known severe side effects. However, studies to date are limited, and further animal studies and randomized controlled trials are needed in future studies. The purpose of this study was to review and present the latest findings on the therapeutic impact of plant-derived polyphenols on COVID-19 infection and its complications. Exploring alternative approaches to traditional therapies could aid in developing novel drugs and remedies against coronavirus infection.


Subject(s)
COVID-19 , Animals , Humans , SARS-CoV-2 , Pandemics , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Antiviral Agents/chemistry , Polyphenols/pharmacology , Polyphenols/therapeutic use
8.
Eur J Med Chem ; 269: 116359, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38537514

ABSTRACT

Alzheimer's disease (AD) is a detrimental neurodegenerative disease affecting the elderly. Clinically, it is characterized by progressive memory decline and subsequent loss of broader cognitive functions. Current drugs provide only symptomatic relief but do not have profound disease-modifying effects. There is an unmet need to identify novel pharmacological agents for AD therapy. Neuropathologically, the characteristic hallmarks of the disease are extracellular senile plaques containing amyloid ß-peptides and intracellular neurofibrillary tangles containing hyperphosphorylated microtubule-associated protein tau. Simultaneously, oxidative stress, neuroinflammation and mitochondrial dysfunction in specific brain regions are early events during the process of AD pathologic changes and are associated with Aß/tau toxicity. Here, we first summarized probable pathogenic mechanisms leading to neurodegeneration and hopefully identify pathways that serve as specific targets to improve therapy for AD. We then reviewed the mechanisms that underlie disease-modifying effects of natural polyphenols, with a focus on nuclear factor erythroid 2-related factor 2 activators for AD treatment. Lastly, we discussed challenges in the preclinical to clinical translation of natural polyphenols. In conclusion, there is evidence that natural polyphenols can be therapeutically useful in AD through their multifaceted mechanism of action. However, more clinical studies are needed to confirm these effects.


Subject(s)
Alzheimer Disease , Neurodegenerative Diseases , Humans , Aged , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Neurodegenerative Diseases/metabolism , Polyphenols/pharmacology , Polyphenols/therapeutic use , Neurofibrillary Tangles/metabolism , tau Proteins/metabolism
9.
Molecules ; 29(4)2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38398530

ABSTRACT

Endometriosis is a common gynecological condition with a complex physio-pathological background. This study aimed to assess the role of Rubus idaeus leaf extract (RiDE) as a potential therapeutic agent in reducing the size of the endometriotic lesions and modulate the plasma expression of MMP-2, MMP-9, and TGF-ß1. The endometriotic lesions were induced in a rat model by the autologous transplant of endometrium. Thirty-six female rats, Wistar breed, with induced endometriosis, were divided into four groups and underwent treatment for 28 days. The CTRL group received 0.5 mL/day of the vehicle; the DG group received 1 mg/kg b.w./day dienogest; the RiDG group received 0.25 mL/kg b.w./day RiDE and the D+RiDG group received 1 mg/kg b.w./day dienogest and 0.25 mL/kg b.w./day RiDE, respectively. Rats' weight, endometriotic lesion diameter and grade, and plasma levels of MMP-2, MMP-9, and TGF-ß1 were assessed before and after treatment. The administration of RiDE in association with dienogest vs. dienogest determined a lower weight gain and a reduction in diameter of the endometriotic lesions. RiDE administration restored MMP2 and MMP9 plasma levels to initial conditions. Rubus idaeus extract may help in reducing dienogest-associated weight gain, lower the size of endometriotic lesions, and have anti-inflammatory effects through MMP2 and MMP9 reduction.


Subject(s)
Endometriosis , Rubus , Humans , Rats , Female , Animals , Endometriosis/metabolism , Matrix Metalloproteinase 9/metabolism , Matrix Metalloproteinase 2/metabolism , Rubus/metabolism , Transforming Growth Factor beta1 , Polyphenols/therapeutic use , Rats, Wistar , Plant Breeding , Weight Gain
10.
Molecules ; 29(4)2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38398617

ABSTRACT

The biochemical characteristics of polyphenols contribute to their numerous advantageous impacts on human health. The existing research suggests that plant phenolics, whether consumed orally or applied directly to the skin, can be beneficial in alleviating symptoms and avoiding the development of many skin disorders. Phenolic compounds, which are both harmless and naturally present, exhibit significant potential in terms of counteracting the effects of skin damage, aging, diseases, wounds, and burns. Moreover, polyphenols play a preventive role and possess the ability to delay the progression of several skin disorders, ranging from small and discomforting to severe and potentially life-threatening ones. This article provides a concise overview of recent research on the potential therapeutic application of polyphenols for skin conditions. It specifically highlights studies that have investigated clinical trials and the use of polyphenol-based nanoformulations for the treatment of different skin ailments.


Subject(s)
Polyphenols , Skin Diseases , Humans , Polyphenols/pharmacology , Polyphenols/therapeutic use , Polyphenols/chemistry , Phenols/pharmacology , Phenols/therapeutic use , Skin Diseases/drug therapy , Skin , Antioxidants/chemistry
11.
Int J Biol Sci ; 20(4): 1332-1355, 2024.
Article in English | MEDLINE | ID: mdl-38385077

ABSTRACT

Polyphenolic compounds have shown promising neuroprotective properties, making them a valuable resource for identifying prospective drug candidates to treat several neurological disorders (NDs). Numerous studies have reported that polyphenols can disrupt the nuclear factor kappa B(NF-κB) pathway by inhibiting the phosphorylation or ubiquitination of signaling molecules, which further prevents the degradation of IκB. Additionally, they prevent NF-κB translocation to the nucleus and pro-inflammatory cytokine production. Polyphenols such as curcumin, resveratrol, and pterostilbene had significant inhibitory effects on NF-κB, making them promising candidates for treating NDs. Recent experimental findings suggest that polyphenols possess a wide range of pharmacological properties. Notably, much attention has been directed towards their potential therapeutic effects in NDs such as Alzheimer's disease (AD), Parkinson's disease (PD), cerebral ischemia, anxiety, depression, autism, and spinal cord injury (SCI). Much preclinical data supporting the neurotherapeutic benefits of polyphenols has been developed. Nevertheless, this study has described the significance of polyphenols as potential neurotherapeutic agents, specifically emphasizing their impact on the NF-κB pathway. This article offers a comprehensive analysis of the involvement of polyphenols in NDs, including both preclinical and clinical perspectives.


Subject(s)
Alzheimer Disease , NF-kappa B , Humans , NF-kappa B/metabolism , Polyphenols/pharmacology , Polyphenols/therapeutic use , Signal Transduction , I-kappa B Proteins/metabolism
12.
Biomolecules ; 14(2)2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38397458

ABSTRACT

Polyphenols, long-used components of medicinal plants, have drawn great interest in recent years as potential therapeutic agents because of their safety, efficacy, and wide range of biological effects. Approximately 75% of the world's population still use plant-based medicinal compounds, indicating the ongoing significance of phytochemicals for human health. This study emphasizes the growing body of research investigating the anti-adipogenic and anti-obesity functions of polyphenols. The functions of polyphenols, including phenylpropanoids, flavonoids, terpenoids, alkaloids, glycosides, and phenolic acids, are distinct due to changes in chemical diversity and structural characteristics. This review methodically investigates the mechanisms by which naturally occurring polyphenols mediate obesity and metabolic function in immunomodulation. To this end, hormonal control of hunger has the potential to inhibit pro-obesity enzymes such as pancreatic lipase, the promotion of energy expenditure, and the modulation of adipocytokine production. Specifically, polyphenols affect insulin, a hormone that is essential for regulating blood sugar, and they also play a role, in part, in a complex web of factors that affect the progression of obesity. This review also explores the immunomodulatory properties of polyphenols, providing insight into their ability to improve immune function and the effects of polyphenols on gut health, improving the number of commensal bacteria, cytokine production suppression, and immune cell mediation, including natural killer cells and macrophages. Taken together, continuous studies are required to understand the prudent and precise mechanisms underlying polyphenols' therapeutic potential in obesity and immunomodulation. In the interim, this review emphasizes a holistic approach to health and promotes the consumption of a wide range of foods and drinks high in polyphenols. This review lays the groundwork for future developments, indicating that the components of polyphenols and their derivatives may provide the answer to urgent worldwide health issues. This compilation of the body of knowledge paves the way for future discoveries in the global treatment of pressing health concerns in obesity and metabolic diseases.


Subject(s)
Alkaloids , Polyphenols , Humans , Polyphenols/pharmacology , Polyphenols/therapeutic use , Polyphenols/metabolism , Obesity/metabolism , Flavonoids , Immunity
13.
Nutr Res ; 123: 111-119, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38310647

ABSTRACT

Chaenomeles sinensis (Thouin) Koehne fruit is a rich source of medicinally and nutritionally important natural phytochemicals that benefit human health. Based on the information provided, we hypothesized that Chaenomeles sinensis (Thouin) Koehne fruit polyphenols (CSFP) possessed in vivo protective effect of on high-fat diet (HFD)-induced obesity and hepatic steatosis. Specific pathogen-free male C57BL/6J mice were randomly divided into 3 groups and fed with a low-fat diet, HFD, or HFD supplemented with CSFP by intragastric administration for 14 weeks. Obesity-related biochemical indexes and hepatic gene expression profile were determined. The findings of this study demonstrated notable reductions in body weight gain, serum triglycerides, total cholesterol, low-density lipoprotein cholesterol, and steatosis grade in the group supplemented with CSFP compared with the HFD group. Gene expression analysis provided insights into the molecular mechanisms, demonstrating that CSFP downregulated the expression of key genes involved in lipogenesis (e.g., Fas, Fads2, Scd1) and upregulated the genes associated with fatty acid oxidation (e.g., Pparα, Cpt1a, Acox1), while also suppressing genes implicated in cholesterol homeostasis (e.g., HMGCoR, Insig1, AdipoR2). These molecular changes suggest that CSFP exerts protective effects by modulating hepatic lipid metabolism pathways, thereby mitigating the metabolic derangements associated with HFD-induced obesity and hepatic steatosis.


Subject(s)
Fatty Liver , Rosaceae , Humans , Male , Mice , Animals , Lipid Metabolism , Diet, High-Fat/adverse effects , Fruit/chemistry , Polyphenols/pharmacology , Polyphenols/therapeutic use , Polyphenols/analysis , Mice, Inbred C57BL , Fatty Liver/etiology , Fatty Liver/prevention & control , Fatty Liver/metabolism , Obesity/drug therapy , Obesity/etiology , Obesity/metabolism , Liver/metabolism , Cholesterol
14.
Int J Mol Sci ; 25(3)2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38338814

ABSTRACT

Polyphenols are natural compounds also contained in daily consumed foods that show their efficacy in different clinical fields. Both pre-clinical and clinical studies demonstrated that polyphenols may manage neuroinflammation and oxidative stress processes tightly connected to neurodegenerative diseases and mental disorders. Thus, a neuroinflammatory state may influence the neurotransmitters pathways, such as the noradrenergic, glutamatergic, serotoninergic, and, in particular, dopaminergic ones, whose impairment is strongly associated with attention deficit hyperactivity disorder (ADHD). Therefore, the aim of the present systematic review is to provide an overview of the clinical outcomes' changes following ADHD treatment with polyphenols alone and in combination with the traditional drugs. This review was conducted according to PRISMA guidelines and recorded on PROSPERO with the number CRD42023438491; PubMed, Scopus, and Web of Science were used as search-engines to lead our research until June 2023. The inclusion criteria were articles written in English, including clinical, placebo-controlled, and case-control trials. We excluded reviews, metanalyses, background articles, and papers published in other languages. To avoid any bias, Rayyan software (COPYRIGHT © 2022 RAYYAN) was used to organize the work and manage the literature review. After screening, 10 studies were included, with a total of 556 patients that met the established inclusion criteria. The data obtained from these studies showed that polyphenols rebalanced oxidative stress pathways through different mechanisms, are effective for the treatment of ADHD both alone and in combination with traditional drugs, and are able to reduce symptoms as well as the side effects related to the use of conventional therapies. Finally, a positive effect of using polyphenols for ADHD prevention could be hypothesized.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Humans , Attention Deficit Disorder with Hyperactivity/drug therapy , Polyphenols/pharmacology , Polyphenols/therapeutic use , Food , Software
15.
Medicine (Baltimore) ; 103(5): e37151, 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38306547

ABSTRACT

There is a growing body of evidence supporting the involvement of central nervous system inflammation in the pathophysiology of depression. Polyphenols are a diverse group of compounds known for their antioxidative and anti-inflammatory properties. They offer a promising and effective supplementary approach to alleviating neuropsychiatric symptoms associated with inflammation-induced depression. This paper provides a summary of the potential anti-neuroinflammatory mechanisms of plant polyphenol extracts against depression. This includes direct interference with inflammatory regulators and inhibition of the expression of pro-inflammatory cytokines. Additionally, it covers downregulating the expression of pro-inflammatory cytokines by altering protein kinases or affecting the activity of the signaling pathways that they activate. These pathways interfere with the conduction of signaling molecules, resulting in the destruction and reduced synthesis of all inflammatory mediators and cytokines. This reduces the apoptosis of neurons and plays a neuroprotective role. This paper provides a theoretical basis for the clinical application of plant polyphenols.


Subject(s)
Depression , Polyphenols , Humans , Polyphenols/pharmacology , Polyphenols/therapeutic use , Depression/drug therapy , Signal Transduction , Cytokines/metabolism , Inflammation/drug therapy , Inflammation/metabolism , Plant Extracts/pharmacology , Plant Extracts/therapeutic use
16.
Front Immunol ; 15: 1305886, 2024.
Article in English | MEDLINE | ID: mdl-38343532

ABSTRACT

Zanthoxylum bungeanum Maxim., commonly known as Chinese prickly ash, is a well-known spice and traditional Chinese medicine ingredient with a rich history of use in treating inflammatory conditions. This review provides a comprehensive overview of the botanical classification, traditional applications, and anti-inflammatory effects of Z. bungeanum, with a specific focus on its polyphenolic components. These polyphenols have exhibited considerable promise, as evidenced by preclinical studies in animal models, suggesting their therapeutic potential in human inflammatory diseases such as ulcerative colitis, arthritis, asthma, chronic obstructive pulmonary disease, cardiovascular disease, and neurodegenerative conditions. This positions them as a promising class of natural compounds with the potential to enhance human well-being. However, further research is necessary to fully elucidate their mechanisms of action and develop safe and effective therapeutic applications.


Subject(s)
Asthma , Colitis, Ulcerative , Zanthoxylum , Animals , Humans , Polyphenols/pharmacology , Polyphenols/therapeutic use , Medicine, Chinese Traditional
17.
BMJ Open ; 14(1): e074882, 2024 01 30.
Article in English | MEDLINE | ID: mdl-38296273

ABSTRACT

INTRODUCTION: Non-alcoholic fatty liver disease (NAFLD) is increasingly prevalent in obese adolescents. Increased systemic inflammation and decreased gut microbial diversity linked to obesity affect the liver and are also associated with cardiovascular diseases in adulthood. However, NAFLD and vascular alterations are reversible. METHODS AND ANALYSIS: This pilot study evaluated the feasibility of a prospective open-label randomised controlled trial evaluating the effects of polyphenols on NAFLD and vascular parameters in obese adolescents. Children aged 12-18 years with hepatic steatosis (n=60) will be recruited. The participants will be randomised with a 1:1 allocation ratio to receive polyphenol supplementation one time per day for 8 weeks along with the clinician-prescribed treatment (group B, n=30) or to continue the prescribed treatment without taking any polyphenols (group A, n=30). The outcome measures will be collected from both the groups at day 1 before starting polyphenol supplementation, at day 60 after 8 weeks of supplementation and at day 120, that is, 60 days after supplementation. The changes in hepatic steatosis and vascular parameters will be measured using liver and vascular imaging. Furthermore, anthropometric measures, blood tests and stool samples for gut microbiome analysis will be collected. After evaluating the study's feasibility, we hypothesise that, as a secondary outcome, compared with group A, the adolescents in group B will have improved NAFLD, vascular parameters, systemic inflammation and gut microbiome. ETHICS AND DISSEMINATION: This study is approved by Health Canada and the hospital ethics. Participants and their parents/tutors will both provide consent. Trial results will be communicated to the collaborating gastroenterologists who follow the enrolled participants. Abstracts and scientific articles will be submitted to high-impact radiological societies and journals. CLINICALTRIALS: gov ID: NCT03994029. Health Canada authorisation referral number: 250 811. Protocole version 13, 2 June 2023. TRIAL REGISTRATION NUMBER: NCT03994029.


Subject(s)
Elasticity Imaging Techniques , Non-alcoholic Fatty Liver Disease , Pediatric Obesity , Child , Humans , Adolescent , Non-alcoholic Fatty Liver Disease/diagnostic imaging , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/complications , Carotid Intima-Media Thickness , Pilot Projects , Polyphenols/therapeutic use , Prospective Studies , Pediatric Obesity/complications , Pediatric Obesity/drug therapy , Dietary Supplements , Inflammation/complications , Randomized Controlled Trials as Topic
18.
Article in Russian | MEDLINE | ID: mdl-38261282

ABSTRACT

Intestinal dysfunction and microbiome changes are actively discussed in the modern literature as the most important link in the development of neurodegenerative changes in Parkinson's disease. The article discusses the pathogenetic chain «microbiome- intestine-brain¼, as well as factors that affect the development of intestinal dysbiosis. A promising direction for influencing microflora and inflammatory changes in the intestine is the use of polyphenols, primarily curcumin. The review of experimental, laboratory, clinical research proving the pleiotropic effect of curcumin, including its antioxidant, anti-inflammatory, neuroprotective effects, realized both through peripheral and central mechanisms is presented.


Subject(s)
Curcumin , Gastrointestinal Microbiome , Microbiota , Parkinson Disease , Humans , Parkinson Disease/complications , Parkinson Disease/drug therapy , Polyphenols/pharmacology , Polyphenols/therapeutic use , Curcumin/pharmacology , Curcumin/therapeutic use
19.
Biomolecules ; 14(1)2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38275759

ABSTRACT

The existing literature supports the anti-inflammatory, antioxidant, and antiviral capacities of the polyphenol extracts derived from Geranium sanguineum L. These extracts exhibit potential in hindering viral replication by inhibiting enzymes like DNA polymerase and reverse transcriptase. The antiviral properties of G. sanguineum L. seem to complement its immunomodulatory effects, contributing to infection resolution. While preclinical studies on G. sanguineum L. suggest its potential effectiveness against COVID-19, there is still a lack of clinical evidence. Therefore, the polyphenols extracted from this herb warrant further investigation as a potential alternative for preventing and treating COVID-19 infections.


Subject(s)
COVID-19 , Geranium , Virus Diseases , Humans , Polyphenols/pharmacology , Polyphenols/therapeutic use , SARS-CoV-2 , Flavonoids/pharmacology , Phenols/pharmacology , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Virus Diseases/drug therapy
20.
Pharmacol Res Perspect ; 12(1): e1171, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38293783

ABSTRACT

Obesity is a major risk factor for morbidity and mortality because it has a close relationship to metabolic illnesses, such as diabetes, cardiovascular diseases, and some types of cancer. With no drugs available, the mainstay of obesity management remains lifestyle changes with exercise and dietary modifications. In light of the tremendous disease burden and unmet therapeutics, fresh perspectives on pathophysiology and drug discovery are needed. The development of epigenetics provides a compelling justification for how environmental, lifestyle, and other risk factors contribute to the pathogenesis of obesity. Furthermore, epigenetic dysregulations can be restored, and it has been reported that certain natural products obtained from plants, such as tea polyphenols, ellagic acid, urolithins, curcumin, genistein, isothiocyanates, and citrus isoflavonoids, were shown to inhibit weight gain. These substances have great antioxidant potential and are of great interest because they can also modify epigenetic mechanisms. Therefore, understanding epigenetic modifications to target the primary cause of obesity and the epigenetic mechanisms of anti-obesity effects with certain phytochemicals can prove rational strategies to prevent the disease and develop novel therapeutic interventions. Thus, the current review aimed to summarize the epigenetic mechanisms and advances in therapies for obesity based on natural products to provide evidence for the development of several potential anti-obesity drug targets.


Subject(s)
Anti-Obesity Agents , Neoplasms , Humans , Obesity/drug therapy , Obesity/genetics , Obesity/metabolism , Epigenesis, Genetic , Polyphenols/pharmacology , Polyphenols/therapeutic use , Anti-Obesity Agents/pharmacology , Anti-Obesity Agents/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...