Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 107
Filter
1.
Mar Pollut Bull ; 203: 116441, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38703629

ABSTRACT

Microplastics (MPs) in the aquatic environment pose a serious threat to biota, by being confounded with food. These effects occur in mussels which are filter-feeding organisms. Mussels from the genus Mytilus sp. were used to evaluate the ecotoxicological effects of two MPs, polypropylene (PP) and polyethylene terephthalate (PET), after 4 and 28-days. Measured individual endpoints were condition index and feeding rate; and sub-individual parameters, metabolism of phase I (CYP1A1, CYP1A2 and CYP3A4) and II (glutathione S-transferases - GSTs), and antioxidant defense (catalase - CAT). MPs decreased both condition index (CI) and feeding rate (FR). No alterations occurred in metabolic enzymes, suggesting that these MPs are not metabolized by these pathways. Furthermore, lack of alterations in GSTs and CAT activities suggests the absence of conjugation and oxidative stress. Overall, biochemical markers were not responsive, but non-enzymatic responses showed deleterious effects caused by these MPs, which may be of high ecological importance.


Subject(s)
Ecotoxicology , Microplastics , Mytilus , Water Pollutants, Chemical , Animals , Water Pollutants, Chemical/toxicity , Microplastics/toxicity , Mytilus/drug effects , Environmental Monitoring , Glutathione Transferase/metabolism , Polypropylenes/toxicity , Polyethylene Terephthalates , Oxidative Stress , Catalase/metabolism
2.
Article in English | MEDLINE | ID: mdl-38583695

ABSTRACT

Human activities have directly impacted the environment, causing significant ecological imbalances. From the different contaminants resulting from human activities, plastics are of major environmental concern. Due to their high use and consequent discharge, plastics tend to accumulate in aquatic environments. There, plastics can form smaller particles (microplastics, MPs), due to fragmentation and weathering, which are more prone to interact with aquatic organisms and cause deleterious effects, including at the basis of different food webs. This study assessed the effects of two microplastics (polyethylene terephthalate, PET; and polypropylene, PP; both of common domestic use) in the freshwater cladoceran species Daphnia magna. Toxic effects were assessed by measuring reproductive traits (first brood and total number of offspring), and activities of biomarkers involved in xenobiotic metabolism (phase I: cytochrome P-450 isoenzymes CYP1A1, 1A2 and 3A4; phase II/conjugation: glutathione S-transferases; and antioxidant defense (catalase)). Both MPs showed a potential to significantly reduce reproductive parameters in D. magna. Furthermore, PET caused a significant increase in some isoenzymes of CYP450 in acutely exposed organisms, but this effect was not observed in chronically exposed animals. Similarly, the activity of the antioxidant defense (CAT) was significantly increased in acutely exposed animals, but not in chronically exposed organisms. This pattern of effects suggests a possible mechanism of long-term adaptation to the presence of the tested MPs. In conclusion, the herein tested MPs have shown the potential to induce deleterious effects on D. magna mainly observed in terms of the reproductive outcomes. Changes at the biochemical level seems transient and are not likely to occur in long term, environmentally exposed crustaceans.


Subject(s)
Daphnia , Microplastics , Reproduction , Water Pollutants, Chemical , Animals , Daphnia/drug effects , Water Pollutants, Chemical/toxicity , Reproduction/drug effects , Microplastics/toxicity , Fresh Water , Biomarkers/metabolism , Glutathione Transferase/metabolism , Polypropylenes/toxicity , Cytochrome P-450 Enzyme System/metabolism , Daphnia magna
3.
J Hazard Mater ; 470: 134209, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38581880

ABSTRACT

Weathered microplastics (MPs) exhibit different physicochemical properties compared to pristine MPs, thus, their effects on the environment and living organisms may also differ. In the present study, we investigated the gut-toxic effects of virgin polypropylene MPs (PP) and UV-weathered PP MPs (UV-PP) on zebrafish. The zebrafish were exposed to the two types of PP MPs at a concentration of 50 mg/L each for 14 days. After exposure, MPs accumulated primarily within the gastrointestinal tract, with UV-PP exhibiting a higher accumulation than PP. The ingestion of PP and UV-PP induced gut damage in zebrafish and increased the gene expression and levels of enzymes related to oxidative stress and inflammation, with no significant differences between the two MPs. Analysis of the microbial community confirmed alterations in the abundance and diversity of zebrafish gut microorganisms in the PP and UV-PP groups, with more pronounced changes in the PP-exposed group. Moreover, the Kyoto Encyclopedia of Genes and Genomes pathway analysis confirmed the association between changes in the gut microorganisms at the phylum and genus levels with cellular responses, such as oxidative stress, inflammation, and tissue damage. This study provides valuable insights regarding the environmental impact of MPs on organisms.


Subject(s)
Gastrointestinal Microbiome , Microplastics , Polypropylenes , Ultraviolet Rays , Water Pollutants, Chemical , Zebrafish , Animals , Microplastics/toxicity , Polypropylenes/toxicity , Gastrointestinal Microbiome/drug effects , Gastrointestinal Microbiome/radiation effects , Water Pollutants, Chemical/toxicity , Oxidative Stress/drug effects , Gastrointestinal Tract/drug effects , Gastrointestinal Tract/radiation effects
4.
J Toxicol Environ Health A ; 87(9): 371-380, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38440899

ABSTRACT

Exposure to microplastics may be associated with damage of immune system. Polypropylene microplastics (PP-MPs) with a wide range of beneficial applications have not been extensively studied with respect to the immune system. The aim of this investigation is to examine the influence of two different sizes of PP-MPs (5.2 and 23.9 µm diameter) on immune system components in ICR mice. PP-MPs were administered orally to female and male mice at 0 (corn oil vehicle), 500, 1000, or 2000 mg/kg/d for single and daily for 4-week repeated toxicity test, respectively. No significant differences were observed in number of thymic CD4+, CD8+, CD4+CD8+ T lymphocytes, splenic helper T cells, cytotoxic T cells, and B cells. The ratio of interferon-γ to interleukin-4 in culture supernatants from activated splenocytes ex vivo (48 hr) was lower in females which were repeatedly administered with PP-MPs compared to vehicle irrespective of PP-MPs size and dose. In contrast, the opposite trend was observed in males. Production of tumor necrosis factor-α was upregulated in females that were repeatedly exposed to PP-MPs. The serum IgG2a/IgG1 ratio was lowered in female receiving large-size PP-MPs. Data suggest that immune disturbances resulting in predominant type-2 helper T cell reactivity may occur in mice, especially in females, when repeatedly exposed to PP-MPs. Further investigations with longer exposure periods are necessary to determine the immunotoxicities attributed to PP-MPs.


Subject(s)
Microplastics , Water Pollutants, Chemical , Mice , Male , Female , Animals , Mice, Inbred ICR , Plastics , Polypropylenes/toxicity , Spleen
5.
Environ Pollut ; 345: 123548, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38355089

ABSTRACT

Microplastics (MPs) have been recognized as emerging aquatic pollutants receiving major concern due to their detrimental effects on aquatic life. Nile Tilapia, Oreochromis niloticus is a model species considered in toxicological studies to address the effects of pollutants in freshwater animals. However, comprehensive knowledge comparing the impacts on fish across various MPs polymers is scarce. Therefore, the overarching aim of the current study was to examine the bioconcentration of MPs polymers: polyvinylchloride (PVC), polypropylene (PP), and polyethylene terephthalate (PET), and their toxic effects on growth, and behavioral responses, hematology, and histology of gills, liver, and intestine in O. niloticus. Fishes were subjected to a 21-day dietary exposure to MPs by assigning them into six treatment groups: T1 (4% of PVC), T2 (4% of PP), T3 (4% of PET), T4 (8% of PVC), T5 (8% of PP), T6 (8% of PET), and control (0% of MPs), to assess the effects on fish across the polymers and dosage. Results showed several abnormalities in anatomical and behavioral parameters, lower growth, and high mortality in MPs-exposed fish, indicating a dose-dependent relationship. The elevated dosage of polymers raised the bioavailability of PVC, PP, and PET in gills and gut tissues. Noteworthy erythrocyte degeneration referred to cytotoxicity and stress imposed by MPs, whereas the alterations in hematological parameters were possibly due to blood cell damage, also indicating mechanisms of defense against MPs toxicity. Histopathological changes in the gills, liver, and intestine confirmed the degree of toxicity and associated dysfunctions in fish. A higher sensitivity of O. niloticus to PET-MPs compared to other polymers is likely due to its chemical properties and species-specific morphological and physiological characteristics. Overall, the present study reveals valuable insights into the emerging threat of MPs toxicity in freshwater species, which could be supportive of future toxicological research.


Subject(s)
Cichlids , Environmental Pollutants , Hematology , Water Pollutants, Chemical , Animals , Polypropylenes/toxicity , Polyethylene Terephthalates , Plastics , Bioaccumulation , Microplastics , Water Pollutants, Chemical/toxicity
6.
Sci Total Environ ; 920: 170894, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38367736

ABSTRACT

Polypropylene microplastics (PP-MPs) are emerging environmental contaminants that have the potential to cause adverse effects on aquatic organisms. Reverse transcriptase quantitative real-time polymerase chain reaction (RT-qPCR) is a valuable tool for assessing the gene expression profiles under PP-MPs stress. To obtain an accurate gene expression profile of tissue inflammation and apoptosis that reflects the molecular mechanisms underlying the impact of PP-MPs on Chinese sturgeon, identifying reliable reference genes is crucial for RT-qPCR analysis. In this study, we constructed an experiment model of Chinese sturgeon exposed to PP-MPs, assessed the pathological injury, metabolic profile responses and oxidative stress in liver, evaluated the reliability of 8 reliable reference genes by 4 commonly used algorithms including GeNorm, NormFinder, BeatKeeper, Delta Ct, and then analyzed the performance of inflammatory response genes in liver, spleen and kidney with the best reference gene. HE staining revealed that the cytoplasm full small vacuoles and nucleus diameter increased were occurred in the liver cell of PP-MPs in treatment groups. Additionally, oxidative and biochemical parameters were significantly changes in the liver of treatment groups. For the reference genes in PP-MPs exposure experiments, this study screening the optimal reference genes including: EF1α and GAPDH for liver and spleen, and GAPDH and RPS18 for kidney. Besides, 2 inflammatory response genes (NLRP3, TNF-α) were chosen to assess the optimal reference genes using the least stable reference gene (TUB) as a control, verified the practicality of the select reference genes in different tissues. We also found that the low concentration of PP-MPs could induce the liver tissue damage and inflammatory response in Chinese sturgeon. Our study initially evaluated the impact of short-time exposure with PP-MPs in Chinese sturgeon and provided 3 sets of validated optimal reference genes in Chinese sturgeon exposure to PP-MPs.


Subject(s)
Microplastics , Plastics , Animals , Polypropylenes/toxicity , Reproducibility of Results , Fishes , Real-Time Polymerase Chain Reaction
7.
Environ Sci Pollut Res Int ; 31(9): 13207-13217, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38240975

ABSTRACT

The increasing use of polypropylene (PP) in consumer products leads to the microplastic (PP MPs) contamination of the aquatic ecosystems. Comprehensive toxicological studies of weathered/aged and new PP MPs with Artemia salina are a need of the hour. Our study explores the toxicological differences between naturally weathered (aged) and prepared new PP MPs on Artemia salina. Both the weathered and new PP MPs were prepared using controlled grinding and sieving at ≤ 125 µm. Artemia salina was treated with different concentrations (0.25, 0.5, and 1 mg/mL) of PP MP particles for up to 48 h. The uptake of weathered PP MP particles by Artemia salina was higher than the new PP MPs. The accumulation of PP MP particles was found in the intestine. There was increased oxidative stress recorded in the animal treated with the weathered PP MPs than the new PP MPs. Artemia salina treated with weathered PP MPs showed higher ROS generation and increased, activity of oxidative enzymes like LPO, SOD, and CAT. Collectively, our findings underscore the detrimental effects of weathered and prepared new PP MPs on Artemia salina, which is an ecologically significant species of zooplankton. There is an urgent need and effective measures required to address plastic disposal strategies in an environmentally safe manner.


Subject(s)
Microplastics , Water Pollutants, Chemical , Animals , Polypropylenes/toxicity , Plastics/toxicity , Artemia , Ecosystem , Water Pollutants, Chemical/toxicity
8.
Environ Pollut ; 343: 123296, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38182010

ABSTRACT

Due to their extensive use during and after the COVID-19 pandemic, many disposable face masks are irresponsibly deposited into the water environment, threatening the health of people living nearby. However, the effects of water conditions on the degradation and potential hazards of these masks are generally unclear. This paper entailed the release and cellular toxicity of micro/nano plastics from disposable face masks once discarded in different waters, including soil water, river water, and tap water, with deionized (DI) water as control. At first, polypropylene (PP) was confirmed to be the major component of disposable face masks with Raman and Fourier transform infrared (FTIR) techniques. To monitor the release rate of PP from masks, a silver nanoparticle (AgNP)-based surface-enhanced Raman scattering (SERS) method was established by employing the unique Raman fingerprint of PP at 2882 cm-1. During 30-d incubation in different waters, the release rates of PP, sizes of PP aggregates, length of fibers, and proportions of plastics smaller than 100 nm were in the order of soil water > river water > tap water > DI water. All the obtained PP exhibited significant toxicity in human lung cancer (A549) cells at concentrations of 70 mg/L for 48 h, and the ones obtained in soil water exhibited the most severe damage. Overall, this paper revealed that environmental waters themselves would worsen the adverse effects of disposable face masks, and the key compounds affecting the degradation of masks remain to be clarified. Such information, along with the established methods, could be beneficial in assessing the health risks of disposable face masks in different waters.


Subject(s)
Metal Nanoparticles , Water , Humans , Polypropylenes/toxicity , Masks , Pandemics , Silver , Soil , Plastics/toxicity
9.
Environ Sci Pollut Res Int ; 30(50): 108606-108616, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37752396

ABSTRACT

Microplastics and perfluorooctanoic acid coexist in the aquatic environment. Duckweed was exposed to a range of concentrations (0.1-1000 µg L-1) of solutions containing polypropylene (PP) and perfluorooctanoic acid (PFOA) for 14 days to measure their toxicity. The result showed the single and combined PP and PFOA treatments did not significantly influence the growth of duckweed. The greatest PP and PFOA concentrations of combined pollution affect plant chlorophyll. Moreover, the combined treatment of duckweed consistently resulted in increased malondialdehyde (MDA) levels, indicating oxidative damage. As an antioxidant stress response, the combination-treated plants were encouraged to produce superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT). Meanwhile, 3519 Operational Taxonomic Units (OTUs) were identified in the duckweed rhizosphere. Proteobacteria was the most predominant microbial community. Shannon, Simpson, and Chao1 discovered that microbial communities changed in response to single and combination PP and PFOA treatments, with decreased diversity and increased abundance. In addition, SEM analysis also revealed that the combined treatment significantly phyllosphere microorganisms. The findings of this investigation add to our knowledge of how PP and PFOA affect duckweed and the rhizospheric microorganisms, expanding the theoretical basis for employing duckweed in complex contamination.


Subject(s)
Araceae , Polypropylenes , Polypropylenes/toxicity , Plastics , Antioxidants/pharmacology
10.
Sci Total Environ ; 905: 166100, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-37558061

ABSTRACT

Plastic waste is increasing and is a serious environmental problem. Among the threats associated with plastics is the release of contaminants into the environment. This study aimed to evaluate the efficiency of metals release from plastics (low-density polyethylene (LDPE), polyethylene terephthalate (PET), and polypropylene (PP)) as affected by different soil solution types, artificial root exudates, and distilled water. The extent of metal release varied depending on the type of solution and plastic used. Metals were leached most effectively from plastics in soil solutions, followed by root exudates, and least effectively by distilled water. LDPE released the highest concentrations of Cu and Na into solution, PP released the greatest amount of Fe, and PET released the most Cr. The efficiencies of Mg and Zn release from the plastics (PP and PET) varied by solution type. Among the plastics studied, LDPE exhibited the strongest ability to adsorb metals, such as Fe, Cr, Mg, and Zn from soil solutions. The amount of metal released from the plastics was also dependent on pH, dissolved organic carbon (DOC) concentrations, and the electrical conductivity (EC) of the solutions. Moreover, plastic extracts were found to have negative effects on germination and growth in Lepidium sativum.


Subject(s)
Metals, Heavy , Soil Pollutants , Soil , Polyethylene , Soil Pollutants/toxicity , Soil Pollutants/analysis , Metals, Heavy/toxicity , Metals, Heavy/analysis , Polypropylenes/toxicity , Water , Plastics/toxicity
11.
Bull Environ Contam Toxicol ; 111(1): 13, 2023 Jul 13.
Article in English | MEDLINE | ID: mdl-37439925

ABSTRACT

The effect of daily ingestion of polypropylene microplastic on the health of tilapia, Oreochromis niloticus, was evaluated. 60 fish (± 200 g) were placed in 6 aquariums (n = 10, 100 L each), constituting the following treatments: Control (without the addition of polymer), fed with 100 and 500 µg of polypropylene/kg of body weight (b.w.), respectively. After 30 days of feeding, the animals were submitted to blood collection for hemogram and biochemical study and later euthanized for gut microbiological analysis, somatic index of liver, spleen, heart, kidney, stomach, and intestine. In the serum biochemical study, an increase in cholesterol and serum Aspartate Aminotransferase (AST) activity levels was observed in animals treated with 500 µg of polypropylene. Tilapia-fed polypropylene in the diet showed an increase in thrombocyte and total leukocyte counts, marked by a significant increase in the number of circulating lymphocytes. The results of the somatic study revealed a significant increase in the stomach, liver, and heart of tilapia fed with the polymer. Increase in the number of Gram-negative microorganisms and decrease in mesophilic aerobic microorganisms were observed in the gut of fish exposed to the polymer, including a dose-response effect was observed for these analyses. Therefore, tilapias fed daily with diets containing polypropylene for 30 consecutive days showed deleterious effects, resulting in systemic inflammatory disturbs by altering liver functions, leukocyte profile, and organ morphometry, as well as changes in the intestinal microbiota. Such results demonstrate the impairment of fish health, highlighting the need for further studies that evaluate the impact of microplastics on aquatic organisms.


Subject(s)
Cichlids , Tilapia , Animals , Cichlids/physiology , Microplastics , Plastics , Polypropylenes/toxicity , Diet , Eating , Animal Feed/analysis , Dietary Supplements/analysis
12.
J Hazard Mater ; 458: 131918, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37356177

ABSTRACT

Microplastics (MPs) are emerging contaminants, and there are only limited studies reporting the impacts of some MPs on liver lipid metabolism in animals. In this study, we investigated the accumulation of polypropylene-MPs in mouse liver and unraveled the change in lipid metabolic profiles by both lipidomics and Raman spectroscopy. Polypropylene-MP exposure did not cause obvious health symptoms, but hematoxylin-eosin staining showed pathological changes that polypropylene-MPs induced lipid droplet accumulation in liver. Lipidomics results showed a significant change in lipid metabolic profiles and the most influenced categories were triglycerides, fatty acids, free fatty acids and lysophosphatidylcholine, implying the effects of polypropylene-MPs on the hemostasis of lipid droplet biogenesis and catabolism. Most altered lipids contained unsaturated bonds and polyunsaturated phospholipids, possibly affecting the fluidity and curvature of membrane surfaces. Raman spectroscopy confirmed that the major spectral alterations of liver tissues were related to lipids, evidencing the altered lipid metabolism and cell membrane components in the presence of polypropylene-MPs. Our findings firstly disclosed the impacts of polypropylene-MPs on lipid metabolisms in mouse liver and hinted at their detrimental disturbance on membrane properties, cellular lipid storage and oxidation regulation, helping our deeper understanding on the toxicities and corresponding risks of polypropylene-MPs to mammals.


Subject(s)
Microplastics , Water Pollutants, Chemical , Mice , Animals , Microplastics/metabolism , Plastics/metabolism , Polypropylenes/toxicity , Lipidomics , Spectrum Analysis, Raman , Liver/metabolism , Fatty Acids/metabolism , Water Pollutants, Chemical/metabolism , Mammals
13.
Int J Mol Sci ; 24(10)2023 May 09.
Article in English | MEDLINE | ID: mdl-37239816

ABSTRACT

Currently, polypropylene (PP) is used in various products, thus leading to high daily exposure in humans. Thus, it is necessary to evaluate the toxicological effects, biodistribution, and accumulation of PP microplastics in the human body. In this study, administration of two particle sizes of PP microplastics (approximately 5 and 10-50 µm) did not lead to any significant changes in several toxicological evaluation parameters, including body weight and pathological examination, compared with the control group in ICR mice. Therefore, the approximate lethal dose and no-observed-adverse-effect level of PP microplastics in ICR mice were established as ≥2000 mg/kg. Furthermore, we manufactured cyanine 5.5 carboxylic acid (Cy5.5-COOH)-labeled fragmented PP microplastics to monitor real-time in vivo biodistribution. After oral administration of the Cy5.5-COOH-labeled microplastics to the mice, most of the PP microplastics were detected in the gastrointestinal tract and observed to be out of the body after 24 h in IVIS Spectrum CT. Therefore, this study provides a new insight into the short-term toxicity, distribution, and accumulation of PP microplastics in mammals.


Subject(s)
Polypropylenes , Water Pollutants, Chemical , Humans , Animals , Mice , Polypropylenes/toxicity , Microplastics/toxicity , Plastics/toxicity , Mice, Inbred ICR , Tissue Distribution , Water Pollutants, Chemical/toxicity , Mammals
14.
Anal Chem ; 95(20): 7863-7871, 2023 05 23.
Article in English | MEDLINE | ID: mdl-37159270

ABSTRACT

Understanding the metabolic disorders induced by nano- and microplastics in aquatic organisms at the molecular level could help us understand the potential toxicity of nano- and microplastics more thoroughly and provide a fundamental scientific basis for regulating the usage and management of plastic products. In this research, the effect of polypropylene nanoplastics (PP-NPs) and microplastics (PP-MPs) on metabolites in the tilapia liver was comprehensively investigated by internal extractive electrospray ionization mass spectrometry (iEESI-MS). A partial least-squares discriminant analysis (PLS-DA) and a one-component analysis of variance (ANOVA) were used for selecting 46 differential metabolites, including phospholipids, amino acids, peptides, carbohydrates, alkaloids, purines, pyrimidines, and nucleosides. Pathway enrichment analysis showed significant effects on glycerophospholipid metabolism, arginine and proline metabolism, and aminoacyl-tRNA biosynthesis after tilapia were exposed to PP-N/MPs. Dysregulation of these metabolites is mainly reflected in the possible induction of hepatitis, oxidative stress, and other symptoms. The application of iEESI-MS technology without sample pretreatment to the study of metabolic disorders in aquatic organisms under the interference of nano- and microplastics provides a promising analytical method for environmental toxicology research.


Subject(s)
Cichlids , Tilapia , Water Pollutants, Chemical , Animals , Microplastics , Spectrometry, Mass, Electrospray Ionization/methods , Plastics , Polypropylenes/toxicity , Liver , Aquatic Organisms , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/metabolism
15.
Ecotoxicology ; 32(3): 300-308, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36905483

ABSTRACT

Microplastic (MP) is yet another form of chronic anthropogenic contribution to the environment. MPs are plastic particles (<5 mm) that have been widely found in the most diverse natural environments, but their real impacts on ecosystems are still under investigation. Here, we studied the toxicity of naturally aged secondary polypropylene (PP) MPs after constant exposure to ultraviolet radiation (26 µm) to the third instar larvae of Chironomus sancticaroli, a dipteran species. The concentrations tested were 13.5; 67.5; and 135 items g-1 of dry sediment. C. sancticaroli organisms were investigated for fragment ingestion, mortality and changes in enzymatic biomarkers after 144 h of exposure. The organisms were able to ingest MPs from the first 48 h, and the amount of items internalized was dose-dependent and time-dependent. Overall, the results show that mortality was low, being significant at the lowest and highest concentrations (13.5 and 135 items g-1). Regarding changes in biochemical markers, after 144 h MDA and CAT activities were both significantly altered (increased and reduced, respectively), while SOD and GST levels were unchanged. In the present study, naturally aged polypropylene MPs induced biochemical toxicity in C. sancticaroli larvae, with toxicity being higher according to exposure time and particle concentration.


Subject(s)
Chironomidae , Water Pollutants, Chemical , Animals , Microplastics , Plastics/toxicity , Polypropylenes/toxicity , Chironomidae/physiology , Ecosystem , Ultraviolet Rays , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis , Larva
16.
Chemosphere ; 327: 138509, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36996920

ABSTRACT

Current information regarding the effects of both micro- and nano-plastic debris on coral reefs is limited; especially the toxicity onto corals from nano-plastics originating from secondary sources such as fibers from synthetic fabrics. Within this study, we exposed the alcyonacean coral Pinnigorgia flava to different concentrations of polypropylene secondary nanofibers (0.001, 0.1, 1.0 and 10 mg/L) and then assayed mortality, mucus production, polyps retraction, coral tissue bleaching, and swelling. The assay materials were obtained by artificially weathering non-woven fabrics retrieved from commercially available personal protective equipment. Specifically, polypropylene (PP) nanofibers displaying a hydrodynamic size of 114.7 ± 8.1 nm and a polydispersity index (PDI) of 0.431 were obtained after 180 h exposition in a UV light aging chamber (340 nm at 0.76 Wˑm-2ˑnm-1). After 72 h of PP exposure no mortality was observed but there were evident stress responses from the corals tested. Specifically, the application of nanofibers at different concentrations caused significant differences in mucus production, polyps retraction and coral tissue swelling (ANOVA, p < 0.001, p = 0.015 and p = 0.015, respectively). NOEC (No Observed Effect Concentration) and LOEC (Lowest Observed Effect concentration) at 72 h resulted 0.1 mg/L and 1 mg/L, respectively. Overall, the study indicates that PP secondary nanofibers can cause adverse effects on corals and could potentially act as a stress factor in coral reefs. The generality of the method of producing and assaying the toxicity of secondary nanofibers from synthetic textiles is also discussed.


Subject(s)
Anthozoa , Nanofibers , Animals , Polypropylenes/toxicity , Nanofibers/toxicity , Coral Reefs , Weather
17.
Part Fibre Toxicol ; 20(1): 2, 2023 01 10.
Article in English | MEDLINE | ID: mdl-36624477

ABSTRACT

BACKGROUND: Polypropylene (PP) is used in various products such as disposable containers, spoons, and automobile parts. The disposable masks used for COVID-19 prevention mainly comprise PP, and the disposal of such masks is concerning because of the potential environmental pollution. Recent reports have suggested that weathered PP microparticles can be inhaled, however, the inhalation toxicology of PP microparticles is poorly understood. RESULTS: Inflammatory cell numbers, reactive oxygen species (ROS) production, and the levels of inflammatory cytokines and chemokines in PP-instilled mice (2.5 or 5 mg/kg) increased significantly compared to with those in the control. Histopathological analysis of the lung tissue of PP-stimulated mice revealed lung injuries, including the infiltration of inflammatory cells into the perivascular/parenchymal space, alveolar epithelial hyperplasia, and foamy macrophage aggregates. The in vitro study indicated that PP stimulation causes mitochondrial dysfunction including mitochondrial depolarization and decreased adenosine triphosphate (ATP) levels. PP stimulation led to cytotoxicity, ROS production, increase of inflammatory cytokines, and cell deaths in A549 cells. The results showed that PP stimulation increased the p-p38 and p-NF-κB protein levels both in vivo and in vitro, while p-ERK and p-JNK remained unchanged. Interestingly, the cytotoxicity that was induced by PP exposure was regulated by p38 and ROS inhibition in A549 cells. CONCLUSIONS: These results suggest that PP stimulation may contribute to inflammation pathogenesis via the p38 phosphorylation-mediated NF-κB pathway as a result of mitochondrial damage.


Subject(s)
Microplastics , Pneumonia , Polypropylenes , Animals , Mice , Cytokines/metabolism , Inflammation/chemically induced , Inflammation/metabolism , Microplastics/toxicity , NF-kappa B/metabolism , Pneumonia/chemically induced , Polypropylenes/toxicity , Reactive Oxygen Species/metabolism
18.
Sci Total Environ ; 862: 160909, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36526185

ABSTRACT

Decabromodiphenyl ethane (DBDPE) and microplastics (MPs), such as fossil-based polymers polyethylene (PE), polypropylene (PP), and bio-based plastics polylactic acid (PLA) are abundant in e-waste dismantling areas. However, the information on the effects of DBDPE combined with MPs (DBDPE-MPs) on earthworms is still limited. In this study, we explored the impacts of DBDPE-MPs on neurotoxic biomarkers, tissue damage, and transcriptomics of Eisenia fetida by simulating different exposure patterns of 10 mg kg-1 DBDPE and 10 mg kg-1 DBDPE-MPs (PLA, PP, and PE). Results showed that the activities of acetylcholinesterase, Na+/K+-ATPase, Ca2+/Mg2+-ATPase, carboxylate enzyme, and the contents of calcium and glutamate were significantly stimulated. DBDPE-MP co-exposure caused more severe damage to the epidermis, muscles, and tissues. Transcriptomic analysis revealed that differentially expressed genes (DEGs) of DBDPE-MPs were mainly related to inflammation, the immune system, digestive system, endocrine system, and metabolism. DBDPE and PP-MPs had similar influences on immunity and metabolism. However, DBDPE-PLA and DBDPE-PE further affected the endocrine system and signaling pathways. Specific DEGs showed that detoxification systems in the case of MPs were significantly upregulated. The study indicated that MPs exacerbated DBDPE toxicity in the nervous system, epidermis, and gene regulation of E. fetida, helping to assess the ecological risks of e-wastes and microplastics in soil.


Subject(s)
Microplastics , Oligochaeta , Animals , Microplastics/toxicity , Plastics/toxicity , Plastics/metabolism , Polyethylene/metabolism , Polypropylenes/toxicity , Oligochaeta/metabolism , Acetylcholinesterase/metabolism , Polyesters , Soil
19.
Sci Total Environ ; 859(Pt 2): 160388, 2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36414060

ABSTRACT

The ubiquitous nanoplastics are now considered emergent pollutants in environments. Bioaccumulation of nanoplastics is an important indicator of their hazard. In this work, molecular dynamics were used to study the uptake of five nanoplastics (polyvinyl chloride (PVC), polystyrene (PS), polylactic acid (PLA), polypropylene (PP), and polyethylene terephthalate (PET)) onto DPPC (dipalmitoylphosphatidylcholine) bilayers. Results suggest that nanoplastics became compact after they were deposited in the human body. For PET, PLA, and PS nanoplastics, a free energy barrier of 4-22 kcal mol-1 needed to be overcome to transfer these polymers from the interface region to the center of the DPPC bilayer. Besides, the free energy difference of PVC and PP from the bulk H2O to the surface of DPPC was -18.67 kcal mol-1 and -25.94 kcal mol-1, respectively. After uptake, the interaction between nanoplastics and lipid bilayer was dominated by the van der Waals rather than electrostatic interaction. Furthermore, the cytotoxicity of nanoplastics was also evaluated and it is reflected in their ability to decrease the thickness of the lipid bilayer. Overall, this work provides implications for understanding the bioaccumulation and toxicity of nanoplastic at the molecular level.


Subject(s)
Lipid Bilayers , Phospholipids , Humans , Molecular Dynamics Simulation , Polystyrenes , Static Electricity , Polyvinyl Chloride , Polypropylenes/toxicity
20.
J Hazard Mater ; 441: 129943, 2023 01 05.
Article in English | MEDLINE | ID: mdl-36099741

ABSTRACT

Although biodegradable plastics are considered an environmentally-friendly alternative to conventional plastics, the effects of biodegradable microplastics (BMPs) on soil faunal communities are poorly understood, especially under field conditions. Here, we investigated the loading impacts of two conventional low-density polyethylene (LDPE) and polypropylene (PP) MPs as well as two biodegradable polylactic acid (PLA) and polybutylene succinate (PBS) MPs at concentrations of 0, 5, 10, and 15 g/m2 on soil fauna communities. After 40 d, all MP types did not affect the soil fauna communities. After 130 d, conventional MPs (LDPE-15 and PP-5) significantly increased the abundance of overall soil fauna-attributed mainly to changes in the abundance of Collembola; however, BMPs did not affect the soil fauna communities. Interestingly, MP-induced changes in the abundance and diversity of soil fauna showed a strong tendency to increase over time. Overall, these results indicate that the short-term effects of all MP types on soil faunal communities are inapparent, while soil fauna responses to conventional MPs and BMPs showed slight differences over time. Given these time-dependent soil fauna responses to MPs, we recommend an evaluation of the long-term effects of MPs on soil organisms to gain a comprehensive understanding of their effects on soil ecosystems.


Subject(s)
Biodegradable Plastics , Soil , Ecosystem , Microplastics/toxicity , Plastics , Polyesters/toxicity , Polyethylene , Polypropylenes/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...