Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.753
Filter
1.
PLoS One ; 19(5): e0299235, 2024.
Article in English | MEDLINE | ID: mdl-38805414

ABSTRACT

In this study, we characterize the exopolymer produced by Halomonas sp. strain TGOS-10 -one of the organisms found enriched in sea surface oil slicks during the Deepwater Horizon oil spill. The polymer was produced during the early stationary phase of growth in Zobell's 2216 marine medium amended with glucose. Chemical and proton NMR analysis showed it to be a relatively monodisperse, high-molecular-mass (6,440,000 g/mol) glycoprotein composed largely of protein (46.6% of total dry weight of polymer). The monosaccharide composition of the polymer is typical to that of other marine bacterial exopolymers which are generally rich in hexoses, with the notable exception that it contained mannose (commonly found in yeast) as a major monosaccharide. The polymer was found to act as an oil dispersant based on its ability to effectively emulsify pure and complex oils into stable oil emulsions-a function we suspect to be conferred by the high protein content and high ratio of total hydrophobic nonpolar to polar amino acids (52.7:11.2) of the polymer. The polymer's chemical composition, which is akin to that of other marine exopolymers also having a high protein-to-carbohydrate (P/C) content, and which have been shown to effect the rapid and non-ionic aggregation of marine gels, appears indicative of effecting marine oil snow (MOS) formation. We previously reported the strain capable of utilising aromatic hydrocarbons when supplied as single carbon sources. However, here we did not detect biodegradation of these chemicals within a complex (surrogate Macondo) oil, suggesting that the observed enrichment of this organism during the Deepwater Horizon spill may be explained by factors related to substrate availability and competition within the complex and dynamic microbial communities that were continuously evolving during that spill.


Subject(s)
Halomonas , Petroleum Pollution , Halomonas/metabolism , Polysaccharides, Bacterial/chemistry , Polysaccharides, Bacterial/metabolism , Petroleum/metabolism , Seawater/microbiology , Seawater/chemistry , Surface-Active Agents/metabolism , Surface-Active Agents/chemistry , Biodegradation, Environmental
2.
Nat Commun ; 15(1): 4048, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38744821

ABSTRACT

Phytoplankton blooms provoke bacterioplankton blooms, from which bacterial biomass (necromass) is released via increased zooplankton grazing and viral lysis. While bacterial consumption of algal biomass during blooms is well-studied, little is known about the concurrent recycling of these substantial amounts of bacterial necromass. We demonstrate that bacterial biomass, such as bacterial alpha-glucan storage polysaccharides, generated from the consumption of algal organic matter, is reused and thus itself a major bacterial carbon source in vitro and during a diatom-dominated bloom. We highlight conserved enzymes and binding proteins of dominant bloom-responder clades that are presumably involved in the recycling of bacterial alpha-glucan by members of the bacterial community. We furthermore demonstrate that the corresponding protein machineries can be specifically induced by extracted alpha-glucan-rich bacterial polysaccharide extracts. This recycling of bacterial necromass likely constitutes a large-scale intra-population energy conservation mechanism that keeps substantial amounts of carbon in a dedicated part of the microbial loop.


Subject(s)
Bacteria , Carbon Cycle , Glucans , Glucans/metabolism , Bacteria/metabolism , Bacteria/classification , Bacteria/genetics , Phytoplankton/metabolism , Biomass , Diatoms/metabolism , Eutrophication , Carbon/metabolism , Zooplankton/metabolism , Polysaccharides, Bacterial/metabolism , Polysaccharides, Bacterial/chemistry , Bacterial Proteins/metabolism
3.
J Microbiol Methods ; 221: 106942, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38704038

ABSTRACT

Methylation analysis was performed on methylated alditol acetate standards and Streptococcus mutans extracellular polymeric substances (EPS) produced from wild-type and Gtf knockout strains (∆GtfB, ∆GtfB, and ∆GtfD). The methylated alditol acetate standards were representative of glycosidic linkages found in S. mutans EPS and were used to calibrate the GC-MS system for an FID detector and MS (TIC) and produce molar response factor, a necessary step in quantitative analysis. FID response factors were consistent with literature values (Sweet et al., 1975) and found to be the superior option for quantitative results, although the TIC response factors now give researchers without access to an FID detector a needed option for molar response factor correction. The GC-MS analysis is then used to deliver the ratio of the linkage types within a biofilm.


Subject(s)
Biofilms , Gas Chromatography-Mass Spectrometry , Polysaccharides, Bacterial , Streptococcus mutans , Biofilms/growth & development , Streptococcus mutans/genetics , Streptococcus mutans/metabolism , Gas Chromatography-Mass Spectrometry/methods , Polysaccharides, Bacterial/metabolism , Glycosides/metabolism , Methylation , Extracellular Polymeric Substance Matrix/metabolism , Extracellular Polymeric Substance Matrix/chemistry , Polysaccharides/metabolism
4.
Proc Natl Acad Sci U S A ; 121(21): e2402554121, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38748580

ABSTRACT

Cell surface glycans are major drivers of antigenic diversity in bacteria. The biochemistry and molecular biology underpinning their synthesis are important in understanding host-pathogen interactions and for vaccine development with emerging chemoenzymatic and glycoengineering approaches. Structural diversity in glycostructures arises from the action of glycosyltransferases (GTs) that use an immense catalog of activated sugar donors to build the repeating unit and modifying enzymes that add further heterogeneity. Classical Leloir GTs incorporate α- or ß-linked sugars by inverting or retaining mechanisms, depending on the nucleotide sugar donor. In contrast, the mechanism of known ribofuranosyltransferases is confined to ß-linkages, so the existence of α-linked ribofuranose in some glycans dictates an alternative strategy. Here, we use Citrobacter youngae O1 and O2 lipopolysaccharide O antigens as prototypes to describe a widespread, versatile pathway for incorporating side-chain α-linked pentofuranoses by extracytoplasmic postpolymerization glycosylation. The pathway requires a polyprenyl phosphoribose synthase to generate a lipid-linked donor, a MATE-family flippase to transport the donor to the periplasm, and a GT-C type GT (founding the GT136 family) that performs the final glycosylation reaction. The characterized system shares similarities, but also fundamental differences, with both cell wall arabinan biosynthesis in mycobacteria, and periplasmic glucosylation of O antigens first discovered in Salmonella and Shigella. The participation of auxiliary epimerases allows the diversification of incorporated pentofuranoses. The results offer insight into a broad concept in microbial glycobiology and provide prototype systems and bioinformatic guides that facilitate discovery of further examples from diverse species, some in currently unknown glycans.


Subject(s)
Glycosyltransferases , Glycosyltransferases/metabolism , Glycosyltransferases/genetics , Glycosylation , Citrobacter/metabolism , Citrobacter/genetics , O Antigens/metabolism , O Antigens/chemistry , Polysaccharides/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , Polysaccharides, Bacterial/metabolism
5.
Viruses ; 16(5)2024 05 13.
Article in English | MEDLINE | ID: mdl-38793652

ABSTRACT

The genus Acinetobacter comprises both environmental and clinically relevant species associated with hospital-acquired infections. Among them, Acinetobacter baumannii is a critical priority bacterial pathogen, for which the research and development of new strategies for antimicrobial treatment are urgently needed. Acinetobacter spp. produce a variety of structurally diverse capsular polysaccharides (CPSs), which surround the bacterial cells with a thick protective layer. These surface structures are primary receptors for capsule-specific bacteriophages, that is, phages carrying tailspikes with CPS-depolymerizing/modifying activities. Phage tailspike proteins (TSPs) exhibit hydrolase, lyase, or esterase activities toward the corresponding CPSs of a certain structure. In this study, the data on all lytic capsule-specific phages infecting Acinetobacter spp. with genomes deposited in the NCBI GenBank database by January 2024 were summarized. Among the 149 identified TSPs encoded in the genomes of 143 phages, the capsular specificity (K specificity) of 46 proteins has been experimentally determined or predicted previously. The specificity of 63 TSPs toward CPSs, produced by various Acinetobacter K types, was predicted in this study using a bioinformatic analysis. A comprehensive phylogenetic analysis confirmed the prediction and revealed the possibility of the genetic exchange of gene regions corresponding to the CPS-recognizing/degrading parts of different TSPs between morphologically and taxonomically distant groups of capsule-specific Acinetobacter phages.


Subject(s)
Acinetobacter , Bacterial Capsules , Bacteriophages , Genome, Viral , Phylogeny , Bacteriophages/genetics , Bacteriophages/enzymology , Bacteriophages/classification , Acinetobacter/virology , Acinetobacter/genetics , Acinetobacter/enzymology , Bacterial Capsules/metabolism , Bacterial Capsules/genetics , Viral Tail Proteins/genetics , Viral Tail Proteins/metabolism , Polysaccharides/metabolism , Polysaccharides, Bacterial/metabolism , Polysaccharides, Bacterial/genetics , Acinetobacter baumannii/virology , Acinetobacter baumannii/genetics , Acinetobacter baumannii/enzymology , Glycoside Hydrolases
6.
Sci Rep ; 14(1): 11011, 2024 05 14.
Article in English | MEDLINE | ID: mdl-38744937

ABSTRACT

Spider silk is a promising material with great potential in biomedical applications due to its incredible mechanical properties and resistance to degradation of commercially available bacterial strains. However, little is known about the bacterial communities that may inhabit spider webs and how these microorganisms interact with spider silk. In this study, we exposed two exopolysaccharide-secreting bacteria, isolated from webs of an orb spider, to major ampullate (MA) silk from host spiders. The naturally occurring lipid and glycoprotein surface layers of MA silk were experimentally removed to further probe the interaction between bacteria and silk. Extensibility of major ampullate silk produced by Triconephila clavata that was exposed to either Microbacterium sp. or Novosphigobium sp. was significantly higher than that of silk that was not exposed to bacteria (differed by 58.7%). This strain-enhancing effect was not observed when the lipid and glycoprotein surface layers of MA silks were removed. The presence of exopolysaccharides was detected through NMR from MA silks exposed to these two bacteria but not from those without exposure. Here we report for the first time that exopolysaccharide-secreting bacteria inhabiting spider webs can enhance extensibility of host MA silks and silk surface layers play a vital role in mediating such effects.


Subject(s)
Silk , Spiders , Animals , Spiders/microbiology , Spiders/metabolism , Silk/metabolism , Bacteria/metabolism , Polysaccharides, Bacterial/metabolism
7.
J Bacteriol ; 206(5): e0004824, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38712944

ABSTRACT

Whole genome sequencing has revealed that the genome of Staphylococcus aureus possesses an uncharacterized 5-gene operon (SAOUHSC_00088-00092 in strain 8325 genome) that encodes factors with functions related to polysaccharide biosynthesis and export, indicating the existence of a new extracellular polysaccharide species. We designate this locus as ssc for staphylococcal surface carbohydrate. We found that the ssc genes were weakly expressed and highly repressed by the global regulator MgrA. To characterize Ssc, Ssc was heterologously expressed in Escherichia coli and extracted by heat treatment. Ssc was also conjugated to AcrA from Campylobacter jejuni in E. coli using protein glycan coupling technology (PGCT). Analysis of the heat-extracted Ssc and the purified Ssc-AcrA glycoconjugate by tandem mass spectrometry revealed that Ssc is likely a polymer consisting of N-acetylgalactosamine. We further demonstrated that the expression of the ssc genes in S. aureus affected phage adsorption and susceptibility, suggesting that Ssc is surface-exposed. IMPORTANCE: Surface polysaccharides play crucial roles in the biology and virulence of bacterial pathogens. Staphylococcus aureus produces four major types of polysaccharides that have been well-characterized. In this study, we identified a new surface polysaccharide containing N-acetylgalactosamine (GalNAc). This marks the first report of GalNAc-containing polysaccharide in S. aureus. Our discovery lays the groundwork for further investigations into the chemical structure, surface location, and role in pathogenesis of this new polysaccharide.


Subject(s)
Acetylgalactosamine , Polysaccharides, Bacterial , Staphylococcus aureus , Staphylococcus aureus/genetics , Staphylococcus aureus/metabolism , Acetylgalactosamine/metabolism , Polysaccharides, Bacterial/metabolism , Polysaccharides, Bacterial/genetics , Polysaccharides, Bacterial/chemistry , Gene Expression Regulation, Bacterial , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Campylobacter jejuni/genetics , Campylobacter jejuni/metabolism
8.
Curr Genet ; 70(1): 7, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38743270

ABSTRACT

Fermented eggplant is a traditional fermented food, however lactic acid bacteria capable of producing exopolysaccharide (EPS) have not yet been exploited. The present study focused on the production and protective effects against oxidative stress of an EPS produced by Lacticaseibacillus paracasei NC4 (NC4-EPS), in addition to deciphering its genomic features and EPS biosynthesis pathway. Among 54 isolates tested, strain NC4 showed the highest EPS yield and antioxidant activity. The maximum EPS production (2.04 ± 0.11 g/L) was achieved by culturing in MRS medium containing 60 g/L sucrose at 37 °C for 48 h. Under 2 mM H2O2 stress, the survival of a yeast model Saccharomyces cerevisiae treated with 0.4 mg/mL NC4-EPS was 2.4-fold better than non-treated cells, which was in agreement with the catalase and superoxide dismutase activities measured from cell lysates. The complete genome of NC4 composed of a circular chromosome of 2,888,896 bp and 3 circular plasmids. The NC4 genome comprises more genes with annotated function in nitrogen metabolism, phosphorus metabolism, cell division and cell cycle, and iron acquisition and metabolism as compared to other reported L. paracasei. Of note, the eps gene cluster is not conserved across L. paracasei. Pathways of sugar metabolism for EPS biosynthesis were proposed for the first time, in which gdp pathway only present in few plant-derived bacteria was identified. These findings shed new light on the cell-protective activity and biosynthesis of EPS produced by L. paracasei, paving the way for future efforts to enhance yield and tailor-made EPS production for food and pharmaceutical industries.


Subject(s)
Fermentation , Lacticaseibacillus paracasei , Oxidative Stress , Polysaccharides, Bacterial , Solanum melongena , Polysaccharides, Bacterial/biosynthesis , Polysaccharides, Bacterial/metabolism , Solanum melongena/microbiology , Solanum melongena/genetics , Solanum melongena/metabolism , Lacticaseibacillus paracasei/metabolism , Lacticaseibacillus paracasei/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Antioxidants/metabolism , Hydrogen Peroxide/metabolism , Genome, Bacterial , Fermented Foods/microbiology , Superoxide Dismutase/metabolism , Superoxide Dismutase/genetics
9.
Microb Pathog ; 191: 106664, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38679245

ABSTRACT

Pseudomonas aeruginosa causes life-threatening diseases and is resistant to almost all conventional antibiotics. The quorum sensing (QS) system of P. aeruginosa contributes to many pathogenic factors some of which are pigment production, motility, and biofilm. The disruption of quorum sensing system may be an impactful strategy to deal with infections. The present study investigates the anti-quorum sensing property of a bioactive molecule extracted from marine epibiotic bacteria present on the surface of seaweeds. Among all the isolates tested against monitor strain Chromobacterium violaceum (MTCC 2656), the one with the highest activity was identified as Bacillus zhangzhouensis SK4. The culture supernatant was extracted with chloroform which was then partially purified by TLC and column chromatography. The probable anti-QS compound was identified as 1,2-benzenedicarboxylic acid, bis (2-methylpropyl ester) by GC-MS and NMR analysis. The treatment of P. aeruginosa MCC 3457 with the lead compound resulted in the reduced production of pyocyanin, rhamnolipids, exopolysaccharide, biofilm, and motility. The observations of light and scanning electron microscopy also supported the biofilm inhibition. The lead compound showed synergism with the meropenem antibiotic and significantly reduced MIC. The molecular docking and pharmacokinetics study predicted 1, 2-benzenedicarboxylic acid, bis (2-methylpropyl ester), a phthalate derivative as a good drug candidate. The molecular dynamics study was also performed to check the stability of the lead compound and LasR complex. Further, lead compounds did not exhibit any cytotoxicity when tested on human embryonic kidney cells. As per our knowledge, this is the first report on the anti-QS activity of B. zhangzhouensis SK4, indicating that epibiotic bacteria can be a possible source of novel compounds to deal with the multidrug resistance phenomenon.


Subject(s)
Anti-Bacterial Agents , Bacillus , Biofilms , Molecular Docking Simulation , Pseudomonas aeruginosa , Quorum Sensing , Virulence Factors , Quorum Sensing/drug effects , Pseudomonas aeruginosa/drug effects , Biofilms/drug effects , Biofilms/growth & development , Virulence Factors/metabolism , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Bacillus/drug effects , Bacillus/chemistry , Bacillus/metabolism , Chromobacterium/drug effects , Microbial Sensitivity Tests , Pyocyanine/metabolism , Bacterial Proteins/metabolism , Glycolipids/pharmacology , Glycolipids/chemistry , Polysaccharides, Bacterial/pharmacology , Polysaccharides, Bacterial/isolation & purification , Polysaccharides, Bacterial/chemistry , Polysaccharides, Bacterial/metabolism
10.
J Am Chem Soc ; 146(17): 11906-11923, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38629727

ABSTRACT

The complex and dynamic compositions of biofilms, along with their sophisticated structural assembly mechanisms, endow them with exceptional capabilities to thrive in diverse conditions that are typically unfavorable for individual cells. Characterizing biofilms in their native state is significantly challenging due to their intrinsic complexities and the limited availability of noninvasive techniques. Here, we utilized solid-state nuclear magnetic resonance (NMR) spectroscopy to analyze Bacillus subtilis biofilms in-depth. Our data uncover a dynamically distinct organization within the biofilm: a dominant, hydrophilic, and mobile framework interspersed with minor, rigid cores of limited water accessibility. In these heterogeneous rigid cores, the major components are largely self-assembled. TasA fibers, the most robust elements, further provide a degree of mechanical support for the cell aggregates and some lipid vesicles. Notably, rigid cell aggregates can persist even without the major extracellular polymeric substance (EPS) polymers, although this leads to slight variations in their rigidity and water accessibility. Exopolysaccharides are exclusively present in the mobile domain, playing a pivotal role in its water retention property. Specifically, all water molecules are tightly bound within the biofilm matrix. These findings reveal a dual-layered defensive strategy within the biofilm: a diffusion barrier through limited water mobility in the mobile phase and a physical barrier posed by limited water accessibility in the rigid phase. Complementing these discoveries, our comprehensive, in situ compositional analysis is not only essential for delineating the sophisticated biofilm architecture but also reveals the presence of alternative genetic mechanisms for synthesizing exopolysaccharides beyond the known pathway.


Subject(s)
Bacillus subtilis , Biofilms , Magnetic Resonance Spectroscopy , Bacillus subtilis/chemistry , Bacillus subtilis/metabolism , Magnetic Resonance Spectroscopy/methods , Polysaccharides, Bacterial/chemistry , Polysaccharides, Bacterial/metabolism
11.
Appl Environ Microbiol ; 90(5): e0033424, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38624197

ABSTRACT

Aggregating strains of Tetragenococcus halophilus tend to be trapped during soy sauce mash-pressing process and are, therefore, critical for clear soy sauce production. However, the precise molecular mechanism involved in T. halophilus aggregation remains elusive. In previous studies, we isolated a number of aggregating strains, including T. halophilus AB4 and AL1, and showed that a cell surface proteinaceous aggregation factor is responsible for their aggregation phenotype. In the present study, we explored the role of polysaccharide intercellular adhesin (PIA) in aggregate formation in T. halophilus SL10, isolated from soy sauce. SL10 exhibited similar aggregation to AB4 and AL1 but formed a non-uniform precipitate with distinctive wrinkles at the bottom of the test tube, unlike AB4 and AL1. Insertion sequence mutations in each gene of the ica operon diminished aggregation and PIA production, highlighting the critical role of IcaADBC-mediated PIA production in T. halophilus aggregation. Furthermore, two non-aggregating cardiolipin synthase (cls) gene mutants with intact ica operon did not produce detectable PIA. Phospholipid composition analysis in cls mutants revealed a decrease in cardiolipin and an increase in phosphatidylglycerol levels, highlighting the association between phospholipid composition and PIA production. These findings provide evidence for the pivotal role of cls in PIA-mediated aggregation and lay the foundation for future studies to understand the intricate networks of the multiple aggregation factors governing microbial aggregation.IMPORTANCEAggregation, commonly observed in various microbes, triggers biofilm formation in pathogenic variants and plays a beneficial role in efficient food production in those used for food production. Here, we showed that Tetragenococcus halophilus, a microorganism used in soy sauce fermentation, forms aggregates in a polysaccharide intercellular adhesin (PIA)-mediated manner. Additionally, we unveiled the relationship between phospholipid composition and PIA production. This study provides evidence for the presence of aggregation factors in T. halophilus other than the proteinaceous aggregation factor and suggests that further understanding of the coordinated action of these factors may improve clarified soy sauce production.


Subject(s)
Phospholipids , Phospholipids/metabolism , Enterococcaceae/metabolism , Enterococcaceae/genetics , Polysaccharides, Bacterial/metabolism , Bacterial Adhesion , Bacterial Proteins/metabolism , Bacterial Proteins/genetics
12.
Sci Total Environ ; 929: 172545, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38636868

ABSTRACT

Microalgal-bacterial symbioses are prevalent in aquatic ecosystems and play a pivotal role in carbon sequestration, significantly contributing to global carbon cycling. The understanding of the contribution of exopolysaccharides (EPSs), a crucial carbon-based component, to the structural integrity of microalgal-bacterial symbioses remains insufficiently elucidated. To address this gap, our study aims to enhance our comprehension of the composition and primary structure of EPSs within a specific type of granular microalgal-bacterial symbiosis named microalgal-bacterial granular sludge (MBGS). Our investigation reveals that the acidic EPSs characteristic of this symbiosis have molecular weights ranging from several hundred thousand to over one million Daltons, including components like glucopyranose, galactopyranose, mannose, and rhamnose. Our elucidation of the backbone linkage of a representative exopolysaccharide revealed a →3)-ß-D-Galp-(1→4)-ß-D-Glcp-(1→ glycosidic linkage. This linear structure closely resembles bacterial xanthan, while the branched chain structure bears similarities to algal EPSs. Our findings highlight the collaborative synthesis of acidic EPSs by both microalgae and bacteria, emphasizing their joint contribution in the production of macromolecules within microalgal-bacterial symbiosis. This collaborative synthesis underscores the intricate molecular interactions contributing to the stability and function of these symbiotic relationships.


Subject(s)
Microalgae , Polysaccharides , Symbiosis , Microalgae/physiology , Polysaccharides/metabolism , Bacteria/metabolism , Polysaccharides, Bacterial/metabolism
13.
Nature ; 628(8009): 901-909, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38570679

ABSTRACT

Capsular polysaccharides (CPSs) fortify the cell boundaries of many commensal and pathogenic bacteria1. Through the ABC-transporter-dependent biosynthesis pathway, CPSs are synthesized intracellularly on a lipid anchor and secreted across the cell envelope by the KpsMT ABC transporter associated with the KpsE and KpsD subunits1,2. Here we use structural and functional studies to uncover crucial steps of CPS secretion in Gram-negative bacteria. We show that KpsMT has broad substrate specificity and is sufficient for the translocation of CPSs across the inner bacterial membrane, and we determine the cell surface organization and localization of CPSs using super-resolution fluorescence microscopy. Cryo-electron microscopy analyses of the KpsMT-KpsE complex in six different states reveal a KpsE-encaged ABC transporter, rigid-body conformational rearrangements of KpsMT during ATP hydrolysis and recognition of a glycolipid inside a membrane-exposed electropositive canyon. In vivo CPS secretion assays underscore the functional importance of canyon-lining basic residues. Combined, our analyses suggest a molecular model of CPS secretion by ABC transporters.


Subject(s)
Bacterial Capsules , Escherichia coli Proteins , Escherichia coli , Polysaccharides, Bacterial , Adenosine Triphosphate/metabolism , ATP-Binding Cassette Transporters/chemistry , ATP-Binding Cassette Transporters/metabolism , ATP-Binding Cassette Transporters/ultrastructure , Bacterial Capsules/metabolism , Bacterial Capsules/chemistry , Bacterial Capsules/ultrastructure , Cell Membrane/chemistry , Cell Membrane/metabolism , Cell Membrane/ultrastructure , Cryoelectron Microscopy , Escherichia coli/chemistry , Escherichia coli/metabolism , Escherichia coli/ultrastructure , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/ultrastructure , Glycolipids/chemistry , Glycolipids/metabolism , Hydrolysis , Microscopy, Fluorescence , Models, Molecular , Polysaccharides, Bacterial/metabolism , Polysaccharides, Bacterial/chemistry , Substrate Specificity
14.
BMC Microbiol ; 24(1): 142, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664612

ABSTRACT

BACKGROUND: The genomic information available for Pediococcus pentosaceus is primarily derived from fermented fruits and vegetables, with less information available from fermented meat. P. pentosaceus LL-07, a strain isolated from fermented meat, has the capability of producing exopolysaccharides (EPS). To assess the probiotic attributes of P. pentosaceus LL-07, we conducted whole-genome sequencing (WGS) using the PacBio SequelIIe and Illumina MiSeq platforms, followed by in vitro experiments to explore its probiotic potential. RESULTS: The genome size of P. pentosaceus LL-07 is 1,782,685 bp, comprising a circular chromosome and a circular plasmid. Our investigation revealed the absence of a CRISPR/Cas system. Sugar fermentation experiments demonstrated the characteristics of carbohydrate metabolism. P. pentosaceus LL-07 contains an EPS synthesis gene cluster consisting of 13 genes, which is different from the currently known gene cluster structure. NO genes associated with hemolysis or toxin synthesis were detected. Additionally, eighty-six genes related to antibiotic resistance were identified but not present in the prophage, transposon or plasmid. In vitro experiments demonstrated that P. pentosaceus LL-07 was comparable to the reference strain P. pentosaceus ATCC25745 in terms of tolerance to artificial digestive juice and bile, autoaggregation and antioxidation, and provided corresponding genomic evidence. CONCLUSION: This study confirmed the safety and probiotic properties of P. pentosaceus LL-07 via complete genome and phenotype analysis, supporting its characterization as a potential probiotic candidate.


Subject(s)
Fermentation , Genome, Bacterial , Pediococcus pentosaceus , Polysaccharides, Bacterial , Probiotics , Pediococcus pentosaceus/genetics , Pediococcus pentosaceus/metabolism , Polysaccharides, Bacterial/metabolism , Polysaccharides, Bacterial/biosynthesis , Whole Genome Sequencing , Fermented Foods/microbiology , Meat/microbiology , Multigene Family , Genomics/methods , Humans , Plasmids/genetics , Food Microbiology
15.
J Food Sci ; 89(5): 3110-3128, 2024 May.
Article in English | MEDLINE | ID: mdl-38591339

ABSTRACT

The simulated digestion and fermentation characteristics in vitro of exopolysaccharide (EPS) of Levilactobacillus brevis M-10 were studied to evaluate its postbiotic properties. The simulated digestion results showed that EPS could not be degraded in saliva but could be very slightly degraded in gastric juice and could be degraded in intestinal juice. The results of simulated fermentation demonstrated that EPS could lower the intestine pH and be utilized by gut microbes to produce short-chain fatty acids such as propionic acid and butyric acid. Meanwhile, EPS significantly raised the diversity of human gut microbiota, and the relative abundances of Phascolarctobacterium were significantly increased, whereas Fusobacterium and Morganella significantly decreased. In conclusion, EPS from L. brevis M-10 was a good postbiotic as inulin. This was the first report about EPS as the postbiotic of L. brevis M-10 screened from broomcorn millet sour porridge in northwestern Shanxi Province, China.


Subject(s)
Digestion , Fermentation , Gastrointestinal Microbiome , Levilactobacillus brevis , Polysaccharides, Bacterial , Humans , Polysaccharides, Bacterial/metabolism , Levilactobacillus brevis/metabolism , Gastrointestinal Microbiome/physiology , Fatty Acids, Volatile/metabolism , Hydrogen-Ion Concentration , Fermented Foods/microbiology , China
16.
J Plant Res ; 137(3): 521-543, 2024 May.
Article in English | MEDLINE | ID: mdl-38460108

ABSTRACT

The present study examined the regulatory mechanism of hydrogen sulfide (H2S) and nitric oxide (NO) in nickel (Ni) stressed cyanobacteria viz., Nostoc muscorum and Anabaena sp. by analyzing growth, photosynthetic pigments, biochemical components (protein and carbohydrate), exopolysaccharides (EPS), inorganic nitrogen content, and activity of enzymes comprised in nitrogen metabolism and Ni accumulation. The 1 µM Ni substantially diminished growth by 18% and 22% in N. muscorum and Anabaena sp. respectively, along with declining the pigment contents (Chl a/Car ratio and phycobiliproteins), and biochemical components. It also exerted negative impacts on inorganic uptake of nitrate and nitrite contents; nitrate reductase and nitrite reductase; and ammonium assimilating enzymes (glutamine synthetase, glutamate synthase, and glutamate dehydrogenase exhibited a reverse trend) activities. Nonetheless, the adverse impact of Ni can be mitigated through the exogenous supplementation of NaHS [sodium hydrosulfide (8 µM); H2S donor] and SNP [sodium nitroprusside (10 µM); NO donor] which showed substantial improvement on growth, pigments, nitrogen metabolism, and EPS layer and noticeably occurred as a consequence of a substantial reduction in Ni accumulation content which minimized the toxicity effects. The accumulation of Ni on both the cyanobacterial cell surface (EPS layer) are confirmed by the SEM-EDX analysis. Further, the addition of NO scavenger (PTIO; 20 µM) and inhibitor of NO (L-NAME; 100 µM); and H2S scavenger (HT; 20 µM) and H2S inhibitor (PAG; 50 µM) reversed the positive responses of H2S and NO and damages were more prominent under Ni stress thereby, suggesting the downstream signaling of H2S on NO-mediated alleviation. Thus, this study concludes the crosstalk mechanism of H2S and NO in the mitigation of Ni-induced toxicity in rice field cyanobacteria.


Subject(s)
Hydrogen Sulfide , Nickel , Nitric Oxide , Nitrogen , Oryza , Nitric Oxide/metabolism , Nickel/metabolism , Hydrogen Sulfide/metabolism , Nitrogen/metabolism , Oryza/metabolism , Oryza/drug effects , Oryza/growth & development , Nostoc muscorum/metabolism , Polysaccharides, Bacterial/metabolism , Anabaena/metabolism , Anabaena/drug effects , Anabaena/growth & development , Stress, Physiological , Nitroprusside/pharmacology
17.
J Microbiol Biotechnol ; 34(5): 1135-1145, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38533592

ABSTRACT

When cells are exposed to freezing temperatures, high concentrations of cryoprotective agents (CPA) prevent ice crystal formation, thus enhancing cell survival. However, high concentrations of CPAs can also cause cell toxicity. Exopolysaccharides (EPSs) from polar marine environments exhibit lower toxicity and display effects similar to traditional CPA. In this study, we sought to address these issues by i) selecting strains that produce EPS with novel cryoprotective activity, and ii) optimizing culture conditions for EPS production. Sixty-six bacteria producing mucous substances were isolated from the Ross Sea (Antarctic Ocean) using solid marine agar plates. Among them, Pseudoalteromonas sp. RosPo-2 was ultimately selected based on the rheological properties of the produced EPS (p-CY02). Cryoprotective activity experiments demonstrated that p-CY02 exhibited significantly cryoprotective activity at a concentration of 0.8% (w/v) on mammalian cells (HaCaT). This activity was further improved when combined with various concentrations of dimethyl sulfoxide (DMSO) compared to using DMSO alone. Moreover, the survival rate of HaCaT cells treated with 5% (v/v) DMSO and 0.8% (w/v) p-CY02 was measured at 87.9 ± 2.8% after freezing treatment. This suggests that p-CY02 may be developed as a more effective, less toxic, and novel non-permeating CPA. To enhance the production of EPS with cryoprotective activity, Response Surface Methodology (RSM) was implemented, resulting in a 1.64-fold increase in production of EPS with cryoprotective activity.


Subject(s)
Cell Survival , Cryoprotective Agents , Culture Media , Polysaccharides, Bacterial , Pseudoalteromonas , Pseudoalteromonas/metabolism , Polysaccharides, Bacterial/pharmacology , Polysaccharides, Bacterial/biosynthesis , Polysaccharides, Bacterial/metabolism , Cryoprotective Agents/pharmacology , Cryoprotective Agents/metabolism , Culture Media/chemistry , Antarctic Regions , Humans , Cell Survival/drug effects , Dimethyl Sulfoxide/pharmacology , Dimethyl Sulfoxide/metabolism , HaCaT Cells , Cell Line , Seawater/microbiology
18.
Carbohydr Polym ; 334: 122008, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38553201

ABSTRACT

Gellan gum (GG) has attracted considerable attention as a versatile biopolymer with numerous potential biological applications, especially in the fields of tissue engineering, wound healing, and cargo delivery. Due to its distinctive characteristics like biocompatibility, biodegradability, nontoxicity, and gel-forming ability, GG is well-suited for these applications. This review focuses on recent research on GG-based hydrogels and biocomposites and their biomedical applications. It discusses the incorporation of GG into hydrogels for controlled drug release, its role in promoting wound healing processes, and its potential in tissue engineering for various tissues including bone, retina, cartilage, vascular, adipose, and cardiac tissue. It provides an in-depth analysis of the latest findings and advancements in these areas, making it a valuable resource for researchers and professionals in these fields.


Subject(s)
Cartilage , Tissue Engineering , Cartilage/metabolism , Bone and Bones , Polysaccharides, Bacterial/metabolism , Hydrogels/pharmacology , Hydrogels/metabolism
19.
Cell ; 187(8): 1874-1888.e14, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38518773

ABSTRACT

Infections of the lung cause observable sickness thought to be secondary to inflammation. Signs of sickness are crucial to alert others via behavioral-immune responses to limit contact with contagious individuals. Gram-negative bacteria produce exopolysaccharide (EPS) that provides microbial protection; however, the impact of EPS on sickness remains uncertain. Using genome-engineered Pseudomonas aeruginosa (P. aeruginosa) strains, we compared EPS-producers versus non-producers and a virulent Escherichia coli (E. coli) lung infection model in male and female mice. EPS-negative P. aeruginosa and virulent E. coli infection caused severe sickness, behavioral alterations, inflammation, and hypothermia mediated by TLR4 detection of the exposed lipopolysaccharide (LPS) in lung TRPV1+ sensory neurons. However, inflammation did not account for sickness. Stimulation of lung nociceptors induced acute stress responses in the paraventricular hypothalamic nuclei by activating corticotropin-releasing hormone neurons responsible for sickness behavior and hypothermia. Thus, EPS-producing biofilm pathogens evade initiating a lung-brain sensory neuronal response that results in sickness.


Subject(s)
Escherichia coli Infections , Escherichia coli , Lung , Polysaccharides, Bacterial , Pseudomonas Infections , Pseudomonas aeruginosa , Animals , Female , Male , Mice , Biofilms , Escherichia coli/physiology , Hypothermia/metabolism , Hypothermia/pathology , Inflammation/metabolism , Inflammation/pathology , Lung/microbiology , Lung/pathology , Pneumonia/microbiology , Pneumonia/pathology , Pseudomonas aeruginosa/physiology , Sensory Receptor Cells , Polysaccharides, Bacterial/metabolism , Escherichia coli Infections/metabolism , Escherichia coli Infections/microbiology , Escherichia coli Infections/pathology , Pseudomonas Infections/metabolism , Pseudomonas Infections/microbiology , Pseudomonas Infections/pathology , Nociceptors/metabolism
20.
Biochemistry ; 63(5): 699-710, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38386885

ABSTRACT

Campylobacter jejuni is a Gram-negative pathogenic bacterium commonly found in chickens and is the leading cause of human diarrheal disease worldwide. The various serotypes of C. jejuni produce structurally distinct capsular polysaccharides (CPSs) on the exterior surfaces of the cell wall. The capsular polysaccharide from C. jejuni serotype HS:5 is composed of a repeating sequence of d-glycero-d-manno-heptose and d-glucitol-6-phosphate. We previously defined the pathway for the production of d-glycero-d-manno-heptose in C. jejuni. Here, we elucidate the biosynthetic pathway for the assembly of cytidine diphosphate (CDP)-6-d-glucitol by the combined action of two previously uncharacterized enzymes. The first enzyme catalyzes the formation of CDP-6-d-fructose from cytidine triphosphate (CTP) and d-fructose-6-phosphate. The second enzyme reduces CDP-6-d-fructose with NADPH to generate CDP-6-d-glucitol. Using sequence similarity network (SSN) and genome neighborhood network (GNN) analyses, we predict that these pairs of proteins are responsible for the biosynthesis of CDP-6-d-glucitol and/or CDP-d-mannitol in the lipopolysaccharides (LPSs) and capsular polysaccharides in more than 200 other organisms. In addition, high resolution X-ray structures of the second enzyme are reported, which provide novel insight into the manner in which an open-chain nucleotide-linked sugar is harbored in an active site cleft.


Subject(s)
Campylobacter jejuni , Animals , Humans , Sorbitol/metabolism , Chickens/metabolism , Polysaccharides/metabolism , Cytidine Diphosphate/metabolism , Fructose/metabolism , Polysaccharides, Bacterial/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...