Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.997
Filter
1.
AAPS PharmSciTech ; 25(5): 102, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38714592

ABSTRACT

Freezing of biological drug substance (DS) is a critical unit operation that may impact product quality, potentially leading to protein aggregation and sub-visible particle formation. Cryo-concentration has been identified as a critical parameter to impact protein stability during freezing and should therefore be minimized. The macroscopic cryo-concentration, in the following only referred to as cryo-concentration, is majorly influenced by the freezing rate, which is in turn impacted by product independent process parameters such as the DS container, its size and fill level, and the freezing equipment. (At-scale) process characterization studies are crucial to understand and optimize freezing processes. However, evaluating cryo-concentration requires sampling of the frozen bulk, which is typically performed by cutting the ice block into pieces for subsequent analysis. Also, the large amount of product requirement for these studies is a major limitation. In this study, we report the development of a simple methodology for experimental characterization of frozen DS in bottles at relevant scale using a surrogate solution. The novel ice core sampling technique identifies the axial ice core in the center to be indicative for cryo-concentration, which was measured by osmolality, and concentrations of histidine and polysorbate 80 (PS80), whereas osmolality revealed to be a sensitive read-out. Finally, we exemplify the suitability of the method to study cryo-concentration in DS bottles by comparing cryo-concentrations from different freezing protocols (-80°C vs -40°C). Prolonged stress times during freezing correlated to a higher extent of cryo-concentration quantified by osmolality in the axial center of a 2 L DS bottle.


Subject(s)
Drug Packaging , Freezing , Ice , Drug Packaging/methods , Osmolar Concentration , Polysorbates/chemistry , Histidine/chemistry , Biological Products/chemistry
2.
Rapid Commun Mass Spectrom ; 38(14): e9764, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38714901

ABSTRACT

RATIONALE: Various medium formulations contain essential fatty acids at concentrations ranging from 10 to 100 mg/L. Accurate and precise lipid measurement in media is crucial for monitoring media quality and conducting studies on lipids in the context of cell culture. This study employed two-dimensional gas chromatography (GC × GC) analyses to offer enhanced resolution, sensitivity, and separation performance compared to GC. METHODS: Quantification of fatty acid methyl esters (FAMEs) in a medium was conducted using GC × GC combined with a high-resolution mass spectrometer and flame ionization detector, considering potential interference from nonionic surfactant Tween 80, which was precipitated and removed by optimizing the concentration of cobalt thiocyanate (CTA) solution during pretreatment. This advanced analytical approach enabled identification of cis and trans isomers of identical molecular weights and determination of the location and number of double bonds in the same carbon number structure. RESULTS: Our analysis identified 36 FAMEs within the C6-C24 region, and a 5% CTA solution was optimal for efficient removal of Tween 80 during lipid extraction. Additionally, this advanced method minimized FAME contamination and loss during pretreatment, thereby significantly reducing the sample volume required to detect trace levels of FAMEs. This improvement led to a fatty acid recovery rate of 106% while maintaining the average relative standard deviation for the target FAMEs of about 3%. CONCLUSIONS: Our research paves the way for future investigation into medium quality control and the role of fatty acids in cell culture. This offers the possibility for economical and effective trace quantification of fatty acids in complex media.


Subject(s)
Fatty Acids , Fatty Acids/analysis , Fatty Acids/chemistry , Culture Media/chemistry , Gas Chromatography-Mass Spectrometry/methods , Polysorbates/chemistry , Polysorbates/analysis
3.
Biol Pharm Bull ; 47(5): 997-999, 2024.
Article in English | MEDLINE | ID: mdl-38777759

ABSTRACT

Patch tests are often used in safety evaluations to identify the substance causing skin irritation, but the same substance can sometimes give positive or negative results depending on the test conditions. Here, we investigated differences in the skin penetration of two test compounds under different application conditions. We studied the effects of the anionic surfactant sodium dodecyl sulfate (SDS) and the nonionic surfactant polysorbate 80 (PS) on skin penetration of the preservatives methylisothiazolinone (MT) and methylchloroisothiazolinone (MCT), which are used in cosmetics such as shampoos. The skin permeation of MT was enhanced by SDS but was unchanged by PS. Skin impedance decreased in the presence of SDS whereas PS had the same effect as the control aqueous solution, suggesting that SDS reduction of the barrier function of skin affects the permeation of MT, a hydrophilic drug. Application of a mixture of MCT and MT in the presence of SDS did not affect the skin permeation of MCT whereas the permeation of MT was enhanced by SDS, indicating that the skin permeation of MCT is less affected by SDS than is MT. Thus, attention should be paid to the possible effect of co-solutes, especially hydrophilic drugs.


Subject(s)
Polysorbates , Skin Absorption , Skin , Sodium Dodecyl Sulfate , Surface-Active Agents , Thiazoles , Thiazoles/pharmacokinetics , Surface-Active Agents/pharmacology , Skin Absorption/drug effects , Polysorbates/pharmacology , Skin/metabolism , Skin/drug effects , Animals , Preservatives, Pharmaceutical , Swine , Cosmetics/pharmacokinetics , Electric Impedance , Permeability/drug effects
4.
Immunity ; 57(5): 1160-1176.e7, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38697118

ABSTRACT

Multimodal single-cell profiling methods can capture immune cell variations unfolding over time at the molecular, cellular, and population levels. Transforming these data into biological insights remains challenging. Here, we introduce a framework to integrate variations at the human population and single-cell levels in vaccination responses. Comparing responses following AS03-adjuvanted versus unadjuvanted influenza vaccines with CITE-seq revealed AS03-specific early (day 1) response phenotypes, including a B cell signature of elevated germinal center competition. A correlated network of cell-type-specific transcriptional states defined the baseline immune status associated with high antibody responders to the unadjuvanted vaccine. Certain innate subsets in the network appeared "naturally adjuvanted," with transcriptional states resembling those induced uniquely by AS03-adjuvanted vaccination. Consistently, CD14+ monocytes from high responders at baseline had elevated phospho-signaling responses to lipopolysaccharide stimulation. Our findings link baseline immune setpoints to early vaccine responses, with positive implications for adjuvant development and immune response engineering.


Subject(s)
B-Lymphocytes , Influenza Vaccines , Single-Cell Analysis , Humans , Influenza Vaccines/immunology , B-Lymphocytes/immunology , Germinal Center/immunology , Influenza, Human/immunology , Influenza, Human/prevention & control , Vaccination , Antibodies, Viral/immunology , Adjuvants, Immunologic , Adjuvants, Vaccine , Monocytes/immunology , Polysorbates , Squalene/immunology , Immunity, Innate/immunology
5.
PLoS One ; 19(5): e0295849, 2024.
Article in English | MEDLINE | ID: mdl-38696491

ABSTRACT

INTRODUCTION: Microfluidic resistive pulse sensing (MRPS) can determine the concentration and size distribution of extracellular vesicles (EVs) by measuring the electrical resistance of single EVs passing through a pore. To ensure that the sample flows through the pore, the sample needs to contain a wetting agent, such as bovine serum albumin (BSA). BSA leaves EVs intact but occasionally results in unstable MRPS measurements. Here, we aim to find a new wetting agent by evaluating Poloxamer-188 and Tween-20. METHODS: An EV test sample was prepared using an outdated erythrocyte blood bank concentrate. The EV test sample was diluted in Dulbecco's phosphate-buffered saline (DPBS) or DPBS containing 0.10% BSA (w/v), 0.050% Poloxamer-188 (v/v) or 1.00% Tween-20 (v/v). The effect of the wetting agents on the concentration and size distribution of EVs was determined by flow cytometry. To evaluate the precision of sample volume determination with MRPS, the interquartile range (IQR) of the particles transit time through the pore was examined. To validate that DPBS containing Poloxamer-188 yields reliable MRPS measurements, the repeatability of MRPS in measuring blood plasma samples was examined. RESULTS: Flow cytometry results show that the size distribution of EVs in Tween 20, in contrast to Poloxamer-188, differs from the control measurements (DPBS and DPBS containing BSA). MRPS results show that Poloxamer-188 improves the precision of sample volume determination compared to BSA and Tween-20, because the IQR of the transit time of EVs in the test sample is 11 µs, which is lower than 56 µs for BSA and 16 µs for Tween-20. Furthermore, the IQR of the transit time of particles in blood samples with Poloxamer-188 are 14, 16, and 14 µs, which confirms the reliability of MRPS measurements. CONCLUSION: The solution of 0.050% Poloxamer-188 in DPBS does not lyse EVs and results in repeatable and unimpeded MRPS measurements.


Subject(s)
Extracellular Vesicles , Poloxamer , Poloxamer/chemistry , Extracellular Vesicles/metabolism , Extracellular Vesicles/chemistry , Humans , Polysorbates/chemistry , Serum Albumin, Bovine/chemistry , Microfluidics/methods , Wettability , Microfluidic Analytical Techniques/instrumentation , Microfluidic Analytical Techniques/methods , Animals
6.
Food Chem ; 451: 139404, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38714112

ABSTRACT

Models predicting lipid oxidation in oil-in-water (O/W) emulsions are a requirement for developing effective antioxidant solutions. Existing models do, however, not include explicit equations that account for composition and structural features of O/W emulsions. To bridge this gap, a mechanistic kinetic model for lipid oxidation in emulsions is presented, describing the emulsion as a one-dimensional three phase (headspace, water, and oil) system. Variation in oil droplet sizes, overall surface area of oil/water interface, oxidation of emulsifiers, and the presence of catalytic transition metals were accounted for. For adequate predictions, the overall surface area of oil/water interface needs to be determined from the droplet size distribution obtained by dynamic and static light scattering (DLS, SLS). The kinetic model predicted well the formation of oxidation products in both mono- and polydisperse emulsions, with and without presence of catalytic transition metals.


Subject(s)
Emulsions , Lipids , Oxidation-Reduction , Polysorbates , Emulsions/chemistry , Kinetics , Polysorbates/chemistry , Lipids/chemistry , Water/chemistry , Particle Size , Models, Chemical , Oils/chemistry
7.
Environ Monit Assess ; 196(5): 430, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38578570

ABSTRACT

Arsenic contamination in soils poses a critical global challenge, yet the influence of surfactants on arsenic adsorption behavior is often underestimated. This study aims to investigate the effects of three representative surfactants, namely cetyltrimethylammonium bromide (CTAB), sodium dodecyl sulfate (SDS), and polyethylene glycol anhydrous sugar alcohol monooleate (Tween 80), on arsenic adsorption behavior in soils. The adsorption isotherm shifts from a single Temkin model without surfactants to both the Langmuir and Temkin models in the presence of surfactants, indicating the simultaneous occurrence of monolayer and multilayer adsorption for arsenic in soils. Moreover, the surfactants can inhibit the adsorption and hasten the attainment of adsorption equilibrium. SDS displayed the most inhibitory effect on arsenic adsorption, followed by Tween 80 and CTAB, due to the competitive adsorption, electrostatic interaction, and hydrophobic interaction. Variations in zeta potential with different surfactants further elucidate this inhibitory phenomenon. Through orthogonal experiment analyses, pH emerges as a primary factor influencing arsenic adsorption in soils, with surfactant concentration and type identified as secondary factors. Temperature notably affects CTAB, with the adsorption inhibition rate plummeting to a mere 0.88% at 50 °C. Sequential extraction analysis revealed that surfactants enhanced the bioavailability of arsenic. The FTIR, XRD, SEM, and CA analyses further support the mechanism underlying the effect of surfactants on arsenic adsorption in soil. These analyses indicate that surfactants modify the composition and abundance of functional groups, hinder the formation of arsenic-containing substances, and improve soil compactness, smoothness, and hydrophilicity. This study provides valuable insights into the effect of surfactants in arsenic-contaminated soils, which is often ignored in previous work.


Subject(s)
Arsenic , Surface-Active Agents , Surface-Active Agents/chemistry , Soil/chemistry , Polysorbates , Cetrimonium , Adsorption , Arsenic/chemistry , Environmental Monitoring
8.
Neuropharmacology ; 253: 109969, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38688422

ABSTRACT

This study aimed to develop polysorbate 80-coated chitosan nanoparticles (PS80/CS NPs) as a delivery system for improved brain targeting of α-Melanocyte Stimulating Hormone analog (NDP-MSH). Chitosan nanoparticles loaded with NDP-MSH were surface-modified with polysorbate 80 ([NDP-MSH]-PS80/CS NP), which formed a flattened layer on their surface. Nanoparticle preparation involved ionic gelation, followed by characterization using scanning electron microscopy (SEM) for morphology, dynamic light scattering (DLS) for colloidal properties, and ATR-FTIR spectroscopy for structure. Intraperitoneal injection of FITC-PS80/CS NPs and [NDP-MSH]-PS80/CS NP in rats demonstrated their ability to cross the blood-brain barrier, reach the brain, and accumulate in CA1 neurons of the dorsal hippocampus within 2 h. Two experimental models of neuroinflammation were employed with Male Wistar rats: a short-term model involving high-fat diet (HFD) consumption for 5 days followed by an immune stimulus with LPS, and a long-term model involving HFD consumption for 8 weeks. In both models, [NDP-MSH]-PS80/CS NPs could reverse the decreased expression of contextual fear memory induced by the diets. These findings suggest that [NDP-MSH]-PS80/CS NPs offer a promising strategy to overcome the limitations of NDP-MSH regarding pharmacokinetics and enzymatic stability. By facilitating NDP-MSH delivery to the hippocampus, these nanoparticles can potentially mitigate the cognitive impairments associated with HFD consumption and neuroinflammation.


Subject(s)
Brain , Chitosan , Cognitive Dysfunction , Diet, High-Fat , Nanoparticles , Polysorbates , Rats, Wistar , alpha-MSH , Animals , Chitosan/administration & dosage , Chitosan/chemistry , Male , alpha-MSH/administration & dosage , alpha-MSH/analogs & derivatives , Polysorbates/chemistry , Polysorbates/administration & dosage , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/drug therapy , Nanoparticles/administration & dosage , Diet, High-Fat/adverse effects , Brain/metabolism , Brain/drug effects , Neuroinflammatory Diseases/metabolism , Neuroinflammatory Diseases/drug therapy , Rats
9.
Anal Chem ; 96(17): 6746-6755, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38632675

ABSTRACT

Nonionic surfactant excipients (NISEs) are commonly added to biologics formulations to mitigate the effects of stress incurred by the active biotherapeutic during manufacturing, transport, and storage. During manufacturing, NISEs are added by dilution of a stock solution directly into a protein formulation, and their accurate addition is critical in maintaining the quality and integrity of the drug product and thus ensuring patient safety. This is especially true for the common NISEs, polysorbates 20 and 80 (PS20 and PS80, respectively) and poloxamer 188 (P188). With the increasing diversity of biologic modalities within modern pharmaceutical pipelines, there is thus a critical need to develop and deploy convenient and user-accessible analytical techniques that can rapidly and reliably quantify these NISEs under biopharmaceutically relevant conditions. We thus pursued 60 MHz benchtop quantitative NMR (qNMR) as a nondestructive and user-friendly analytical technique for the quantification of PS20, PS80, and P188 under such conditions. We demonstrated the ability of benchtop qNMR (1) to quantify simulated PS20, PS80, and P188 stock solutions representative of those used during the drug substance (DS) formulation step in biomanufacturing and (2) to quantify these NISEs at and below their target concentrations (≤0.025% w/v) directly in biologics formulations containing histidine, sucrose, and one of three biotherapeutic modalities (monoclonal antibody, antibody-drug conjugate, and Fc-fusion protein). Our results demonstrate that benchtop qNMR offers a fit-for-purpose, reliable, user-friendly, and green analytical route by which NISE of interest to the biopharmaceutical industry may be readily and reliably quantified. We conclude that benchtop qNMR has the potential to be applied to other excipient formulation components in the presence of various biological modalities as well as the potential for routine integration within analytical and QC laboratories across pharmaceutical development and manufacturing sites.


Subject(s)
Excipients , Magnetic Resonance Spectroscopy , Surface-Active Agents , Surface-Active Agents/chemistry , Excipients/chemistry , Excipients/analysis , Magnetic Resonance Spectroscopy/methods , Polysorbates/chemistry , Poloxamer/chemistry , Biological Products/chemistry , Biological Products/analysis
10.
Int J Pharm ; 656: 124120, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38621613

ABSTRACT

While various non-ionic surfactants at low concentrations have been shown to increase the transport of P-gp substrates in vitro, in vivo studies in rats have shown that a higher surfactant concentration is needed to increase the oral absorption of e.g. the P-gp substrates digoxin and etoposide. The aim of the present study was to investigate if intestinal digestion of surfactants could be the reason for this deviation between in vitro and in vivo data. Therefore, Kolliphor EL, Brij-L23, Labrasol and polysorbate 20 were investigated for their ability to inhibit P-gp and increase digoxin absorption in vitro. Transport studies were performed in Caco-2 cells, while P-gp inhibition and cell viability assays were performed in MDCKII-MDR1 cells. Polysorbate 20, Kolliphor EL and Brij-L23 increased absorptive transport and decreased secretory digoxin transport in Caco-2 cells, whereas only polysorbate 20 and Brij-L23 showed P-gp inhibiting properties in the MDCKII-MDR1 cells. Polysorbate 20 and Brij-L23 were chosen for in vitro digestion prior to transport- or P-gp inhibiting assays. Brij-L23 was not digestible, whereas polysorbate 20 reached a degree of digestion around 40%. Neither of the two surfactants showed any significant difference in their ability to affect absorptive or secretory transport of digoxin after pre-digestion. Furthermore, the P-gp inhibiting effects of polysorbate 20 were not decreased significantly. In conclusion, the mechanism behind the non-ionic surfactant mediated in vitro P-gp inhibition seemed independent of the intestinal digestion and the results presented here did not suggest it to be the cause of the observed discrepancy between in vitro and in vivo.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1 , Digoxin , Polysorbates , Surface-Active Agents , Animals , Dogs , Humans , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , ATP Binding Cassette Transporter, Subfamily B, Member 1/antagonists & inhibitors , Biological Transport/drug effects , Caco-2 Cells , Cell Survival/drug effects , Digestion/drug effects , Digoxin/pharmacokinetics , Glycerides/metabolism , Intestinal Absorption/drug effects , Madin Darby Canine Kidney Cells , Polysorbates/pharmacology , Surface-Active Agents/pharmacology
11.
Int J Biol Macromol ; 268(Pt 1): 131921, 2024 May.
Article in English | MEDLINE | ID: mdl-38679265

ABSTRACT

In order to load fish oil for potential encapsulation of fat-soluble functional active substances, fish oil-loaded multicore submillimeter-sized capsules were prepared with a combination method of three strategies (monoaxial electrospraying, chitosan-tripolyphosphate ionotropic gelation, and Tween blending). The chitosan-tripolyphosphate/Tween (20, 40, 60, and 80) capsules had smaller and evener fish oil cores than the chitosan-tripolyphosphate capsules, which resulted from that Tween addition induced smaller and evener fish oil droplets in the emulsions. Tween addition decreased the water contents from 56.6 % to 35.0 %-43.4 %, increased the loading capacities from 10.4 % to 12.7 %-17.2 %, and increased encapsulation efficiencies from 97.4 % to 97.8 %-99.1 %. In addition, Tween addition also decreased the highest peroxide values from 417 meq/kg oil to 173-262 meq/kg oil. These properties' changes might result from the structural differences between the chitosan-tripolyphosphate and chitosan-tripolyphosphate/Tween capsules. All the results suggested that the obtained chitosan-tripolyphosphate/Tween capsules are promising carriers for fish oil encapsulation. This work also provided useful knowledge to understand the preparation, structural, and physicochemical properties of the chitosan-tripolyphosphate capsules.


Subject(s)
Capsules , Chitosan , Fish Oils , Polysorbates , Chitosan/chemistry , Chitosan/analogs & derivatives , Fish Oils/chemistry , Polysorbates/chemistry , Emulsions/chemistry , Gels/chemistry , Particle Size , Water/chemistry
12.
J Pharm Biomed Anal ; 245: 116145, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38631071

ABSTRACT

Non-ionic surfactants such as Polysorbate 20/ 80 (PS20/ PS80), are commonly used in protein drug formulations to increase protein stability by protecting against interfacial stress and surface absorption. Polysorbate is susceptible to degradation which can impact product stability, leading to the formation of sub-visible and/or visible particles in the drug product during its shelf-life, affecting patient safety and efficacy. Therefore, it is important to monitor polysorbate concentration in drug product formulations of biotherapeutic drugs. The common method for measuring polysorbate concentration in drug product formulations uses mixed mode ion exchange reversed phase HPLC (MAX) coupled to evaporative light scattering detection (ELSD). However, high protein concentration can adversely impact method performance due to high sample viscosity, gel formation, column clogging, interfering peaks and loss of accuracy. To overcome this, a new method was developed based on EDTA mediated ethanol protein precipitation (EDTA/EtOH). This method was successfully implemented for the analysis of polysorbate in antibody formulations with wide range of protein concentration (10-250 mg/mL).


Subject(s)
Chemical Precipitation , Edetic Acid , Ethanol , Polysorbates , Surface-Active Agents , Polysorbates/chemistry , Polysorbates/analysis , Edetic Acid/chemistry , Ethanol/chemistry , Surface-Active Agents/chemistry , Chromatography, High Pressure Liquid/methods , Proteins/analysis , Proteins/chemistry , Chemistry, Pharmaceutical/methods , Protein Stability , Biological Products/analysis , Biological Products/chemistry
13.
Sci Immunol ; 9(94): eadi8039, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38579013

ABSTRACT

Vaccine adjuvants increase the breadth of serum antibody responses, but whether this is due to the generation of antigen-specific B cell clones with distinct specificities or the maturation of memory B cell clones that produce broadly cross-reactive antibodies is unknown. Here, we longitudinally analyzed immune responses in healthy adults after two-dose vaccination with either a virus-like particle COVID-19 vaccine (CoVLP), CoVLP adjuvanted with AS03 (CoVLP+AS03), or a messenger RNA vaccination (mRNA-1273). CoVLP+AS03 enhanced the magnitude and durability of circulating antibodies and antigen-specific CD4+ T cell and memory B cell responses. Antigen-specific CD4+ T cells in the CoVLP+AS03 group at day 42 correlated with antigen-specific memory B cells at 6 months. CoVLP+AS03 induced memory B cell responses, which accumulated somatic hypermutations over 6 months, resulting in enhanced neutralization breadth of monoclonal antibodies. Furthermore, the fraction of broadly neutralizing antibodies encoded by memory B cells increased between day 42 and 6 months. These results indicate that AS03 enhances the antigenic breadth of B cell memory at the clonal level and induces progressive maturation of the B cell response.


Subject(s)
COVID-19 , Influenza Vaccines , Influenza, Human , Polysorbates , Squalene , alpha-Tocopherol , Adult , Humans , Memory B Cells , COVID-19 Vaccines , Antibodies, Viral , COVID-19/prevention & control , Drug Combinations
14.
Int J Biol Macromol ; 266(Pt 2): 131370, 2024 May.
Article in English | MEDLINE | ID: mdl-38580027

ABSTRACT

Garlic essential oil (GEO) is a potential natural antioxidant and antimicrobial agent for food preservation, but its intrinsic low water-solubility, high volatility and poor stability severely limit its application and promotion. In this work, we investigated the synergistic stabilization of the GEO-in-water nanoemulsion using carboxymethyl chitosan (CCS) and Tween 80 (TW 80). Additionally, the nanoemulsion was fabricated through high-pressure microfluidization and utilized for the coating-mediated preservation of chilled pork. The garlic essential oil nanoemulsion (GEON) with 3.0 % CCS and 3.0 % TW 80 exhibited more homogeneous droplet size (around 150 nm) and narrower size distribution, while maintained long-term stability with no significant change in size during 30 d storage. Compared with free GEO, the GEONs exhibited a higher scavenging capacity to DPPH and ABTS free radicals as well as higher inhibitory effects against Escherichia coli and Staphylococcus aureus, suggesting that the encapsulation of GEO in nanoemulsion considerably improved its antioxidant and antibacterial activities. Furthermore, the results of coating preservation experiments showed that the GEON coating effectively expanded the shelf-life of chilled fresh pork for approximately one week. Altogether, this study would guide the development of GEO-loaded nanoemulsions, and promote GEON as a promising alternative for coating preservation of chilled fresh meat.


Subject(s)
Antioxidants , Chitosan , Chitosan/analogs & derivatives , Emulsions , Food Preservation , Garlic , Oils, Volatile , Polysorbates , Chitosan/chemistry , Chitosan/pharmacology , Oils, Volatile/chemistry , Oils, Volatile/pharmacology , Emulsions/chemistry , Food Preservation/methods , Animals , Polysorbates/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Swine , Garlic/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Staphylococcus aureus/drug effects , Escherichia coli/drug effects , Pork Meat
15.
Food Res Int ; 184: 114269, 2024 May.
Article in English | MEDLINE | ID: mdl-38609247

ABSTRACT

An O1/W/O2 double emulsion gel, as a functional fat substitute and based on nanoemulsions and hydrophobic Pickering particles, is prepared by two-step emulsification to co-encapsulate hydrophilic cyanidin and hydrophobic quercetin. Nanoemulsions loading quercetin are fabricated by Tween-80 and combining high-speed and high-pressure emulsification. Phytosterol nanoparticles stabilize the W-O2 interface of the secondary emulsion to load cyanidin in the W phase. The concentration of Tween-80 is optimized as 0.3% by the droplet size and viscosity of nanoemulsions. The structural stability of double emulsion gels will be weakened along with the increase of nanoemulsions, showing lower modulus and encapsulation efficiency (EE) and bigger droplets. In double emulsion gels, the EE of quercetin and cyanidin reaches 93% and 85.6%, respectively. Analysis of molecular interaction indicates that Tween-80 would decrease the in-situ hydrophobicity of phytosterol nanoparticles by hydrogen bonding adsorption, thereby weakening the emulsification. The pH-chromic 3D printing of double emulsion gels is designed according to the pH sensitivity of cyanidin. Texture profile analysis is performed to test the textural properties of 3D-printed objects. The simulated digestion is conducted on double emulsion gels. The double emulsion gel with fewer nanoemulsions is beneficial for protecting quercetin and improving the delivery due to the higher structural stability, while that with more nanoemulsions is conducive to the digestion of cyanidin and camellia oil due to weakened semi-solid properties. This double emulsion gel further simulates fat tissues by co-encapsulating hydrophilic and hydrophobic substances, promoting the application of fat substitutes in the food industry.


Subject(s)
Anthocyanins , Fat Substitutes , Phytosterols , Emulsions , Polysorbates , Quercetin , Gels
16.
Food Res Int ; 184: 114205, 2024 May.
Article in English | MEDLINE | ID: mdl-38609253

ABSTRACT

With the advent of industrialization, there has been a substantial increase in the production and consumption of ultra-processed foods (UPFs). These processed foods often contain artificially synthesized additives, such as emulsifiers. Emulsifiers constitute approximately half of the total amount of food additives, with Tween 80 being a commonly used emulsifier in the food industry. Concurrently, China is undergoing significant demographic changes, transitioning into an aging society. Despite this demographic shift, there is insufficient research on the health implications of food emulsifiers, particularly on the elderly population. In this study, we present novel findings indicating that even at low concentrations, Tween 80 suppressed the viability of multiple cell types. Prolonged in vivo exposure to 1 % Tween 80 in drinking water induced liver lipid accumulation and insulin resistance in young adult mice under a regular chow diet. Intriguingly, in mice with high-fat diet (HFD) induced metabolic dysfunction-associated steatotic liver disease (MASLD), this inductive effect was masked. In aged mice, liver lipid accumulation was replicated under prolonged Tween 80 exposure. We further revealed that Tween 80 induced inflammation in both adult and aged mice, with a more pronounced inflammation in aged mice. In conclusion, our study provides compelling evidence that Tween 80 could contribute to a low-grade inflammation and liver lipid accumulation. These findings underscore the need for increasing attention regarding the consumption of UPFs with Tween 80 as the emulsifier, particularly in the elderly consumers.


Subject(s)
Fatty Liver , Polysorbates , Humans , Aged , Young Adult , Animals , Mice , Polysorbates/adverse effects , Diet, High-Fat , Emulsifying Agents/adverse effects , Inflammation , Lipids
17.
Influenza Other Respir Viruses ; 18(4): e13288, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38644564

ABSTRACT

BACKGROUND: Adults ≥ 65 years of age have suboptimal influenza vaccination responses compared to younger adults due to age-related immunosenescence. Two vaccines were specifically developed to enhance protection: MF59-adjuvanted trivalent influenza vaccine (aIIV3) and high-dose egg-based trivalent influenza vaccine (HD-IIV3e). METHODS: In a retrospective cohort study conducted using US electronic medical records linked to claims data during the 2019-2020 influenza season, we compared the relative vaccine effectiveness (rVE) of aIIV3 with HD-IIV3e and a standard-dose non-adjuvanted egg-based quadrivalent inactivated influenza vaccine (IIV4e) for the prevention of cardiorespiratory hospitalizations, including influenza hospitalizations. We evaluated outcomes in the "any" diagnosis position and the "admitting" position on the claim. A doubly robust methodology using inverse probability of treatment weighting and logistic regression was used to adjust for covariate imbalance. rVE was calculated as 100 * (1 - ORadjusted). RESULTS: The study included 4,299,594 adults ≥ 65 years of age who received aIIV3, HD-IIV3e, or IIV4e. Overall, aIIV3 was associated with lower proportions of cardiorespiratory hospitalizations with diagnoses in any position compared to HD-IIV3e (rVE = 3.9% [95% CI, 2.7-5.0]) or IIV4e (9.0% [95% CI, 7.7-10.4]). Specifically, aIIV3 was more effective compared with HD-IIV3e and IIV4e in preventing influenza hospitalizations (HD-IIV3e: 9.7% [95% CI, 1.9-17.0]; IIV4e: 25.3% [95% CI, 17.7-32.2]). Consistent trends were observed for admitting diagnoses. CONCLUSION: Relative to both HD-IIV3e and IIV4e, aIIV3 provided improved protection from cardiorespiratory or influenza hospitalizations.


Subject(s)
Adjuvants, Immunologic , Hospitalization , Influenza Vaccines , Influenza, Human , Polysorbates , Squalene , Humans , Influenza Vaccines/administration & dosage , Influenza Vaccines/immunology , Influenza, Human/prevention & control , Aged , Hospitalization/statistics & numerical data , Male , Retrospective Studies , Female , Squalene/administration & dosage , Polysorbates/administration & dosage , Middle Aged , United States/epidemiology , Adjuvants, Immunologic/administration & dosage , Aged, 80 and over , Vaccine Efficacy , Seasons , Adult , Vaccination/statistics & numerical data
18.
Sheng Wu Gong Cheng Xue Bao ; 40(3): 921-930, 2024 Mar 25.
Article in Chinese | MEDLINE | ID: mdl-38545987

ABSTRACT

Pantoea alhagi NX-11 exopolysaccharide (PAPS) is a novel microbial biostimulant that enhances crop resistance to salt and drought stress. It is biodegradable and holds promising applications in improving agricultural yield and efficiency. However, the fermentation process of PAPS exhibits a high viscosity due to low oxygen transfer efficiency, which hinders yield improvement and downstream processing. This study aimed to investigate the effects of seven oxygen carriers (Span 80, Span 20, Tween 80, Tween 20, glycerin, olive oil, and soybean oil) on fermentation yield. The results showed that the addition of 0.5% (V/V) Tween 20 significantly enhanced the production of PAPS. Moreover, the introduction of 0.5% (V/V) Tween 20 in a 7.5 L fermenter resulted in a PAPS titer of (16.85±0.50) g/L, which was 17.70% higher than that of the control group. Furthermore, the rheological characterization and the microstructure analysis of the polysaccharide products revealed that the characteristic structure of polysaccharides remained unchanged in the oxygen carrier treated group, but their viscosity increased. These findings may facilitate enhancing the biosynthesis efficiency of other polymer products.


Subject(s)
Pantoea , Polysorbates , Polysorbates/chemistry , Polysaccharides , Oxygen
19.
Int J Mol Sci ; 25(6)2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38542447

ABSTRACT

Sonodynamic therapy (SDT), utilizing ultrasound (US) and sonosensitizers, holds immense potential as a noninvasive and targeted treatment for a variety of deep-seated tumors. However, the clinical translation of SDT is hampered by several key limitations in sonosensitizers, especially their low aqueous stability and poor cellular uptake. In this study, non-ionic polysorbate (Tween 80, T80) was adopted to formulate effective nanocarriers for the safe and efficient delivery of sonosensitizers to cancer cells. Mitochondria-targeting triphenylphosphonium (TPP)-conjugated chlorin e6 (Ce6) sonosensitizer was loaded into T80-based micelles for efficient SDT. Pro-oxidant piperlongumine (PL) was co-encapsulated with TPP-conjugated Ce6 (T-Ce6) in T80 micelles to enable combination chemo-SDT. T80 micelles substantially enhanced the cellular internalization of T-Ce6. As a result, T80 micelles loaded with T-Ce6 and PL [T80(T-Ce6/PL)] significantly elevated intracellular reactive oxygen species (ROS) generation in MCF-7 human breast cancer cells upon US exposure. Moreover, T-Ce6 exhibited selective accumulation within the mitochondria, leading to efficient cell death under US irradiation. Importantly, T80(T-Ce6/PL) micelles caused cancer-specific cell death by selectively triggering apoptosis in cancer cells through PL. This study demonstrated the feasibility of using T80(T-Ce6/PL) micelles for efficient and cancer-specific combination chemo-SDT.


Subject(s)
Nanoparticles , Neoplasms , Organophosphorus Compounds , Porphyrins , Humans , Polysorbates , Cell Line, Tumor , Micelles , Reactive Oxygen Species/metabolism , Mitochondria/metabolism , Porphyrins/metabolism , Neoplasms/drug therapy
20.
J Hazard Mater ; 470: 134109, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38547751

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs) are prevalent environmental contaminants that are harmful to ecological and human health. Bioremediation is a promising technique for remediating PAHs in the environment, however bioremediation often results in the accumulation of toxic PAH metabolites. The objectives of this research were to demonstrate the cometabolic treatment of a mixture of PAHs by a pure bacterial culture, Rhodococcus rhodochrous ATCC 21198, and investigate PAH metabolites and toxicity. Additionally, the surfactant Tween ® 80 and cell immobilization techniques were used to enhance bioremediation. Total PAH removal ranged from 70-95% for fluorene, 44-89% for phenanthrene, 86-97% for anthracene, and 6.5-78% for pyrene. Maximum removal was achieved with immobilized cells in the presence of Tween ® 80. Investigation of PAH metabolites produced by 21198 revealed a complex mixture of hydroxylated compounds, quinones, and ring-fission products. Toxicity appeared to increase after bioremediation, manifesting as mortality and developmental effects in embryonic zebrafish. 21198's ability to rapidly transform PAHs of a variety of molecular structures and sizes suggests that 21198 can be a valuable microorganism for catalyzing PAH remediation. However, implementing further treatment processes to address toxic PAH metabolites should be pursued to help lower post-remediation toxicity in future studies.


Subject(s)
Biodegradation, Environmental , Cells, Immobilized , Polycyclic Aromatic Hydrocarbons , Rhodococcus , Surface-Active Agents , Zebrafish , Rhodococcus/metabolism , Surface-Active Agents/toxicity , Surface-Active Agents/chemistry , Surface-Active Agents/metabolism , Polycyclic Aromatic Hydrocarbons/toxicity , Polycyclic Aromatic Hydrocarbons/chemistry , Polycyclic Aromatic Hydrocarbons/metabolism , Animals , Cells, Immobilized/metabolism , Polysorbates/toxicity , Polysorbates/chemistry , Environmental Pollutants/toxicity , Environmental Pollutants/metabolism , Environmental Pollutants/chemistry , Phenanthrenes/toxicity , Phenanthrenes/metabolism , Phenanthrenes/chemistry , Embryo, Nonmammalian/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...