Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Micron ; 111: 36-49, 2018 08.
Article in English | MEDLINE | ID: mdl-29857176

ABSTRACT

Dryopteris and Polystichum are the 2 complex taxonomic genera of Dryopteridaceae. The comparative foliar epidermal anatomy of 12 species of both genera from Pakistan were studied using standard protocols of light microscopy (LM) and scanning electron microscopy (SEM). The objective of which was systematic comparison and investigation to elucidate the taxonomic importance of foliar micromorphology, which may be useful to taxonomists for identifying complex Dryopteridaceae taxa. Principal component analysis and UPGMA clustering analysis were performed to test the validity of leaf anatomical features as method of separating species and genera. The foliar epidermal anatomy described here is a good source of taxonomic characters in both groups that can help genera and species delimitation. This is the first report on leaf micromorphology in most of these species. Observation of foliar anatomy showed that stomata are only present on the abaxial surface; i.e., leaves of all species are hypostomatic. The shapes of epidermal cells in all studied species are irregular. The anticlinal walls are strongly lobed, irregular wavy and elongated wavy. However, substantial variation in epidermal cell size and other stomatal features were observed on both upper and lower surfaces in all investigated species. Two types of stomata were observed in all studied species. The presence of polocytic stomata in Dryopteris and staurocytic stomata in Polystichum are the important characters for the segregation of these genera. Elongate elliptic stomatal shape, narrow kidney shaped guard cells and broad elliptic shaped stomatal pores are diagnostic for all five species of Dryopteris selected. On the other hand, size and number of epidermal cells, lobes per cell, stomatal size, subsidiary cell size, stomatal pore size and stomatal index are the key features for species differentiation in Polystichum. An identification key was developed in order to apply the foliar anatomical characters in the discrimination of the species studied.


Subject(s)
Dryopteris/ultrastructure , Plant Epidermis/ultrastructure , Plant Leaves/anatomy & histology , Plant Leaves/ultrastructure , Polystichum/ultrastructure , Dryopteris/anatomy & histology , Dryopteris/classification , Pakistan , Plant Stomata/ultrastructure , Polystichum/anatomy & histology , Polystichum/classification , Principal Component Analysis
2.
BMC Evol Biol ; 16: 55, 2016 Feb 29.
Article in English | MEDLINE | ID: mdl-26928720

ABSTRACT

BACKGROUND: Polystichum (Dryopteridaceae) is probably the third largest fern genus in the world and contains ca. 500 species. Species of Polystichum occur on all continents except Antarctica, but its highest diversity is found in East Asia, especially Southwest China and adjacent regions. Previous studies typically had sparse taxon sampling and used limited DNA sequence data. Consequently, the majority of morphological hypotheses/classifications have never been tested using molecular data. RESULTS: In this study, DNA sequences of five plastid loci of 177 accessions representing ca. 140 species of Polystichum and 13 species of the closely related genera were used to infer a phylogeny using maximum likelihood, Bayesian inference, and maximum parsimony. Our analyses show that (1) Polystichum is monophyletic, this being supported by not only molecular data but also morphological features and distribution information; (2) Polystichum is resolved into two strongly supported monophyletic clades, corresponding to the two subgenera, P. subg. Polystichum and P. subg. Haplopolystichum; (3) Accessions of P. subg. Polystichum are resolved into three major clades: clade K (P. sect. Xiphophyllum), clade L (P. sect. Polystichum), and the HYMASO superclade dominated by accessions of P. sect. Hypopeltis, P. sect. Macropolystichum, and P. sect. Sorolepidium, while those of P. subg. Haplopolystichum are resolved into eight major clades; and (4) The monophyly of the Afra clade (weakly supported), the Australasian clade (weakly supported), and the North American clade (strongly supported) is confirmed. CONCLUSIONS: Of the 23 sections of Polystichum recognized in a recent classification of the genus, four (P. sect. Hypopeltis, P. sect. Neopolystichum, P. sect. Sorolepidium, P. sect. Sphaenopolystichum) are resolved as non-monophyletic, 16 are recovered as monophyletic, and three are monospecific. Of the 16 monophyletic sections, two (P. sect. Adenolepia, P. sect. Cyrtogonellum) are weakly supported and 14 are strongly supported as monophyletic. The relationships of 11 sections (five in P. subg. Haplopolystichum; six in P. subg. Polystichum) are well resolved.


Subject(s)
Polystichum/classification , Polystichum/genetics , China , DNA, Plant/genetics , Dryopteridaceae/classification , Dryopteridaceae/genetics , Asia, Eastern , Phylogeny , Plastids/genetics , Polystichum/anatomy & histology
SELECTION OF CITATIONS
SEARCH DETAIL
...