Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 11.145
Filter
1.
Prog Orthod ; 25(1): 22, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38825612

ABSTRACT

BACKGROUND: The aim of the present study was to investigate qualitatively and quantitatively the elution of substances from polyester-urethane (Invisalign™) aligners and resin composite attachments (Tetric EvoFlow) in vivo. METHODS: Patients (n = 11) treated with the aligners and attachments (16 per patient, without other composite restorations) for an average of 20 months, who were planned for attachment removed were enrolled in the study. Patients were instructed to rinse with 50 mL of distilled water upon entry and the rinsing solution was collected (before removal). Then, the attachments were removed with low-speed tungsten carbide burs for adhesive residue removal, a thorough water rinsing was performed immediately after the grinding process to discard grinding particle residues, and subsequently, after a second water-rinsing the solution was collected for analysis (after removal). The rinsing solutions were analyzed for targeted (LC-MS/MS: Bis-GMA, DCDMA, UDMA, BPA) and untargeted (LC-HRMS: screening of leached species and their degradation products) compounds. RESULTS: Targeted analysis revealed a significant reduction in BPA after attachment removal (4 times lower). Bis-GMA, DCDMA, UDMA were below the detection limit before removal but were all detectable after removal with Bis-GMA and UDMA at quantifiable levels. Untargeted analysis reviled the presence of mono-methacrylate transformation products of Bis-GMA (Bis-GMA-M1) and UDMA (UDMA-M1), UDMA without methacrylate moieties (UDMA-M2), and 4-(dimethylamino) benzoic acid (DMAB), the degradation product of the photo-initiator ethyl-4-(dimethylamino) benzoate (EDMAB), all after attachment removal. Several amino acids and endogenous metabolites were also found both before and after removal. CONCLUSIONS: Elevated levels of BPA were traced instantaneously in patients treated with Invisalign™ and flowable resin composite attachments for the testing period. BPA was reduced after attachment removal, but residual monomers and resin degradation products were found after removal. Alternative resin formulations and attachment materials may be utilized to reduce eluents.


Subject(s)
Composite Resins , Methacrylates , Polyurethanes , Humans , Polyurethanes/chemistry , Composite Resins/chemistry , Female , Male , Methacrylates/chemistry , Saliva/chemistry , Bisphenol A-Glycidyl Methacrylate/chemistry , Adult , Orthodontic Appliances, Removable , Polyesters/chemistry , para-Aminobenzoates/analysis , Young Adult , Adolescent , Tooth Movement Techniques/instrumentation , Tooth Movement Techniques/methods , Tandem Mass Spectrometry , Chromatography, Liquid
2.
Luminescence ; 39(5): e4753, 2024 May.
Article in English | MEDLINE | ID: mdl-38698700

ABSTRACT

A simple and environmentally friendly method was developed for smart and efficient waterborne polyurethane (PUR) paint. Sugarcane bagasse was recycled into reduced graphene oxide nanosheets (rGONSs). Both lanthanide-doped aluminate nanoparticles (LAN; photoluminescent agent, 7-9 nm) and rGONSs (reinforcement agent) were integrated into a waterborne polyurethane to produce a novel photoluminescent, hydrophobic, and anticorrosive nanocomposite coating. Using ferrocene-based oxidation under masked circumstances, graphene oxide nanosheets were produced from sugarcane bagasse. The oxidized semicarbazide (SCB) nanostructures were integrated into polyurethane coatings as a drying, anticorrosion, and crosslinking agent. Polyurethane coatings with varying amounts of phosphor pigment were prepared and subsequently applied to mild steel. The produced paints (LAN/rGONSs@PUR) were tested for their hydrophobicity, hardness, and scratch resistance. Commission Internationale de l'éclairage (CIE) Laboratory parameters and photoluminescence analysis established the opacity and colourimetric properties of the nanocomposite coatings. When excited at 365 nm, the luminescent transparent paints emitted a strong greenish light at 517 nm. The anticorrosion characteristics of the coated steel were investigated. The phosphor-containing (11% w/w) polyurethane coatings displayed the most pronounced anticorrosion capability and long-persistent luminosity. The prepared waterborne polyurethane paints were very photostable and durable.


Subject(s)
Graphite , Hydrophobic and Hydrophilic Interactions , Nanocomposites , Paint , Polyurethanes , Polyurethanes/chemistry , Graphite/chemistry , Nanocomposites/chemistry , Luminescence , Corrosion , Green Chemistry Technology
3.
BMC Oral Health ; 24(1): 557, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38735940

ABSTRACT

BACKGROUND: Dental resin-based composites are widely recognized for their aesthetic appeal and adhesive properties, which make them integral to modern restorative dentistry. Despite their advantages, adhesion and biomechanical performance challenges persist, necessitating innovative strategies for improvement. This study addressed the challenges associated with adhesion and biomechanical properties in dental resin-based composites by employing molecular docking and dynamics simulation. METHODS: Molecular docking assesses the binding energies and provides valuable insights into the interactions between monomers, fillers, and coupling agents. This investigation prioritizes SiO2 and TRIS, considering their consistent influence. Molecular dynamics simulations, executed with the Forcite module and COMPASS II force field, extend the analysis to the mechanical properties of dental composite complexes. The simulations encompassed energy minimization, controlled NVT and NPT ensemble simulations, and equilibration stages. Notably, the molecular dynamics simulations spanned a duration of 50 ns. RESULTS: SiO2 and TRIS consistently emerged as influential components, showcasing their versatility in promoting solid interactions. A correlation matrix underscores the significant roles of van der Waals and desolvation energies in determining the overall binding energy. Molecular dynamics simulations provide in-depth insights into the mechanical properties of dental composite complexes. HEMA-SiO2-TRIS excelled in stiffness, BisGMA-SiO2-TRIS prevailed in terms of flexural strength, and EBPADMA-SiO2-TRIS offered a balanced combination of mechanical properties. CONCLUSION: These findings provide valuable insights into optimizing dental composites tailored to diverse clinical requirements. While EBPADMA-SiO2-TRIS demonstrates distinct strengths, this study emphasizes the need for further research. Future investigations should validate the computational findings experimentally and assess the material's response to dynamic environmental factors.


Subject(s)
Biocompatible Materials , Composite Resins , Molecular Docking Simulation , Molecular Dynamics Simulation , Silicon Dioxide , Composite Resins/chemistry , Silicon Dioxide/chemistry , Biocompatible Materials/chemistry , Dental Materials/chemistry , Methacrylates/chemistry , Polyurethanes/chemistry , Polymethacrylic Acids/chemistry , Polyethylene Glycols/chemistry , Acrylic Resins/chemistry
4.
J Nanobiotechnology ; 22(1): 244, 2024 May 12.
Article in English | MEDLINE | ID: mdl-38735969

ABSTRACT

Biomaterials can modulate the local immune microenvironments to promote peripheral nerve regeneration. Inspired by the spatial orderly distribution and endogenous electric field of nerve fibers, we aimed to investigate the synergistic effects of electrical and topological cues on immune microenvironments of peripheral nerve regeneration. Nerve guidance conduits (NGCs) with aligned electrospun nanofibers were fabricated using a polyurethane copolymer containing a conductive aniline trimer and degradable L-lysine (PUAT). In vitro experiments showed that the aligned PUAT (A-PUAT) membranes promoted the recruitment of macrophages and induced their polarization towards the pro-healing M2 phenotype, which subsequently facilitated the migration and myelination of Schwann cells. Furthermore, NGCs fabricated from A-PUAT increased the proportion of pro-healing macrophages and improved peripheral nerve regeneration in a rat model of sciatic nerve injury. In conclusion, this study demonstrated the potential application of NGCs in peripheral nerve regeneration from an immunomodulatory perspective and revealed A-PUAT as a clinically-actionable strategy for peripheral nerve injury.


Subject(s)
Macrophages , Nerve Regeneration , Peripheral Nerve Injuries , Polyurethanes , Rats, Sprague-Dawley , Schwann Cells , Animals , Nerve Regeneration/drug effects , Polyurethanes/chemistry , Rats , Macrophages/drug effects , Schwann Cells/drug effects , Nanofibers/chemistry , Sciatic Nerve/drug effects , Guided Tissue Regeneration/methods , Male , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Tissue Scaffolds/chemistry , Mice , RAW 264.7 Cells
5.
Acta Biomater ; 181: 235-248, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38692469

ABSTRACT

Bacterial infection poses a significant impediment in wound healing, necessitating the development of dressings with intrinsic antimicrobial properties. In this study, a multilayered wound dressing (STPU@MTAI2/AM1) was reported, comprising a surface-superhydrophobic treated polyurethane (STPU) sponge scaffold coupled with an antimicrobial hydrogel. A superhydrophobic protective outer layer was established on the hydrophilic PU sponge through the application of fluorinated zinc oxide nanoparticles (F-ZnO NPs), thereby resistance to environmental contamination and bacterial invasion. The adhesive and antimicrobial inner layer was an attached hydrogel (MTAI2/AM1) synthesized through the copolymerization of N-[2-(methacryloyloxy)ethyl]-N, N, N-trimethylammonium iodide and acrylamide, exhibits potent adherence to dermal surfaces and broad-spectrum antimicrobial actions against resilient bacterial strains and biofilm formation. STPU@MTAI2/AM1 maintained breathability and flexibility, ensuring comfort and conformity to the wound site. Biocompatibility of the multilayered dressing was demonstrated through hemocompatibility and cytocompatibility studies. The multilayered wound dressing has demonstrated the ability to promote wound healing when addressing MRSA-infected wounds. The hydrogel layer demonstrates no secondary damage when peeled off compared to commercial polyurethane sponge dressing. The STPU@MTAI2/AM1-treated wounds were nearly completely healed by day 14, with an average wound area of 12.2 ± 4.3 %, significantly lower than other groups. Furthermore, the expression of CD31 was significantly higher in the STPU@MTAI2/AM1 group compared to other groups, promoting angiogenesis in the wound and thereby contributing to wound healing. Therefore, the prepared multilayered wound dressing presents a promising therapeutic candidate for the management of infected wounds. STATEMENT OF SIGNIFICANCE: Healing of chronic wounds requires avoidance of biofouling and bacterial infection. However developing a wound dressing which is both anti-biofouling and antimicrobial is a challenge. A multilayered wound dressing with multifunction was developed. Its outer layer was designed to be superhydrophobic and thus anti-biofouling, and its inner layer was broad-spectrum antimicrobial and could inhibit biofilm formation. The multilayered wound dressing with adhesive property could easily be removed from the wound surface preventing the cause of secondary damage. The multilayered wound dressing has demonstrated good abilities to promote MRSA-infected wound healing and presents a viable treatment for MRSA-infected wound.


Subject(s)
Bandages , Hydrogels , Hydrophobic and Hydrophilic Interactions , Polyurethanes , Polyurethanes/chemistry , Polyurethanes/pharmacology , Hydrogels/chemistry , Hydrogels/pharmacology , Animals , Wound Healing/drug effects , Biofilms/drug effects , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Humans , Mice , Methicillin-Resistant Staphylococcus aureus/drug effects
6.
Chemosphere ; 359: 142169, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38710416

ABSTRACT

With the increasing production and use of polyurethanes (PUs), it is necessary to develop sustainable techniques for the remediation of plastic pollution. The use of microorganisms capable of biodegrading PUs may be an environmentally desirable solution for controlling these plastic contaminants. To contribute to the discovery of alternatives for the mitigation of plastics in the environment, this study aimed to explore the potential of StaphylococcuswarneriUFV_01.21, isolated from the gut of Galleria mellonellalarvae, for biodegradation of PU in pure culture and microbial co-culture with Serratia liquefaciensL135. S. warneri grew using Impranil® PU as the sole carbon source in pure culture and co-culture. With six days of incubation, the biodegradation of Impranil® in Luria Bertani broth was 96, 88 and 76%, while in minimal medium, it was 58, 54 and 42% for S. warneri, S. liquefaciens, and co-culture, respectively. In addition, S. warneri in pure culture or co-culture was able to biodegrade, adhere and form biofilms on the surfaces of Impranil® disks and poly[4,4'-methylenebis (phenyl isocyanate)-alt-1,4-butanediol/di(propylene glycol)/polycaprolactone] (PCLMDI) films. Scanning electron microscopy also revealed biodegradation by detecting the formation of cracks, furrows, pores, and roughness on the surfaces of inoculated PU, both with pure culture and microbial co-culture. This study is the first to demonstrate the potential of S. warneriin PU biodegradation.


Subject(s)
Biodegradation, Environmental , Coculture Techniques , Polyurethanes , Staphylococcus , Polyurethanes/metabolism , Staphylococcus/metabolism , Biofilms , Plastics/metabolism , Serratia liquefaciens/metabolism
7.
Biomaterials ; 309: 122600, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38718614

ABSTRACT

Engineering vascularized tissues remains a promising approach for treating ischemic cardiovascular diseases. The availability of 3D-bioprinted vascular grafts that induce therapeutic angiogenesis can help avoid necrosis and excision of ischemic tissues. Here, using a combination of living cells and biodegradable hydrogels, we fabricated 3D-printed biocompatible proangiogenic patches from endothelial cell-laden photo-crosslinked gelatin (EC-PCG) bioink and smooth muscle cell-encapsulated polyurethane (SMC-PU) bioink. Implantation of 3D-bioprinted proangiogenic patches in a mouse model showed that EC-PCG served as an angiogenic capillary bed, whereas patterned SMC-PU increased the density of microvessels. Moreover, the assembled patterns between EC-PCG and SMC-PU induced the geometrically guided generation of microvessels with blood perfusion. In a rodent model of hindlimb ischemia, the vascular patches rescued blood flow to distal tissues, prevented toe/foot necrosis, promoted muscle remodeling, and increased the capillary density, thereby improving the heat-escape behavior of ischemic animals. Thus, our 3D-printed vascular cell-laden bioinks constitute efficient and scalable biomaterials that facilitate the engineering of vascular patches capable of directing therapeutic angiogenesis for treating ischemic vascular diseases.


Subject(s)
Gelatin , Hydrogels , Ischemia , Neovascularization, Physiologic , Polyurethanes , Printing, Three-Dimensional , Animals , Gelatin/chemistry , Polyurethanes/chemistry , Hydrogels/chemistry , Ischemia/therapy , Neovascularization, Physiologic/drug effects , Mice , Humans , Myocytes, Smooth Muscle/cytology , Cross-Linking Reagents/chemistry , Human Umbilical Vein Endothelial Cells , Hindlimb/blood supply , Hindlimb/pathology , Male , Tissue Engineering/methods , Bioprinting/methods
8.
Pediatr Crit Care Med ; 25(5): e232-e238, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38695702

ABSTRACT

OBJECTIVES: Ethanol lock therapy (ELT) is a potential method of central catheter salvage following central line-associated bloodstream infection (CLABSI) although there is potential risk of catheter damage in polyurethane catheters. Further, there is limited efficacy data across the spectrum of common pediatric catheters, and published ELT protocols describe dwell times that are not feasible for critically ill children. We sought to evaluate the safety and efficacy of ELT in polyurethane catheters using brief (30 min to 2 hr) dwell times in our PICU. DESIGN: Investigational pilot study using historical control data. SETTING: PICU in quaternary care, free-standing children's hospital. INTERVENTIONS: ELT in polyurethane central venous catheters for catheter salvage. RESULTS: ELT with brief dwell times was used in 25 patients, 22 of whom were bacteremic. Ultimately 11 patients, comprising 14 catheters, were diagnosed with a primary CLABSI. The catheter salvage rate in primary CLABSI patients receiving ELT was 92% (13/14) and significantly higher than the salvage rate in patients receiving antibiotics alone (non-ELT) (62%, 39/64; mean difference 0.32, 95% CI [0.14-0.50], p = 0.03). The rate of catheter fracture in all patients receiving ELT was 8% (2/25) while the rate of fracture in the non-ELT group was 13% (8/64; mean difference -0.05, 95% CI [-0.18 to 0.09], p = 0.72). The rate of tissue plasminogen activator (tPA) use in the ELT group was 8% (2/25), whereas the rate of tPA use in the non-ELT group was significantly higher at 42% (26/64; mean difference -0.34, 95% CI [-0.49 to -0.17], p = 0.002). CONCLUSIONS: The use of ELT for catheter salvage and prophylaxis in the PICU is safe in a variety of polyurethane catheters. Dwell times ranging from 30 minutes to 2 hours were effective in sterilizing the catheters while allowing other therapies to continue. This approach may decrease the need for frequent line changes in a medically fragile pediatric population.


Subject(s)
Catheter-Related Infections , Catheterization, Central Venous , Central Venous Catheters , Ethanol , Intensive Care Units, Pediatric , Polyurethanes , Humans , Catheter-Related Infections/prevention & control , Child , Pilot Projects , Ethanol/administration & dosage , Male , Child, Preschool , Female , Infant , Catheterization, Central Venous/adverse effects , Catheterization, Central Venous/instrumentation , Central Venous Catheters/adverse effects , Catheters, Indwelling/adverse effects , Adolescent , Bacteremia/prevention & control , Bacteremia/etiology , Anti-Infective Agents, Local/administration & dosage , Anti-Infective Agents, Local/therapeutic use
9.
Sensors (Basel) ; 24(10)2024 May 08.
Article in English | MEDLINE | ID: mdl-38793840

ABSTRACT

We propose the use of a specially designed polyurethane foam with a plateau region in its mechanical characteristics-where stress remains nearly constant during deformation-between the electromyography (EMG) electrode and clothing to suppress motion artifacts in EMG measurement. Wearable EMG devices are receiving attention for monitoring muscle weakening due to aging. However, daily EMG measurement has been challenging due to motion artifacts caused by changes in the contact pressure between the bioelectrode and the skin. Therefore, this study aims to measure EMG signals in daily movement environments by controlling the contact pressure using polyurethane foam between the bioelectrode on the clothing and the skin. Through mechanical calculations and finite element method simulations of the polyurethane foam's effect, we clarified that the characteristics of the polyurethane foam significantly influence contact pressure control and that the contact pressure is adjustable through the polyurethane foam thickness. The optimization of the design successfully controlled the contact pressure between the bioelectrode and skin from 1.0 kPa to 2.0 kPa, effectively suppressing the motion artifact in EMG measurement.


Subject(s)
Artifacts , Electromyography , Polyurethanes , Wearable Electronic Devices , Polyurethanes/chemistry , Electromyography/methods , Electromyography/instrumentation , Humans , Electrodes , Motion
10.
Int J Mol Sci ; 25(10)2024 May 18.
Article in English | MEDLINE | ID: mdl-38791552

ABSTRACT

Polyurethanes are among the most significant types of polymers in development; these materials are used to produce construction products intended for work in various conditions. Nowadays, it is important to develop methods for fire load reduction by using new kinds of additives or monomers containing elements responsible for materials' fire resistance. Currently, additive antipyrines or reactive flame retardants can be used during polyurethane material processing. The use of additives usually leads to the migration or volatilization of the additive to the surface of the material, which causes the loss of the resistance and aesthetic values of the product. Reactive flame retardants form compounds containing special functional groups that can be chemically bonded with monomers during polymerization, which can prevent volatilization or migration to the surface of the material. In this study, reactive flame retardants are compared. Their impacts on polyurethane flame retardancy, combustion mechanism, and environment are described.


Subject(s)
Flame Retardants , Polyurethanes , Flame Retardants/analysis , Polyurethanes/chemistry , Green Chemistry Technology/methods
11.
J Mech Behav Biomed Mater ; 155: 106573, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38744117

ABSTRACT

The concentration of the polymer in the electrospinning solution greatly influences the mechanical behaviour of electrospun vascular grafts due to the influence on scaffold morphology. The scaffold morphology (fiber diameter, fiber orientation and inter-fiber voids) of the grafts plays an important role in their behaviour during use. Even though manual methods and complex algorithms have been used so far for characterisation of the morphology of electrospun architecture, they still have several drawbacks that limit their reliability. This study therefore uses conventional, statistical region merging and a hybrid image segmentation algorithm, to characterise the morphology of the electrospun vascular grafts. Consequently, vascular grafts were fabricated using an in-house electrospinning equipment using three polymer material concentration levels (14%, 16% and 18%) of medical-grade thermoplastic polyurethane (Pellethane®). The image thresholding and segementation algorithms were then used for segmentation of SEM images extracted from the polymer grafts and then morphological parameters were investigated in terms of fiber diameter, fiber orientation, and interfiber spaces (pore area and porosity). The results indicate that electrospun image segmentation was "best" when the hybrid algorithm and the conventional algorithm was used, which implied that fiber property values computed from the hybrid algorithm were closed to the manually measurements especially for the 14% PU with fiber diameter 2.2%, fiber orientation 7.6% and porosity at 1.9%. However there was higher disperity between the manual and hybrid algorithm. This suggests more fiber uniformity in the 14%PU potentially affected the accuracy of the hybrid algorithm.


Subject(s)
Polyurethanes , Polyurethanes/chemistry , Materials Testing , Algorithms , Blood Vessel Prosthesis , Image Processing, Computer-Assisted , Porosity , Tissue Scaffolds/chemistry , Mechanical Phenomena , Electricity
12.
Sci Total Environ ; 934: 173188, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38740197

ABSTRACT

Plastic polymers are present in most aspects of routine daily life. Their increasing leakage into the environment poses a threat to environmental, animal, and human health. These polymers are often resistant to microbial degradation and are predicted to remain in the environment for tens to hundreds of years. Fungi have been shown to degrade complex polymers and are considered good candidates for bioremediation (biological pollutant reduction) of plastics. Therefore, we screened 18 selected fungal strains for their ability to degrade polyurethane (PU), polyethylene (PE), and tire rubber. As a proxy for plastic polymer mineralization, we quantified O2 consumption and CO2 production in an enclosed biodegradation system providing plastic as the sole carbon source. In contrast to most studies we demonstrated that the tested fungi attach to, and colonize the different plastic polymers without any pretreatment of the plastics and in the absence of sugars, which were suggested essential for priming the degradation process. Functional polymer groups identified by Fourier-transform infrared spectroscopy (FTIR), and changes in fungal morphology as seen in light and scanning electron microscopy (SEM) were used as indicators of fungal adaptation to growth on PU as a substrate. Thereby, SEM analysis revealed new morphological structures and deformation of the cell wall of several fungal strains when colonizing PU and utilizing this plastic polymer for cell growth. Strains of Fusarium, Penicillium, Botryotinia cinerea EN41, and Trichoderma demonstrated a high potential to degrade PU, rubber, and PE. Growing on PU, over 90 % of the O2 was consumed in <14 days with 300-500 ppm of CO2 generated in parallel. Our study highlights a high bioremediation potential of some fungal strains to efficiently degrade plastic polymers, largely dependent on plastic type.


Subject(s)
Biodegradation, Environmental , Fungi , Plastics , Rubber , Plastics/metabolism , Fungi/metabolism , Rubber/metabolism , Polyurethanes
13.
J Colloid Interface Sci ; 670: 223-233, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38761575

ABSTRACT

Macrophages can kill bacteria and viruses by releasing free radicals, which provides a possible approach to construct antifouling coatings with dynamic surfaces that release free radicals if the breaking of dynamic covalent bonds is precisely regulated. Herein, inspired by the defensive behavior of macrophages of releasing free radicals to kill bacteria and viruses, a marine antifouling coating composed of polyurethane incorporating dimethylglyoxime (PUx-DMG) is prepared by precise regulation of dynamic oxime-urethane covalent bonds. The obtained alkyl radical (R·) derived from the cleavage of the oxime-urethane bonds manages to effectively suppress the attachment of marine biofouling. Moreover, the intrinsic dynamic surface makes it difficult for biofouling to adhere and ultimately achieves sustainable antifouling property. Notably, the PU50-DMG coating not only presents efficient antibacterial and antialgae properties, but also prevents macroorganisms from settling in the sea for up to 4 months. This provides a pioneer broad-spectrum strategy to explore the marine antifouling coatings.


Subject(s)
Anti-Bacterial Agents , Biofouling , Macrophages , Surface Properties , Biofouling/prevention & control , Macrophages/drug effects , Macrophages/metabolism , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Polyurethanes/chemistry , Polyurethanes/pharmacology , Mice , Oximes/chemistry , Oximes/pharmacology , RAW 264.7 Cells , Particle Size , Microbial Sensitivity Tests , Molecular Structure
14.
Acta Biomater ; 181: 249-262, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38704113

ABSTRACT

Endoscopic surgery is an effective and common clinical practice for chronic sinusitis. Nasal packing materials are applied in nasal surgery to prevent hemorrhage and promote wound healing. In this study, a degradable polyurethane foam dressing is successfully developed as a promising nasal packing material with good biocompatibility and antibacterial capability. Specifically, quaternized chitosan (QCS) serves as the crosslinker instead of polyols to offer polyurethane foam (PUF-QCS) antibacterial capability. The PUF-QCS2.0 % (with 2.0 wt% QCS) exhibits satisfactory liquid absorption capacity (19.4 g/g), high compressive strengths at both wet (14.5 kPa) and dry states (7.7 kPa), and a good degradation rate (8.3 %) within 7 days. Meanwhile, PUF-QCS2.0 % retains long-term antibacterial activity for 7 days and kills 97.3 % of S. aureus and 91.8 % of E. coli within 6 hours in antibacterial testing. Furthermore, PUF-QCS2.0 % demonstrates a positive hemostatic response in the rabbit nasal septum mucosa trauma model by reducing hemostatic time over 50.0 % and decreasing blood loss up to 76.1 % compared to the commercial PVA nasal packing sponge. Importantly, PUF-QCS also exhibits a significant antibacterial activity in nasal cavity. This nasal packing material has advantages in post-surgery bleeding control and infection prevention. STATEMENT OF SIGNIFICANCE: The performance of a nasal packing sponge requires good mechanical properties, fast and high liquid absorption rate, effective degradability and strong antibacterial activity. These features are helpful for improving the postoperative recovery and patient healing. However, integrating these into a single polyurethane foam is a challenge. In this study, quaternized chitosan (QCS) is synthesized and used as a chain extender and antibacterial agent in preparing a degradable polyurethane foam (PUF-QCS) dressing. PUF-QCS undergoes partial degradation and exhibits effective broad-spectrum antibacterial activity in 7 days. The reduction of postoperative bleeding and infection observed in the animal experiment further demonstrates that the PUF-QCS developed here outperforms the existing commercial nasal packing materials.


Subject(s)
Anti-Bacterial Agents , Chitosan , Polyurethanes , Polyurethanes/chemistry , Polyurethanes/pharmacology , Chitosan/chemistry , Chitosan/pharmacology , Rabbits , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Hemostasis/drug effects , Staphylococcus aureus/drug effects , Hemostatics/chemistry , Hemostatics/pharmacology , Bandages , Escherichia coli/drug effects , Male
15.
Cochrane Database Syst Rev ; 5: CD013023, 2024 05 23.
Article in English | MEDLINE | ID: mdl-38780138

ABSTRACT

BACKGROUND: Peripheral arterial catheters (ACs) are used in anaesthesia and intensive care settings for blood sampling and monitoring. Despite their importance, ACs often fail, requiring reinsertion. Dressings and securement devices maintain AC function and prevent complications such as infection. OBJECTIVES: To evaluate the effectiveness of peripheral AC dressing and securement devices to prevent failure and complications in hospitalised people. SEARCH METHODS: We searched the Cochrane Wounds Specialised Register, CENTRAL, MEDLINE, Embase, and CINAHL Plus up to 16 May 2023. We also searched ClinicalTrials.gov and the World Health Organization International Clinical Trials Registry Platform up to 16 May 2023. SELECTION CRITERIA: We included randomised controlled trials (RCTs) comparing different dressing and securement devices for the stabilisation of ACs in hospitalised people. DATA COLLECTION AND ANALYSIS: Two review authors independently selected trials for inclusion, extracted data, and assessed risk of bias using Cochrane's RoB 1 tool. We resolved disagreements by discussion, or by consulting a third review author when necessary. We assessed the certainty of evidence using GRADE. MAIN RESULTS: We included five RCTs with 1228 participants and 1228 ACs. All included studies had high risk of bias in one or more domains. We present the following four comparisons, with the remaining comparisons reported in the main review. Standard polyurethane (SPU) plus tissue adhesive (TA) compared with SPU: we are very uncertain whether use of SPU plus TA impacts rates of AC failure (risk ratio (RR) 0.44, 95% confidence interval (CI) 0.20 to 0.98; I² = 0%; 2 studies, 165 participants; very low-certainty evidence). Neither study (165 participants) reported catheter-related bloodstream infections (CRBSI), thus we are very uncertain whether SPU plus TA impacts on the incidence of CRBSI (very low-certainty evidence). It is very uncertain whether use of SPU plus TA impacts AC dislodgement risk (RR 0.54, 95% CI 0.03 to 9.62; I² = 44%; 2 studies, 165 participants; very low-certainty evidence). We are very uncertain whether use of SPU plus TA impacts AC occlusion rates (RR 1.20, 95% CI 0.37 to 3.91; I² = 3%; 2 studies, 165 participants; very low-certainty evidence). We are very uncertain whether use of SPU plus TA impacts rates of adverse events with few reported events across groups (RR 0.89, 95% CI 0.09 to 8.33; I² = 0%; 2 studies, 165 participants; very low-certainty evidence). Bordered polyurethane (BPU) compared to SPU: we are very uncertain whether use of BPU impacts rates of AC failure (RR 0.67, 95% CI 0.21 to 2.13; 1 study, 60 participants; very low-certainty evidence). BPU may make little or no difference to CRBSI compared to SPU (RR 3.05, 95% CI 0.12 to 74.45; I² = not applicable as 1 study (60 participants) reported 0 events; 2 studies, 572 participants; low-certainty evidence). BPU may make little or no difference to the risk of AC dislodgement compared with SPU (RR 0.75, 95% CI 0.17 to 3.22; I² = 0%; 2 studies, 572 participants; low-certainty evidence). BPU may make little or no difference to occlusion risk compared with SPU (RR 0.80, 95% CI 0.60 to 1.07; I² = 0%; 2 studies, 572 participants; low-certainty evidence). It is very uncertain whether BPU impacts on the risk of adverse events compared with SPU (RR 0.33, 95% CI 0.01 to 7.87; 1 study, 60 participants; very low-certainty evidence). SPU plus sutureless securement devices (SSD) compared to SPU: we are very uncertain whether SPU plus SSD impacts risk of AC failure compared with SPU (RR 0.78, 95% CI 0.40 to 1.52; I² = 0%; 2 studies, 157 participants; very low-certainty evidence). We are very uncertain if SPU plus SSD impacts CRBSI incidence rate with no events in both groups (2 studies, 157 participants; very low-certainty evidence). It is very uncertain whether SPU plus SSD impacts risk of dislodgement (RR 0.14, 95% CI 0.01 to 2.57; I² = not applicable as 1 study (96 participants) reported 0 events; 2 studies, 157 participants; very low-certainty evidence). It is very uncertain whether SPU plus SSD impacts risk of AC occlusion (RR 1.94, 95% CI 0.50 to 7.48; I² = 38%; 2 studies, 157 participants; very low-certainty evidence). We are very uncertain whether SPU plus SSD impacts on the risk of adverse events (RR 1.94, 95% CI 0.19 to 20.24; I² = not applicable as 1 study (96 participants) reported 0 events; 2 studies, 157 participants; very low-certainty evidence). Integrated securement dressings compared to SPU: integrated securement dressings may result in little or no difference in risk of AC failure compared with SPU (RR 1.96, 95% CI 0.80 to 4.84; 1 study, 105 participants; low-certainty evidence); may result in little or no difference in CRBSI incidence with no events reported (1 study, 105 participants; low-certainty evidence); may result in little or no difference in the risk of dislodgement (RR 0.33, 95% CI 0.04 to 3.04; 1 study, 105 participants; low-certainty evidence), may result in little or no difference in occlusion rates with no events reported (1 study, 105 participants; low-certainty evidence), and may result in little or no difference in the risk of adverse events (RR 0.35, 95% CI 0.01 to 8.45; 1 study, 105 participants; low-certainty evidence). AUTHORS' CONCLUSIONS: There is currently limited rigorous RCT evidence available about the relative clinical effectiveness of AC dressing and securement products. Limitations of current evidence include small sample size, infrequent events, and heterogeneous outcome measurements. We found no clear difference in the incidence of AC failure, CRBSI, or adverse events across AC dressing or securement products including SPU, BPU, SSD, TA, and integrated securement products. The limitations of current evidence means further rigorous RCTs are needed to reduce uncertainty around the use of dressing and securement devices for ACs.


Subject(s)
Bandages , Catheter-Related Infections , Catheterization, Peripheral , Polyurethanes , Randomized Controlled Trials as Topic , Humans , Catheterization, Peripheral/adverse effects , Catheterization, Peripheral/instrumentation , Catheter-Related Infections/prevention & control , Bias , Equipment Failure
16.
Dent Mater J ; 43(3): 437-445, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38692906

ABSTRACT

This study aimed to investigate the colorimetric properties of newly developed composites for dental trauma splints using various staining solutions during the clinical splinting period. The clear shades of G-Fix (GF), Ortho Connect Flow (OC), Light Fix (LF), and Filtek Z350XT (FZ) were fabricated into 96 disk-shaped specimens. Specimens from each composite group were stored in distilled water, coffee, tea, and red wine solutions at 37ºC. CIE values were measured using a spectrophotometer at 24 h after specimen preparation and at 1 day, 1 week, 2 weeks, 3 weeks, and 4 weeks after storage in each solution. Color differences and translucency parameters were calculated using the initial and measured values. Within the experiment period, the color differences of GF, OC, and LF compared to the initial measurement were smaller than that for FZ for all staining solutions except distilled water. There were no significant color differences between the GF, OC, and LF groups.


Subject(s)
Coffee , Color , Colorimetry , Composite Resins , Materials Testing , Spectrophotometry , Composite Resins/chemistry , Tea , Wine , Water/chemistry , Surface Properties , Humans , Polyurethanes/chemistry
17.
Mar Genomics ; 75: 101111, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38735674

ABSTRACT

Hortaea werneckii M-3, a black yeast isolated from the marine sediment of the West Pacific, can utilize polyester polyurethane (PU, Impranil DLN) as a sole carbon source. Here, we present the complete genome of Hortaea werneckii M-3 with the focus on PU degradation enzymes. The total genome size is 38,167,921 bp, consisting of 186 contigs with a N50 length of 651,266 bp and a GC content of 53.06%. Genome annotation analysis predicts a total of 13,462 coding genes, which include 99 tRNAs and 105 rRNAs. Some genes encoding PU degrading enzymes including cutinase and urease are identified in this genome. The genome analysis of Hortaea werneckii M-3 will be helpful for further understanding the degradation mechanism of polyester PU by marine yeasts.


Subject(s)
Genome, Fungal , Polyurethanes , Whole Genome Sequencing , Saccharomycetales/genetics , Polyesters/metabolism , Geologic Sediments/microbiology
18.
Sci Rep ; 14(1): 12278, 2024 05 29.
Article in English | MEDLINE | ID: mdl-38806559

ABSTRACT

Repair and reconstruction of the myopectineal orifice area using meshes is the mainstay of surgical treatment of inguinal hernias. However, the limitations of existing meshes are becoming increasingly evident in clinical applications; thus, the idea of using three-dimensionally (3D)-printed biological meshes was put forward. According to the current level of the 3D printing technology and the inherent characteristics of biological materials, the direct use of the 3D printing technology for making biological materials into finished products suitable for clinical applications is not yet supported, but synthetic materials can be first printed into 3D form carriers, compounded with biological materials, and finally made into finished products. The purpose of this study was to develop a technical protocol for making 3D-printed biomesh carriers using polyurethane as a raw material. In our study: raw material, polyurethane; weight, 20-30 g/m2; weaving method, hexagonal mesh; elastic tension aspect ratio, 2:1; diameters of pores, 0.1-1 mm; surface area, 8 × 12 cm2; the optimal printing layer height, temperature and velocity were 0.1 mm, 210-220 °C and 60 mm/s. Its clinical significance lies in: (1) applied to preoperative planning and design a detailed surgical plan; (2) applied to special types of surgery including patients in puberty, recurrent and compound inguinal hernias; (3) significantly improve the efficiency of doctor-patient communication; (4) it can shorten the operation and recovery period by about 1/3 and can save about 1/4 of the cost for patients; (5) the learning curve is significantly shortened, which is conducive to the cultivation of reserve talents.


Subject(s)
Polyurethanes , Printing, Three-Dimensional , Surgical Mesh , Polyurethanes/chemistry , Humans , Hernia, Inguinal/surgery , Biocompatible Materials/chemistry , Herniorrhaphy/methods , Herniorrhaphy/instrumentation , Materials Testing
19.
Food Res Int ; 186: 114340, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729695

ABSTRACT

Fruits are essential sources of nutrients in our daily diet; however, their spoilage is often intensified by mechanical damage and the ethylene phytohormone, resulting in significant economic losses and exacerbating hunger issues. To address these challenges, this study presented a straightforward in situ synthesis protocol for producing Z/SOPPU foam, a 3D porous-structured fruit packaging. This innovative packaging material offered advanced ethylene-adsorbing and cushioning capabilities achieved through stirring, heating, and standing treatments. The results demonstrated that the Z/SOPPU foam, with its porous structure, served as an excellent packaging material for fruits, maintaining the intact appearance of tomatoes even after being thrown 72 times from a height of 1.5 m. Additionally, it exhibited desirable hydrophobicity (contact angle of 114.31 ± 0.82°), degradability (2.73 ± 0.88 % per 4 weeks), and efficient ethylene adsorption (adsorption rate of 13.2 ± 1.7 mg/m3/h). These remarkable characteristics could be attributed to the unique 3D micron-porous configuration, consisting of soybean oil polyol polyurethane foam for mechanical strain cushioning and zein for enhanced ethylene adsorption efficiency. Overall, this research offers an effective and original approach to the rational design and fabrication of advanced bio-based fruit packaging.


Subject(s)
Ethylenes , Food Packaging , Fruit , Polyurethanes , Soybean Oil , Zein , Ethylenes/chemistry , Polyurethanes/chemistry , Food Packaging/methods , Porosity , Fruit/chemistry , Soybean Oil/chemistry , Zein/chemistry , Adsorption , Polymers/chemistry , Solanum lycopersicum/chemistry , Hydrophobic and Hydrophilic Interactions
20.
ACS Appl Mater Interfaces ; 16(21): 27065-27074, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38748094

ABSTRACT

Wearable biomedical sensors have enabled noninvasive and continuous physiological monitoring for daily health management and early detection of chronic diseases. Among biomedical sensors, wearable pH sensors attracted significant interest, as pH influences most biological reactions. However, conformable pH sensors that have sweat absorption ability, are self-adhesive to the skin, and are gas permeable remain largely unexplored. In this study, we present a pioneering approach to this problem by developing a Janus membrane-based pH sensor with self-adhesiveness on the skin. The sensor is composed of a hydrophobic polyurethane-polydimethylsiloxane porous hundreds nanometer-thick substrate and a hydrophilic poly(vinyl alcohol)-poly(acrylic acid) porous nanofiber layer. This Janus membrane exhibits a thickness of around 10 µm, providing a conformable adhesion to the skin. The simultaneous realization of solution absorption, gas permeability, and self-adhesiveness makes it suitable for long-term continuous monitoring without compromising the comfort of the wearer. The pH sensor was tested successfully for continuous monitoring for 7.5 h, demonstrating its potential for stable analysis of skin health conditions. The Janus membrane-based pH sensor holds significant promise for comprehensive skin health monitoring and wearable biomedical applications.


Subject(s)
Polyurethanes , Sweat , Wearable Electronic Devices , Hydrogen-Ion Concentration , Humans , Sweat/chemistry , Polyurethanes/chemistry , Permeability , Acrylic Resins/chemistry , Membranes, Artificial , Dimethylpolysiloxanes/chemistry , Adhesiveness , Nanofibers/chemistry , Biosensing Techniques/methods , Biosensing Techniques/instrumentation , Porosity , Gases/chemistry , Gases/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...