Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.396
Filter
1.
Prog Orthod ; 25(1): 22, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38825612

ABSTRACT

BACKGROUND: The aim of the present study was to investigate qualitatively and quantitatively the elution of substances from polyester-urethane (Invisalign™) aligners and resin composite attachments (Tetric EvoFlow) in vivo. METHODS: Patients (n = 11) treated with the aligners and attachments (16 per patient, without other composite restorations) for an average of 20 months, who were planned for attachment removed were enrolled in the study. Patients were instructed to rinse with 50 mL of distilled water upon entry and the rinsing solution was collected (before removal). Then, the attachments were removed with low-speed tungsten carbide burs for adhesive residue removal, a thorough water rinsing was performed immediately after the grinding process to discard grinding particle residues, and subsequently, after a second water-rinsing the solution was collected for analysis (after removal). The rinsing solutions were analyzed for targeted (LC-MS/MS: Bis-GMA, DCDMA, UDMA, BPA) and untargeted (LC-HRMS: screening of leached species and their degradation products) compounds. RESULTS: Targeted analysis revealed a significant reduction in BPA after attachment removal (4 times lower). Bis-GMA, DCDMA, UDMA were below the detection limit before removal but were all detectable after removal with Bis-GMA and UDMA at quantifiable levels. Untargeted analysis reviled the presence of mono-methacrylate transformation products of Bis-GMA (Bis-GMA-M1) and UDMA (UDMA-M1), UDMA without methacrylate moieties (UDMA-M2), and 4-(dimethylamino) benzoic acid (DMAB), the degradation product of the photo-initiator ethyl-4-(dimethylamino) benzoate (EDMAB), all after attachment removal. Several amino acids and endogenous metabolites were also found both before and after removal. CONCLUSIONS: Elevated levels of BPA were traced instantaneously in patients treated with Invisalign™ and flowable resin composite attachments for the testing period. BPA was reduced after attachment removal, but residual monomers and resin degradation products were found after removal. Alternative resin formulations and attachment materials may be utilized to reduce eluents.


Subject(s)
Composite Resins , Methacrylates , Polyurethanes , Humans , Polyurethanes/chemistry , Composite Resins/chemistry , Female , Male , Methacrylates/chemistry , Saliva/chemistry , Bisphenol A-Glycidyl Methacrylate/chemistry , Adult , Orthodontic Appliances, Removable , Polyesters/chemistry , para-Aminobenzoates/analysis , Young Adult , Adolescent , Tooth Movement Techniques/instrumentation , Tooth Movement Techniques/methods , Tandem Mass Spectrometry , Chromatography, Liquid
2.
Sci Rep ; 14(1): 12975, 2024 06 05.
Article in English | MEDLINE | ID: mdl-38839879

ABSTRACT

Investigating the potential of human cardiomyocytes derived from induced pluripotent stem cells (iPSC-CMs) in in vitro heart models is essential to develop cardiac regenerative medicine. iPSC-CMs are immature with a fetal-like phenotype relative to cardiomyocytes in vivo. Literature indicates methods for enhancing the structural maturity of iPSC-CMs. Among these strategies, nanofibrous scaffolds offer more accurate mimicry of the functioning of cardiac tissue structures in the human body. However, further research is needed on the use of nanofibrous mats to understand their effects on iPSC-CMs. Our research aimed to evaluate the suitability of poly(ε-caprolactone) (PCL) and polyurethane (PU) nanofibrous mats with different elasticities as materials for the maturation of iPSC-CMs. Analysis of cell morphology and orientation and the expression levels of selected genes and proteins were performed to determine the effect of the type of nanofibrous mats on the maturation of iPSC-CMs after long-term (10-day) culture. Understanding the impact of 3D structural properties in in vitro cardiac models on induced pluripotent stem cell-derived cardiomyocyte maturation is crucial for advancing cardiac tissue engineering and regenerative medicine because it can help optimize conditions for obtaining more mature and functional human cardiomyocytes.


Subject(s)
Cell Differentiation , Induced Pluripotent Stem Cells , Myocytes, Cardiac , Nanofibers , Polyesters , Polyurethanes , Tissue Scaffolds , Humans , Myocytes, Cardiac/cytology , Myocytes, Cardiac/metabolism , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Polyurethanes/chemistry , Polyesters/chemistry , Nanofibers/chemistry , Cell Differentiation/drug effects , Tissue Scaffolds/chemistry , Tissue Engineering/methods , Cells, Cultured
3.
PLoS One ; 19(6): e0303210, 2024.
Article in English | MEDLINE | ID: mdl-38843174

ABSTRACT

Cellular metabolic activity can be detected by tetrazolium-based colorimetric assays, which rely on dehydrogenase enzymes from living cells to reduce tetrazolium compounds into colored formazan products. Although these methods have been used in different fields of microbiology, their application to the detection of bacteria with plastic-degrading activity has not been well documented. Here, we report a microplate-adapted method for the detection of bacteria metabolically active on the commercial polyester polyurethane (PU) Impranil®DLN using the tetrazolium salt 2,3-bis [2-methyloxy-4-nitro-5-sulfophenyl]-2H-tetrazolium-5-carboxanilide (XTT). Bacterial cells that are active on PU reduce XTT to a water-soluble orange dye, which can be quantitatively measured using a microplate reader. We used the Pseudomonas putida KT2440 strain as a study model. Its metabolic activity on Impranil detected by our novel method was further verified by Fourier-transform infrared spectroscopy (FTIR) analyses. Measurements of the absorbance of reduced XTT at 470 nm in microplate wells were not affected by the colloidal properties of Impranil or cell density. In summary, we provide here an easy and high-throughput method for screening bacteria active on PU that can be adapted to other plastic substrates.


Subject(s)
Polyurethanes , Pseudomonas putida , Tetrazolium Salts , Polyurethanes/chemistry , Pseudomonas putida/metabolism , Tetrazolium Salts/chemistry , Spectroscopy, Fourier Transform Infrared/methods , Water/chemistry , Colorimetry/methods
4.
BMC Oral Health ; 24(1): 557, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38735940

ABSTRACT

BACKGROUND: Dental resin-based composites are widely recognized for their aesthetic appeal and adhesive properties, which make them integral to modern restorative dentistry. Despite their advantages, adhesion and biomechanical performance challenges persist, necessitating innovative strategies for improvement. This study addressed the challenges associated with adhesion and biomechanical properties in dental resin-based composites by employing molecular docking and dynamics simulation. METHODS: Molecular docking assesses the binding energies and provides valuable insights into the interactions between monomers, fillers, and coupling agents. This investigation prioritizes SiO2 and TRIS, considering their consistent influence. Molecular dynamics simulations, executed with the Forcite module and COMPASS II force field, extend the analysis to the mechanical properties of dental composite complexes. The simulations encompassed energy minimization, controlled NVT and NPT ensemble simulations, and equilibration stages. Notably, the molecular dynamics simulations spanned a duration of 50 ns. RESULTS: SiO2 and TRIS consistently emerged as influential components, showcasing their versatility in promoting solid interactions. A correlation matrix underscores the significant roles of van der Waals and desolvation energies in determining the overall binding energy. Molecular dynamics simulations provide in-depth insights into the mechanical properties of dental composite complexes. HEMA-SiO2-TRIS excelled in stiffness, BisGMA-SiO2-TRIS prevailed in terms of flexural strength, and EBPADMA-SiO2-TRIS offered a balanced combination of mechanical properties. CONCLUSION: These findings provide valuable insights into optimizing dental composites tailored to diverse clinical requirements. While EBPADMA-SiO2-TRIS demonstrates distinct strengths, this study emphasizes the need for further research. Future investigations should validate the computational findings experimentally and assess the material's response to dynamic environmental factors.


Subject(s)
Biocompatible Materials , Composite Resins , Molecular Docking Simulation , Molecular Dynamics Simulation , Silicon Dioxide , Composite Resins/chemistry , Silicon Dioxide/chemistry , Biocompatible Materials/chemistry , Dental Materials/chemistry , Methacrylates/chemistry , Polyurethanes/chemistry , Polymethacrylic Acids/chemistry , Polyethylene Glycols/chemistry , Acrylic Resins/chemistry
5.
J Nanobiotechnology ; 22(1): 244, 2024 May 12.
Article in English | MEDLINE | ID: mdl-38735969

ABSTRACT

Biomaterials can modulate the local immune microenvironments to promote peripheral nerve regeneration. Inspired by the spatial orderly distribution and endogenous electric field of nerve fibers, we aimed to investigate the synergistic effects of electrical and topological cues on immune microenvironments of peripheral nerve regeneration. Nerve guidance conduits (NGCs) with aligned electrospun nanofibers were fabricated using a polyurethane copolymer containing a conductive aniline trimer and degradable L-lysine (PUAT). In vitro experiments showed that the aligned PUAT (A-PUAT) membranes promoted the recruitment of macrophages and induced their polarization towards the pro-healing M2 phenotype, which subsequently facilitated the migration and myelination of Schwann cells. Furthermore, NGCs fabricated from A-PUAT increased the proportion of pro-healing macrophages and improved peripheral nerve regeneration in a rat model of sciatic nerve injury. In conclusion, this study demonstrated the potential application of NGCs in peripheral nerve regeneration from an immunomodulatory perspective and revealed A-PUAT as a clinically-actionable strategy for peripheral nerve injury.


Subject(s)
Macrophages , Nerve Regeneration , Peripheral Nerve Injuries , Polyurethanes , Rats, Sprague-Dawley , Schwann Cells , Animals , Nerve Regeneration/drug effects , Polyurethanes/chemistry , Rats , Macrophages/drug effects , Schwann Cells/drug effects , Nanofibers/chemistry , Sciatic Nerve/drug effects , Guided Tissue Regeneration/methods , Male , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Tissue Scaffolds/chemistry , Mice , RAW 264.7 Cells
6.
Luminescence ; 39(5): e4753, 2024 May.
Article in English | MEDLINE | ID: mdl-38698700

ABSTRACT

A simple and environmentally friendly method was developed for smart and efficient waterborne polyurethane (PUR) paint. Sugarcane bagasse was recycled into reduced graphene oxide nanosheets (rGONSs). Both lanthanide-doped aluminate nanoparticles (LAN; photoluminescent agent, 7-9 nm) and rGONSs (reinforcement agent) were integrated into a waterborne polyurethane to produce a novel photoluminescent, hydrophobic, and anticorrosive nanocomposite coating. Using ferrocene-based oxidation under masked circumstances, graphene oxide nanosheets were produced from sugarcane bagasse. The oxidized semicarbazide (SCB) nanostructures were integrated into polyurethane coatings as a drying, anticorrosion, and crosslinking agent. Polyurethane coatings with varying amounts of phosphor pigment were prepared and subsequently applied to mild steel. The produced paints (LAN/rGONSs@PUR) were tested for their hydrophobicity, hardness, and scratch resistance. Commission Internationale de l'éclairage (CIE) Laboratory parameters and photoluminescence analysis established the opacity and colourimetric properties of the nanocomposite coatings. When excited at 365 nm, the luminescent transparent paints emitted a strong greenish light at 517 nm. The anticorrosion characteristics of the coated steel were investigated. The phosphor-containing (11% w/w) polyurethane coatings displayed the most pronounced anticorrosion capability and long-persistent luminosity. The prepared waterborne polyurethane paints were very photostable and durable.


Subject(s)
Graphite , Hydrophobic and Hydrophilic Interactions , Nanocomposites , Paint , Polyurethanes , Polyurethanes/chemistry , Graphite/chemistry , Nanocomposites/chemistry , Luminescence , Corrosion , Green Chemistry Technology
7.
Sensors (Basel) ; 24(10)2024 May 08.
Article in English | MEDLINE | ID: mdl-38793840

ABSTRACT

We propose the use of a specially designed polyurethane foam with a plateau region in its mechanical characteristics-where stress remains nearly constant during deformation-between the electromyography (EMG) electrode and clothing to suppress motion artifacts in EMG measurement. Wearable EMG devices are receiving attention for monitoring muscle weakening due to aging. However, daily EMG measurement has been challenging due to motion artifacts caused by changes in the contact pressure between the bioelectrode and the skin. Therefore, this study aims to measure EMG signals in daily movement environments by controlling the contact pressure using polyurethane foam between the bioelectrode on the clothing and the skin. Through mechanical calculations and finite element method simulations of the polyurethane foam's effect, we clarified that the characteristics of the polyurethane foam significantly influence contact pressure control and that the contact pressure is adjustable through the polyurethane foam thickness. The optimization of the design successfully controlled the contact pressure between the bioelectrode and skin from 1.0 kPa to 2.0 kPa, effectively suppressing the motion artifact in EMG measurement.


Subject(s)
Artifacts , Electromyography , Polyurethanes , Wearable Electronic Devices , Polyurethanes/chemistry , Electromyography/methods , Electromyography/instrumentation , Humans , Electrodes , Motion
8.
Acta Biomater ; 181: 235-248, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38692469

ABSTRACT

Bacterial infection poses a significant impediment in wound healing, necessitating the development of dressings with intrinsic antimicrobial properties. In this study, a multilayered wound dressing (STPU@MTAI2/AM1) was reported, comprising a surface-superhydrophobic treated polyurethane (STPU) sponge scaffold coupled with an antimicrobial hydrogel. A superhydrophobic protective outer layer was established on the hydrophilic PU sponge through the application of fluorinated zinc oxide nanoparticles (F-ZnO NPs), thereby resistance to environmental contamination and bacterial invasion. The adhesive and antimicrobial inner layer was an attached hydrogel (MTAI2/AM1) synthesized through the copolymerization of N-[2-(methacryloyloxy)ethyl]-N, N, N-trimethylammonium iodide and acrylamide, exhibits potent adherence to dermal surfaces and broad-spectrum antimicrobial actions against resilient bacterial strains and biofilm formation. STPU@MTAI2/AM1 maintained breathability and flexibility, ensuring comfort and conformity to the wound site. Biocompatibility of the multilayered dressing was demonstrated through hemocompatibility and cytocompatibility studies. The multilayered wound dressing has demonstrated the ability to promote wound healing when addressing MRSA-infected wounds. The hydrogel layer demonstrates no secondary damage when peeled off compared to commercial polyurethane sponge dressing. The STPU@MTAI2/AM1-treated wounds were nearly completely healed by day 14, with an average wound area of 12.2 ± 4.3 %, significantly lower than other groups. Furthermore, the expression of CD31 was significantly higher in the STPU@MTAI2/AM1 group compared to other groups, promoting angiogenesis in the wound and thereby contributing to wound healing. Therefore, the prepared multilayered wound dressing presents a promising therapeutic candidate for the management of infected wounds. STATEMENT OF SIGNIFICANCE: Healing of chronic wounds requires avoidance of biofouling and bacterial infection. However developing a wound dressing which is both anti-biofouling and antimicrobial is a challenge. A multilayered wound dressing with multifunction was developed. Its outer layer was designed to be superhydrophobic and thus anti-biofouling, and its inner layer was broad-spectrum antimicrobial and could inhibit biofilm formation. The multilayered wound dressing with adhesive property could easily be removed from the wound surface preventing the cause of secondary damage. The multilayered wound dressing has demonstrated good abilities to promote MRSA-infected wound healing and presents a viable treatment for MRSA-infected wound.


Subject(s)
Bandages , Hydrogels , Hydrophobic and Hydrophilic Interactions , Polyurethanes , Polyurethanes/chemistry , Polyurethanes/pharmacology , Hydrogels/chemistry , Hydrogels/pharmacology , Animals , Wound Healing/drug effects , Biofilms/drug effects , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Humans , Mice , Methicillin-Resistant Staphylococcus aureus/drug effects
9.
Acta Biomater ; 181: 249-262, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38704113

ABSTRACT

Endoscopic surgery is an effective and common clinical practice for chronic sinusitis. Nasal packing materials are applied in nasal surgery to prevent hemorrhage and promote wound healing. In this study, a degradable polyurethane foam dressing is successfully developed as a promising nasal packing material with good biocompatibility and antibacterial capability. Specifically, quaternized chitosan (QCS) serves as the crosslinker instead of polyols to offer polyurethane foam (PUF-QCS) antibacterial capability. The PUF-QCS2.0 % (with 2.0 wt% QCS) exhibits satisfactory liquid absorption capacity (19.4 g/g), high compressive strengths at both wet (14.5 kPa) and dry states (7.7 kPa), and a good degradation rate (8.3 %) within 7 days. Meanwhile, PUF-QCS2.0 % retains long-term antibacterial activity for 7 days and kills 97.3 % of S. aureus and 91.8 % of E. coli within 6 hours in antibacterial testing. Furthermore, PUF-QCS2.0 % demonstrates a positive hemostatic response in the rabbit nasal septum mucosa trauma model by reducing hemostatic time over 50.0 % and decreasing blood loss up to 76.1 % compared to the commercial PVA nasal packing sponge. Importantly, PUF-QCS also exhibits a significant antibacterial activity in nasal cavity. This nasal packing material has advantages in post-surgery bleeding control and infection prevention. STATEMENT OF SIGNIFICANCE: The performance of a nasal packing sponge requires good mechanical properties, fast and high liquid absorption rate, effective degradability and strong antibacterial activity. These features are helpful for improving the postoperative recovery and patient healing. However, integrating these into a single polyurethane foam is a challenge. In this study, quaternized chitosan (QCS) is synthesized and used as a chain extender and antibacterial agent in preparing a degradable polyurethane foam (PUF-QCS) dressing. PUF-QCS undergoes partial degradation and exhibits effective broad-spectrum antibacterial activity in 7 days. The reduction of postoperative bleeding and infection observed in the animal experiment further demonstrates that the PUF-QCS developed here outperforms the existing commercial nasal packing materials.


Subject(s)
Anti-Bacterial Agents , Chitosan , Polyurethanes , Polyurethanes/chemistry , Polyurethanes/pharmacology , Chitosan/chemistry , Chitosan/pharmacology , Rabbits , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Hemostasis/drug effects , Staphylococcus aureus/drug effects , Hemostatics/chemistry , Hemostatics/pharmacology , Bandages , Escherichia coli/drug effects , Male
10.
ACS Biomater Sci Eng ; 10(6): 3727-3738, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38804015

ABSTRACT

The development of precision polymer synthesis has facilitated access to a diverse library of abiotic structures wherein chiral monomers are positioned at specific locations within macromolecular chains. These structures are anticipated to exhibit folding characteristics similar to those of biotic macromolecules and possess comparable functionalities. However, the extensive sequence space and numerous variables make selecting a sequence with the desired function challenging. Therefore, revealing sequence-function dependencies and developing practical tools are necessary to analyze their conformations and molecular interactions. In this study, we investigate the effect of stereochemistry, which dictates the spatial location of backbone and pendant groups, on the interaction between sequence-defined oligourethanes and bisphenol A ligands. Various methods are explored to analyze the receptor-like properties of model oligomers and the ligand. The accuracy of molecular dynamics simulations and experimental techniques is assessed to uncover the impact of discrete changes in stereochemical arrangements on the structures of the resulting complexes and their binding strengths. Detailed computational investigations providing atomistic details show that the formed complexes demonstrate significant structural diversity depending on the sequence of stereocenters, thus affecting the oligomer-ligand binding strength. Among the tested techniques, the fluorescence spectroscopy data, fitted to the Stern-Volmer equation, are consistently aligned with the calculations, thus validating the developed simulation methodology. The developed methodology opens a way to engineer the structure of sequence-defined oligomers with receptor-like functionality to explore their practical applications, e.g., as sensory materials.


Subject(s)
Molecular Dynamics Simulation , Polyurethanes , Ligands , Polyurethanes/chemistry , Stereoisomerism , Benzhydryl Compounds/chemistry , Phenols/chemistry
11.
Food Res Int ; 186: 114340, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729695

ABSTRACT

Fruits are essential sources of nutrients in our daily diet; however, their spoilage is often intensified by mechanical damage and the ethylene phytohormone, resulting in significant economic losses and exacerbating hunger issues. To address these challenges, this study presented a straightforward in situ synthesis protocol for producing Z/SOPPU foam, a 3D porous-structured fruit packaging. This innovative packaging material offered advanced ethylene-adsorbing and cushioning capabilities achieved through stirring, heating, and standing treatments. The results demonstrated that the Z/SOPPU foam, with its porous structure, served as an excellent packaging material for fruits, maintaining the intact appearance of tomatoes even after being thrown 72 times from a height of 1.5 m. Additionally, it exhibited desirable hydrophobicity (contact angle of 114.31 ± 0.82°), degradability (2.73 ± 0.88 % per 4 weeks), and efficient ethylene adsorption (adsorption rate of 13.2 ± 1.7 mg/m3/h). These remarkable characteristics could be attributed to the unique 3D micron-porous configuration, consisting of soybean oil polyol polyurethane foam for mechanical strain cushioning and zein for enhanced ethylene adsorption efficiency. Overall, this research offers an effective and original approach to the rational design and fabrication of advanced bio-based fruit packaging.


Subject(s)
Ethylenes , Food Packaging , Fruit , Polyurethanes , Soybean Oil , Zein , Ethylenes/chemistry , Polyurethanes/chemistry , Food Packaging/methods , Porosity , Fruit/chemistry , Soybean Oil/chemistry , Zein/chemistry , Adsorption , Polymers/chemistry , Solanum lycopersicum/chemistry , Hydrophobic and Hydrophilic Interactions
12.
ACS Appl Mater Interfaces ; 16(21): 27065-27074, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38748094

ABSTRACT

Wearable biomedical sensors have enabled noninvasive and continuous physiological monitoring for daily health management and early detection of chronic diseases. Among biomedical sensors, wearable pH sensors attracted significant interest, as pH influences most biological reactions. However, conformable pH sensors that have sweat absorption ability, are self-adhesive to the skin, and are gas permeable remain largely unexplored. In this study, we present a pioneering approach to this problem by developing a Janus membrane-based pH sensor with self-adhesiveness on the skin. The sensor is composed of a hydrophobic polyurethane-polydimethylsiloxane porous hundreds nanometer-thick substrate and a hydrophilic poly(vinyl alcohol)-poly(acrylic acid) porous nanofiber layer. This Janus membrane exhibits a thickness of around 10 µm, providing a conformable adhesion to the skin. The simultaneous realization of solution absorption, gas permeability, and self-adhesiveness makes it suitable for long-term continuous monitoring without compromising the comfort of the wearer. The pH sensor was tested successfully for continuous monitoring for 7.5 h, demonstrating its potential for stable analysis of skin health conditions. The Janus membrane-based pH sensor holds significant promise for comprehensive skin health monitoring and wearable biomedical applications.


Subject(s)
Polyurethanes , Sweat , Wearable Electronic Devices , Hydrogen-Ion Concentration , Humans , Sweat/chemistry , Polyurethanes/chemistry , Permeability , Acrylic Resins/chemistry , Membranes, Artificial , Dimethylpolysiloxanes/chemistry , Adhesiveness , Nanofibers/chemistry , Biosensing Techniques/methods , Biosensing Techniques/instrumentation , Porosity , Gases/chemistry , Gases/analysis
13.
J Mech Behav Biomed Mater ; 155: 106573, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38744117

ABSTRACT

The concentration of the polymer in the electrospinning solution greatly influences the mechanical behaviour of electrospun vascular grafts due to the influence on scaffold morphology. The scaffold morphology (fiber diameter, fiber orientation and inter-fiber voids) of the grafts plays an important role in their behaviour during use. Even though manual methods and complex algorithms have been used so far for characterisation of the morphology of electrospun architecture, they still have several drawbacks that limit their reliability. This study therefore uses conventional, statistical region merging and a hybrid image segmentation algorithm, to characterise the morphology of the electrospun vascular grafts. Consequently, vascular grafts were fabricated using an in-house electrospinning equipment using three polymer material concentration levels (14%, 16% and 18%) of medical-grade thermoplastic polyurethane (Pellethane®). The image thresholding and segementation algorithms were then used for segmentation of SEM images extracted from the polymer grafts and then morphological parameters were investigated in terms of fiber diameter, fiber orientation, and interfiber spaces (pore area and porosity). The results indicate that electrospun image segmentation was "best" when the hybrid algorithm and the conventional algorithm was used, which implied that fiber property values computed from the hybrid algorithm were closed to the manually measurements especially for the 14% PU with fiber diameter 2.2%, fiber orientation 7.6% and porosity at 1.9%. However there was higher disperity between the manual and hybrid algorithm. This suggests more fiber uniformity in the 14%PU potentially affected the accuracy of the hybrid algorithm.


Subject(s)
Polyurethanes , Polyurethanes/chemistry , Materials Testing , Algorithms , Blood Vessel Prosthesis , Image Processing, Computer-Assisted , Porosity , Tissue Scaffolds/chemistry , Mechanical Phenomena , Electricity
14.
J Hazard Mater ; 472: 134493, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38696960

ABSTRACT

Environmental pollution caused by plastic waste has become global problem that needs to be considered urgently. In the pursuit of a circular plastic economy, biodegradation provides an attractive strategy for managing plastic wastes, whereas effective plastic-degrading microbes and enzymes are required. In this study, we report that Blastobotrys sp. G-9 isolated from discarded plastic in landfills is capable of depolymerizing polyurethanes (PU) and poly (butylene adipate-co-terephthalate) (PBAT). Strain G-9 degrades up to 60% of PU foam after 21 days of incubation at 28 â„ƒ by breaking down carbonyl groups via secretory hydrolase as confirmed by structural characterization of plastics and degradation products identification. Within the supernatant of strain G-9, we identify a novel cutinase BaCut1, belonging to the esterase family, that can reproduce the same effect. BaCut1 demonstrates efficient degradation toward commercial polyester plastics PU foam (0.5 mg enzyme/25 mg plastic) and agricultural film PBAT (0.5 mg enzyme/10 mg plastic) with 50% and 18% weight loss at 37 â„ƒ for 48 h, respectively. BaCut1 hydrolyzes PU into adipic acid as a major end-product with 42.9% recovery via ester bond cleavage, and visible biodegradation is also identified from PBAT, which is a beneficial feature for future recycling economy. Molecular docking, along with products distribution, elucidates a special substrate-binding modes of BaCut1 with plastic substrate analogue. BaCut1-mediated polyester plastic degradation offers an alternative approach for managing PU plastic wastes through possible bio-recycling.


Subject(s)
Biodegradation, Environmental , Carboxylic Ester Hydrolases , Polyurethanes , Recycling , Polyurethanes/chemistry , Carboxylic Ester Hydrolases/metabolism , Carboxylic Ester Hydrolases/chemistry , Burkholderiales/enzymology , Burkholderiales/metabolism , Phthalic Acids/metabolism , Phthalic Acids/chemistry , Plastics/chemistry , Plastics/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Polyesters
15.
Int J Biol Macromol ; 269(Pt 2): 132138, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38718998

ABSTRACT

Addressing marine oil spills and industrial water pollution necessitates the development of eco-efficient oil-absorbing materials. With increasing concern for the environment, there is a consensus to decrease the use of petroleum-based polymers. Herein, lightweight poly(lactic acid) (PLA) blend foams with varying thermoplastic polyurethane (TPU) content were fabricated via a solvent-free, eco-friendly supercritical carbon dioxide (scCO2) extrusion foaming technology. The incorporation of TPU significantly enhanced the crystallization rate of PLA, with the semi-crystallization time of PT30 and PT50 blends at 105 °C exhibiting a reduction of 77.2 % and 47.9 %, respectively, compared to neat PLA. The resulting foams exhibited an open-cell structure with excellent selective oil adsorption capabilities. Notably, the PT30 foam achieved a remarkable maximum expansion ratio of 36.0, while the PT50 foam attained the highest open-cell content of 96.2 %. The PT50 foam demonstrated an outstanding adsorption capacity, spanning from 4.7 to 18.8 g/g for diverse oils and solvents, with rapid adsorption kinetics, reaching 94.9 % of the equilibrium adsorption capacity for CCl4 within just 1 min. Furthermore, the PT50 foam retained 95.2 % of its adsorption capacity for CCl4 over 10 adsorption-desorption cycles. This study presents a scalable and sustainable approach for large-scale production of high-performance, bio-based foams, facilitating efficient oil-water separation.


Subject(s)
Carbon Dioxide , Polyesters , Polyesters/chemistry , Adsorption , Carbon Dioxide/chemistry , Oils/chemistry , Polyurethanes/chemistry , Kinetics
16.
J Pharm Biomed Anal ; 246: 116215, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38759319

ABSTRACT

Peripherally inserted central catheters (PICC-lines) used in neonatology are made of thermoplastic polyurethane (TPU) or silicone. These materials usually contain substances that may leach into drug vehicles or blood. In this extractables study, we determined the optimal extraction conditions using TPU films containing defined amounts of butylhydroxytoluene (BHT) and then applied them on unused and explanted PICC-lines. Maceration and sonication tests were carried out with hexane, acetone and water as the extraction solvents. The analyses were performed using gas and liquid chromatography coupled with mass spectrometry detectors, as well as inductive coupled plasma optical emission spectroscopy to detect a wide range of extractables. We selected a limited list of substances to be sought from the usual adjuvants and monomers, related to their carcinogenic, mutagenic or reprotoxic properties and/or existence in endocrine disruptors lists. The TPU-film experiments showed that acetone was slightly better than hexane, and maceration better than sonication. When applied to PICC-lines, the extraction methods were almost similar but acetone was clearly better than hexane for TPU. From the 48 peaks initially observed in GC-MS, we ended up with 37 peaks to follow in TPU PICC-lines, among which were those of BHT and 4,4'-Methylenebis(cyclohexyl isocyanate) isomers. For silicone PICC-lines, out of 41 peaks initially observed in GC-MS, we followed 20 peaks, most of them being identified as cyclosiloxanes. Barium was the main inorganic element extracted for both PICC-lines. For TPU PICC-lines, the inter-batch variability was higher than for intra-batch, but in silicone devices both were similar. When compared to new PICC-lines, explanted TPU PICC-lines extracted peaks had a lower area under the curve (AUC), while the AUCs of the peaks were higher for the majority of silicone PICC-lines extract compounds. No identified substances were detected above their toxicological threshold, but isocyanates and cyclosiloxanes toxicity was mostly studied for other exposition routes than intravenous. The methods defined in this study were efficient in producing extractable profiles from both PICC-lines.


Subject(s)
Central Venous Catheters , Gas Chromatography-Mass Spectrometry , Polyurethanes , Polyurethanes/chemistry , Humans , Infant, Newborn , Gas Chromatography-Mass Spectrometry/methods , Silicones/chemistry , Solvents/chemistry , Catheterization, Peripheral/methods , Sonication/methods
17.
Biomacromolecules ; 25(6): 3795-3806, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38781116

ABSTRACT

Biodegradable polymers with shape memory effects (SMEs) offer promising solutions for short-term medical interventions, facilitating minimally invasive procedures and subsequent degradation without requiring secondary surgeries. However, achieving a good balance among desirable SMEs, mechanical performance, degradation rate, and bioactivities remains a significant challenge. To address this issue, we established a strategy to develop a versatile biodegradable polyurethane (PPDO-PLC) with tunable hierarchical structures via precise chain segment control. Initial copolymerization of l-lactide and ε-caprolactone sets a tunable Tg close to body temperature, followed by block copolymerization with poly(p-dioxanone) to form a hard domain. This yields a uniform microphase-separation morphology, ensuring robust SME and facilitating the development of roughly porous surface structures in alkaline environments. Cell experiments indicate that these rough surfaces significantly enhance cellular activities, such as adhesion, proliferation, and osteogenic differentiation. Our approach provides a methodology for balancing biodegradability, SMEs, three-dimensional (3D) printability, and bioactivity in materials through hierarchical structure regulation.


Subject(s)
Polyurethanes , Polyurethanes/chemistry , Polyurethanes/pharmacology , Cell Proliferation/drug effects , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Animals , Porosity , Cell Adhesion/drug effects , Osteogenesis/drug effects , Mice , Polyesters/chemistry , Cell Differentiation/drug effects , Lactones/chemistry , Lactones/pharmacology , Humans , Caproates/chemistry , Dioxanes/chemistry , Polymers
18.
ACS Biomater Sci Eng ; 10(6): 3946-3957, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38701357

ABSTRACT

Elevated levels of ROS, bacterial infection, inflammation, and improper regeneration are the factors that need to be addressed simultaneously for achieving effective wound healing without scar formation. This study focuses on the fabrication of electrospun ROS-responsive selenium-containing polyurethane nanofibers incorporating deferoxamine mesylate (Def), indomethacin (Indo), and gold nanorods (AuNRs) as proangiogenesis, anti-inflammatory, and antibacterial agents for synchronized delivery to a full-thickness wound in vivo. The structure of the fabricated nanofibers was analyzed by various techniques. Toxicity was checked by CCK-8 and hemolytic assays. The efficiency of wound healing in vitro was verified by a transwell assay and cell scratch assay. The wound healing efficiency of the nanofibers was assayed in full-thickness wounds in a rat model. The multifunctional nanofibers had a porous structure, enhanced antioxidation, antibacterial activity, and promoted wound healing. They eradicated TNF-α and IL-6, increased IL-10 expression, and revealed the angiogenic potential by increased expression of HIF-1α, VEGF, and CD31.


Subject(s)
Gold , Nanofibers , Polyurethanes , Reactive Oxygen Species , Selenium , Wound Healing , Wound Healing/drug effects , Polyurethanes/chemistry , Polyurethanes/pharmacology , Animals , Nanofibers/chemistry , Selenium/chemistry , Selenium/pharmacology , Reactive Oxygen Species/metabolism , Gold/chemistry , Gold/pharmacology , Rats , Nanotubes/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Deferoxamine/pharmacology , Deferoxamine/chemistry , Rats, Sprague-Dawley , Humans , Indomethacin/pharmacology , Male , Neovascularization, Physiologic/drug effects , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry
19.
ACS Biomater Sci Eng ; 10(6): 3718-3726, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38716490

ABSTRACT

The performance of dental resin composites is crucially influenced by the sizes and distributions of inorganic fillers. Despite the investigation of a variety of functional particles, glass fillers and nanoscale silica are still the predominant types in dental materials. However, achieving an overall improvement in the performance of resin composites through the optimization of their formulations remains a challenge. This work introduced a "dense" microhybrid filler system with 85 wt % filler loading, leading to the preparation of self-developed resin composites (SRCs). Comparative evaluations of these five SRCs against four commercial products were performed, including mechanical property, polymerization conversion, and shrinkage, along with water sorption and solubility and wear resistance. The results showed that among all SRC groups, SRC3 demonstrated superior mechanical performance, high polymerization conversion, reduced shrinkage, low water absorption and solubility, and acceptable wear resistance. In contrast to commercial products, this optimal SRC3 material was comparable to Z350 XT in flexural and diametral tensile strength and better in flexural modulus and surface hardness. The use of a "dense" microhybrid filler system in the development of resin composites provides a balance between physicochemical property and wear resistance, which may be a promising strategy for the development of composite products.


Subject(s)
Composite Resins , Materials Testing , Composite Resins/chemistry , Solubility , Tensile Strength , Dental Materials/chemistry , Polymerization , Polyurethanes/chemistry , Surface Properties , Hardness , Acrylic Resins/chemistry
20.
Biomaterials ; 309: 122600, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38718614

ABSTRACT

Engineering vascularized tissues remains a promising approach for treating ischemic cardiovascular diseases. The availability of 3D-bioprinted vascular grafts that induce therapeutic angiogenesis can help avoid necrosis and excision of ischemic tissues. Here, using a combination of living cells and biodegradable hydrogels, we fabricated 3D-printed biocompatible proangiogenic patches from endothelial cell-laden photo-crosslinked gelatin (EC-PCG) bioink and smooth muscle cell-encapsulated polyurethane (SMC-PU) bioink. Implantation of 3D-bioprinted proangiogenic patches in a mouse model showed that EC-PCG served as an angiogenic capillary bed, whereas patterned SMC-PU increased the density of microvessels. Moreover, the assembled patterns between EC-PCG and SMC-PU induced the geometrically guided generation of microvessels with blood perfusion. In a rodent model of hindlimb ischemia, the vascular patches rescued blood flow to distal tissues, prevented toe/foot necrosis, promoted muscle remodeling, and increased the capillary density, thereby improving the heat-escape behavior of ischemic animals. Thus, our 3D-printed vascular cell-laden bioinks constitute efficient and scalable biomaterials that facilitate the engineering of vascular patches capable of directing therapeutic angiogenesis for treating ischemic vascular diseases.


Subject(s)
Gelatin , Hydrogels , Ischemia , Neovascularization, Physiologic , Polyurethanes , Printing, Three-Dimensional , Animals , Gelatin/chemistry , Polyurethanes/chemistry , Hydrogels/chemistry , Ischemia/therapy , Neovascularization, Physiologic/drug effects , Mice , Humans , Myocytes, Smooth Muscle/cytology , Cross-Linking Reagents/chemistry , Human Umbilical Vein Endothelial Cells , Hindlimb/blood supply , Hindlimb/pathology , Male , Tissue Engineering/methods , Bioprinting/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...