Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 795
Filter
1.
Food Microbiol ; 122: 104559, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38839223

ABSTRACT

Listeria monocytogenes is a concerning foodborne pathogen incriminated in soft cheese and meat-related outbreaks, highlighting the significance of applying alternative techniques to control its growth in food. In the current study, eco-friendly zinc oxide nanoparticles (ZnO-NPs) were synthesized using Rosmarinus officinalis, Punica granatum, and Origanum marjoram extracts individually. The antimicrobial efficacy of the prepared ZnO-NPs against L. monocytogenes was assessed using the agar well diffusion technique. Data indicated that ZnO-NPs prepared using Origanum marjoram were the most effective; therefore, they were used for the preparation of gelatin-based bionanocomposite coatings. Furthermore, the antimicrobial efficacy of the prepared gelatin-based bionanocomposite coatings containing eco-friendly ZnO-NPs was evaluated against L. monocytogenes in Talaga cheese (an Egyptian soft cheese) and camel meat during refrigerated storage at 4 ± 1 oC. Talaga cheese and camel meat were inoculated with L. monocytogenes, then coated with gelatin (G), gelatin with ZnO-NPs 1% (G/ZnO-NPs 1%), and gelatin with ZnO-NPs 2% (G/ZnO-NPs 2%). Microbiological examination showed that the G/ZnO-NPs 2% coating reduced L. monocytogenes count in the coated Talaga cheese and camel meat by 2.76 ± 0.19 and 2.36 ± 0.51 log CFU/g, respectively, by the end of the storage period. Moreover, G/ZnO-NPs coatings controlled pH changes, reduced water losses, and improved the sensory characteristics of Talaga cheese and camel meat, thereby extending their shelf life. The obtained results from this study indicate that the application of gelatin/ZnO-NPs 2% bionanocomposite coating could be used in the food industry to control L. monocytogenes growth, improve quality, and extend the shelf life of Talaga cheese and camel meat.


Subject(s)
Camelus , Cheese , Food Storage , Gelatin , Listeria monocytogenes , Nanocomposites , Zinc Oxide , Listeria monocytogenes/drug effects , Listeria monocytogenes/growth & development , Zinc Oxide/pharmacology , Zinc Oxide/chemistry , Cheese/microbiology , Gelatin/chemistry , Gelatin/pharmacology , Animals , Nanocomposites/chemistry , Food Preservation/methods , Meat/microbiology , Food Microbiology , Nanoparticles/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Pomegranate/chemistry , Food Contamination/prevention & control , Food Contamination/analysis , Rosmarinus/chemistry , Refrigeration , Plant Extracts/pharmacology , Plant Extracts/chemistry
2.
Plant Mol Biol ; 114(3): 51, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38691187

ABSTRACT

Pomegranate (Punica granatum L.) which belongs to family Lythraceae, is one of the most important fruit crops of many tropical and subtropical regions. A high variability in fruit color is observed among different pomegranate accessions, which arises from the qualitative and quantitative differences in anthocyanins. However, the mechanism of fruit color variation is still not fully elucidated. In the present study, we investigated the red color mutation between a red-skinned pomegranate 'Hongbaoshi' and a purple-red-skinned cultivar 'Moshiliu', by using transcriptomic and metabolomic approaches. A total of 51 anthocyanins were identified from fruit peels, among which 3-glucoside and 3,5-diglucoside of cyanidin (Cy), delphinidin (Dp), and pelargonidin (Pg) were dominant. High proportion of Pg in early stages of 'Hongbaoshi' but high Dp in late stages of 'Moshiliu' were characterized. The unique high levels of Cy and Dp anthocyanins accumulating from early developmental stages accounted for the purple-red phenotype of 'Moshiliu'. Transcriptomic analysis revealed an early down-regulated and late up-regulated of anthocyanin-related structure genes in 'Moshiliu' compared with 'Hongbaoshi'. Alao, ANR was specially expressed in 'Hongbaoshi', with extremely low expression levels in 'Moshiliu'. For transcription factors R2R3-MYB, the profiles demonstrated a much higher transcription levels of three subgroup (SG) 5 MYBs and a sharp decrease in expression of SG6 MYB LOC116202527 in high-anthocyanin 'Moshiliu'. SG4 MYBs exhibited two entirely different patterns, LOC116203744 and LOC116212505 were down-regulated whereas LOC116205515 and LOC116212778 were up-regulated in 'Moshiliu' pomegranate. The results indicate that specific SG members of the MYB family might promote the peel coloration in different manners and play important roles in color mutation in pomegranate.


Subject(s)
Anthocyanins , Fruit , Gene Expression Regulation, Plant , Pomegranate , Transcriptome , Fruit/genetics , Fruit/metabolism , Anthocyanins/metabolism , Anthocyanins/genetics , Pomegranate/genetics , Pomegranate/metabolism , Pigmentation/genetics , Gene Expression Profiling , Color , Metabolomics , Plant Proteins/genetics , Plant Proteins/metabolism
3.
Sci Rep ; 14(1): 10307, 2024 05 05.
Article in English | MEDLINE | ID: mdl-38705878

ABSTRACT

This research aims to investigate the potential of utilizing pomegranate peel powder (PPP) as a natural preservative in muffin preparation. Pomegranate peel is a rich source of bioactive compounds, including phenolics, flavonoids, and tannins, which possess high antioxidant and antimicrobial properties. The In-Vitro antifungal activity of pomegranate peel powder (8% PPP), potassium sorbate (0.1% PS) and calcium propionate (0.5% CP) was assessed against Penicillium sp. and Aspergillus sp. using poison food technique. The PPP showed the anti-fungal activity by delaying the growth of microorganism on media plate similar to the PS and CP. The effect of utilization of PPP on quality characteristics of muffins were compared with the muffins with chemical preservatives (0.1% PS and 0.5% CP). The viscosity and specific gravity of batter significantly increased from 7.98 to 11.87 Pa s and 1.089-1.398 respectively on addition of 8% PPP. The optical microscopic structure of PPP added batter revealed the decrease in the number of air cells from 24 to 12 with radius range of 6.42-72.72 µm and area range of 511.03-15,383.17 µm2. The functional properties of flour with PPP had higher water absorption capacity, foaming stability, emulsification activity and emulsion stability than others. The addition of PPP significantly increase the weight (32.83 g), and decrease the height (31.3 mm), volume (61.43 cm3), specific volume (1.67 cm3/g) and baking loss (10.19%). The 418.36% increase in fibre content, 14.46% and 18.46% decrease in carbohydrates and energy value was observed in muffin with 8% PPP as compared to control respectively. The total phenols was increased from 0.92 to 12.5 mg GAE/100 g, total tannin from 0.2 to 8.27 mg GAE/100 g, In-vitro antioxidant activity by DPPH from 6.97 to 29.34% and In-vitro antioxidant activity by FRAP from 0.497 to 2.934 mg AAE/100 g in muffins added with 8% PPP. The muffin with PPP was softer than control and muffin with 0.1% PS. The addition of PPP resulted to improve in muffin texture but taste slightly bitter. During the storage of muffins at room temperature (27-30 °C), the moisture content of muffin with PPP was reduced from 17.04 to 13.23% which was higher than the rest of the treatments. Similarly, the hardness of sample with PPP was higher than the sample with 0.5% CP, but lowers than control and sample with 0.1% PS throughout the storage period. The results suggest that pomegranate peel powder can be successfully used as a natural preservative in place of chemical preservatives in muffins, to extend the shelf life. This study provides the opportunity to use PPP as functional ingredient and natural preservative in different bakery products.


Subject(s)
Food Preservation , Food Preservatives , Pomegranate , Powders , Food Preservatives/pharmacology , Food Preservatives/chemistry , Pomegranate/chemistry , Food Preservation/methods , Penicillium/drug effects , Antioxidants/pharmacology , Antioxidants/chemistry , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Aspergillus/drug effects , Aspergillus/growth & development , Fruit/chemistry , Food Storage/methods , Plant Extracts/pharmacology , Plant Extracts/chemistry
4.
Clin Nutr ESPEN ; 61: 253-265, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38777441

ABSTRACT

BACKGROUND: Pomegranate seed oil (PSO) and avocado seed oil (ASO) are natural polyphenols with established anti-inflammatory activity. PURPOSE: This study aimed to investigate the molecular mechanisms underlying the therapeutic efficacy of PSO and ASO in experimental ulcerative colitis (UC) with reference to sulfasalazine (SLZ). METHODS: Eighty male albino rats were divided equally into 8 groups; Normal, PSO, ASO, SLZ, UC-control, (UC + PSO), (UC + ASO) and (UC + SLZ) groups. Colitis was induced by intra-rectal injection of acetic acid. PSO (0.5ml/200g), ASO (1ml/250g) and SLZ (100 mg/kg) were administered orally once/day for 14 days, 24h after colitis induction. Colitis was evaluated by measuring disease activity index (DAI), colon weight/length ratio and histologic inflammatory score. Vascular endothelial growth factor receptor-2 (VEGFR-2), colonic macrophage migration inhibitory factor (MIF), and malondialdehyde (MDA) were determined. Colonic gene expression of TNF-α, VEGF and heme oxygenase-1 (HO-1) were also estimated. RESULTS: PSO and ASO treatments to UC rats significantly reduced DAI, weight/length ratio, VEGFR-2, and colon histologic inflammatory score versus UC-controls. ASO significantly suppressed MIF levels and TNF-α expression greater than PSO. However, PSO was more significant than ASO in reducing MDA levels and up-regulating HO-1 expression. Both oils significantly down-regulated VEGF expression. The obtained biochemical and histological changes induced by UC were nearly corrected by SLZ. CONCLUSION: The proved beneficial effect of PSO and ASO as anti-inflammatory, anti-angiogenic, and antioxidant in UC rats could be mediated by suppression of TNF-α, VEGF, and MIF and up-regulation of HO-1.


Subject(s)
Anti-Inflammatory Agents , Colitis, Ulcerative , Persea , Plant Oils , Pomegranate , Animals , Colitis, Ulcerative/drug therapy , Male , Persea/chemistry , Rats , Pomegranate/chemistry , Plant Oils/pharmacology , Anti-Inflammatory Agents/pharmacology , Macrophage Migration-Inhibitory Factors/metabolism , Malondialdehyde/metabolism , Vascular Endothelial Growth Factor Receptor-2/metabolism , Seeds/chemistry , Colon/drug effects , Colon/pathology , Colon/metabolism , Inflammation/drug therapy , Vascular Endothelial Growth Factor A/metabolism , Disease Models, Animal
5.
Food Chem ; 451: 139384, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38692235

ABSTRACT

The economic impact of fruit cracking in pomegranate products is substantial. In this study, we present the inaugural comprehensive analysis of transcriptome and metabolome in the outermost pericarp of pomegranate fruit in bagging conditions. Our investigation revealed a notable upregulation of differentially expressed genes (DEGs) associated with the calcium signaling pathway (76.92%) and xyloglucan endotransglucosylase/hydrolase (XTH) genes (87.50%) in the fruit peel of non-cracking fruit under bagging. Metabolomic analysis revealed that multiple phenolics, flavonoids, and tannins were identified in pomegranate. Among these, calmodulin-like 23 (PgCML23) exhibited a significant correlation with triterpenoids and demonstrated a marked upregulation under bagging treatment. The transgenic tomatoes overexpressing PgCML23 exhibited significantly higher cellulose content and xyloglucan endotransglucosylase (XET) enzyme activity in the pericarp at the red ripening stage compared to the wild type. Conversely, water-soluble pectin content, polygalacturonase (PG), and ß-galactosidase (ß-GAL) enzyme activities were significantly lower in the transgenic tomatoes. Importantly, the heterologous expression of PgCML23 led to a substantial reduction in the fruit cracking rate in tomatoes. Our findings highlight the reduction of fruit cracking in bagging conditions through the manipulation of PgCML23 expression.


Subject(s)
Fruit , Metabolomics , Plant Proteins , Pomegranate , Transcriptome , Fruit/chemistry , Fruit/genetics , Fruit/metabolism , Fruit/growth & development , Pomegranate/chemistry , Pomegranate/genetics , Pomegranate/metabolism , Pomegranate/growth & development , Plant Proteins/genetics , Plant Proteins/metabolism , Solanum lycopersicum/genetics , Solanum lycopersicum/metabolism , Solanum lycopersicum/chemistry , Solanum lycopersicum/growth & development , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Plants, Genetically Modified/chemistry , Gene Expression Regulation, Plant
6.
J Toxicol Environ Health A ; 87(14): 592-603, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38712866

ABSTRACT

Punica granatum, popularly known as pomegranate, is a fruit tree with wide worldwide distribution, containing numerous phytochemicals of great medicinal value. The aim of the present study was to determine the phytochemical profile and antioxidant potential of a protein fraction (PF) derived from P. granatum sarcotesta which is rich in lectin. In addition, the acute oral toxicity, genotoxicity and antigenotoxicity of this protein fraction (PF) from P. granatum sarcotesta was measured. The phytochemical profile of PF was determined using HPLC. The in vitro antioxidant effect was assessed using the methods of total antioxidant capacity (TAC) and DPPH and ABTS+ radical scavenging. Acute oral toxicity was determined in female Swiss mice administered a single dose of 2000 mg/kg. This PF was examined for genotoxicity and antigenotoxicity at doses of 500, 1000 and 2000 mg/kg, utilizing mouse peripheral blood cells. Phytochemical characterization detected a high content of ellagic acid and antioxidant capacity similar to that of ascorbic acid (positive control). PF was not toxic (LD50 >2000 mg/kg) and did not exert a genotoxic effect in mice. PF protected the DNA of peripheral blood cells against damage induced by cyclophosphamide. In conclusion, this PF fraction exhibited significant antioxidant activity without initiating toxic or genotoxic responses in mice.


Subject(s)
Antioxidants , Plant Extracts , Pomegranate , Animals , Mice , Antioxidants/pharmacology , Female , Plant Extracts/toxicity , Plant Extracts/chemistry , Plant Extracts/pharmacology , Pomegranate/chemistry , Lectins/toxicity , Mutagenicity Tests , DNA Damage/drug effects , Toxicity Tests, Acute
7.
Food Chem ; 453: 139701, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-38781907

ABSTRACT

The current study offers the nanomolar quantification of gallic acid (GAL) based on gold nanoparticles (AuNps) and kaolinite minerals (KNT) modified on a screen-printed electrode (SPE). The electrochemical behavior of GAL was performed using differential pulse voltammetry (DPV) in Britton Robinson (BR) buffer solution at pH 2.0 as a supporting electrolyte. Under the optimized DPV mode parameters, the oxidation peak current of GAL (at 0.72 V vs Ag/AgCl) increased linearly in the range between 0.002 µmolL-1 and 40.0 µmolL-1 with a detection limit of 0.50 nmolL-1. The effect of common interfering agents was also investigated. Finally, the applicability of the proposed method was verified by quantification analysis of GAL in black tea and pomegranate juice samples.


Subject(s)
Electrochemical Techniques , Electrodes , Gallic Acid , Gold , Kaolin , Metal Nanoparticles , Metal Nanoparticles/chemistry , Gold/chemistry , Gallic Acid/analysis , Gallic Acid/chemistry , Kaolin/chemistry , Electrochemical Techniques/instrumentation , Limit of Detection , Pomegranate/chemistry , Tea/chemistry , Minerals/analysis , Minerals/chemistry , Fruit and Vegetable Juices/analysis , Camellia sinensis/chemistry , Food Contamination/analysis
8.
ACS Nano ; 18(21): 13885-13898, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38757565

ABSTRACT

Severe acute pancreatitis (SAP), characterized by pancreatic acinar cell death, currently lacks effective targeted therapies. Ellagic acid (EA), rich in pomegranate, shows promising anti-inflammatory and antioxidant effects in SAP treatment. However, the roles of other forms of EA, such as plant extracellular vesicles (EVs) extracted from pomegranate, and Urolithin A (UA), converted from EA through gut microbiota metabolism in vivo, have not been definitively elucidated. Our research aimed to compare the effects of pomegranate-derived EVs (P-EVs) and UA in the treatment of SAP to screen an effective formulation and to explore its mechanisms in protecting acinar cells in SAP. By comparing the protective effects of P-EVs and UA on injured acinar cells, UA showed superior therapeutic effects than P-EVs. Subsequently, we further discussed the mechanism of UA in alleviating SAP inflammation. In vivo animal experiments found that UA could not only improve the inflammatory environment of pancreatic tissue and peripheral blood circulation in SAP mice but also revealed that the mechanism of UA in improving SAP might be related to mitochondria and endoplasmic reticulum (ER) through the results including pancreatic tissue transcriptomics and transmission electron microscopy. Further research found that UA could regulate ER-mitochondrial calcium channels and reduce pancreatic tissue necroptosis. In vitro experiments of mouse pancreatic organoids and acinar cells also confirmed that UA could improve pancreatic inflammation by regulating the ER-mitochondrial calcium channel and necroptosis pathway proteins. This study not only explored the therapeutic effect of plant EVs on SAP but also revealed that UA could alleviate SAP by regulating ER-mitochondrial calcium channel and reducing acinar cell necroptosis, providing insights into the pathogenesis and potential treatment of SAP.


Subject(s)
Coumarins , Endoplasmic Reticulum , Mitochondria , Pancreatitis , Animals , Coumarins/pharmacology , Coumarins/chemistry , Pancreatitis/drug therapy , Pancreatitis/metabolism , Pancreatitis/pathology , Mice , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum/drug effects , Mitochondria/metabolism , Mitochondria/drug effects , Calcium Channels/metabolism , Male , Mice, Inbred C57BL , Pomegranate/chemistry , Acinar Cells/drug effects , Acinar Cells/metabolism , Acinar Cells/pathology , Extracellular Vesicles/metabolism , Extracellular Vesicles/chemistry
9.
Food Funct ; 15(11): 6095-6117, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38757812

ABSTRACT

The influence of gut microbiota in the onset and development of several metabolic diseases has gained attention over the last few years. Diet plays an essential role in gut microbiota modulation. Western diet (WD), characterized by high-sugar and high-fat consumption, alters gut microbiome composition, diversity index, microbial relative levels, and functional pathways. Despite the promising health effects demonstrated by polyunsaturated fatty acids, their impact on gut microbiota is still overlooked. The effect of Fish oil (omega-3 source) and Pomegranate oil (punicic acid source), and a mixture of both oils in gut microbiota modulation were determined by subjecting the oil samples to in vitro fecal fermentations. Cecal samples from rats from two different dietary groups: a control diet (CD) and a high-fat high-sugar diet (WD), were used as fecal inoculum. 16S amplicon metagenomics sequencing showed that Fish oil + Pomegranate oil from the WD group increased α-diversity. This sample can also increase the relative abundance of the Firmicutes and Bacteroidetes phylum as well as Akkermansia and Blautia, which were affected by the WD consumption. All samples were able to increase butyrate and acetate concentration in the WD group. Moreover, tyrosine concentrations, a precursor for dopamine and norepinephrine, increase in the Fish oil + Pomegranate oil WD sample. GABA, an important neurotransmitter, was also increased in WD samples. These results suggest a potential positive impact of these oils' mixture on gut-brain axis modulation. It was demonstrated, for the first time, the great potential of using a mixture of both Fish and Pomegranate oil to restore the gut microbiota changes associated with WD consumption.


Subject(s)
Bacteria , Diet, Western , Fatty Acids, Omega-3 , Feces , Fermentation , Gastrointestinal Microbiome , Gastrointestinal Microbiome/drug effects , Animals , Feces/microbiology , Rats , Male , Diet, Western/adverse effects , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/metabolism , Bacteria/drug effects , Fatty Acids, Omega-3/pharmacology , Linolenic Acids/pharmacology , Rats, Wistar , Fish Oils/pharmacology , Pomegranate/chemistry , Plant Oils/pharmacology , Cecum/microbiology , Cecum/metabolism
10.
Molecules ; 29(9)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38731433

ABSTRACT

The aim of this study was to investigate how dietary modifications with pomegranate seed oil (PSO) and bitter melon aqueous extract (BME) affect mineral content in the spleen of rats both under normal physiological conditions and with coexisting mammary tumorigenesis. The diet of Sprague-Dawley female rats was supplemented either with PSO or with BME, or with a combination for 21 weeks. A chemical carcinogen (7,12-dimethylbenz[a]anthracene) was applied intragastrically to induce mammary tumors. In the spleen of rats, the selected elements were determined with a quadrupole mass spectrometer with inductively coupled plasma ionization (ICP-MS). ANOVA was used to evaluate differences in elemental composition among experimental groups. Multivariate statistical methods were used to discover whether some subtle dependencies exist between experimental factors and thus influence the element content. Experimental factors affected the splenic levels of macroelements, except for potassium. Both diet modification and the cancerogenic process resulted in significant changes in the content of Fe, Se, Co, Cr, Ni, Al, Sr, Pb, Cd, B, and Tl in rat spleen. Chemometric analysis revealed the greatest impact of the ongoing carcinogenic process on the mineral composition of the spleen. The obtained results may contribute to a better understanding of peripheral immune organ functioning, especially during the neoplastic process, and thus may help develop anticancer prevention and treatment strategies.


Subject(s)
Momordica charantia , Plant Extracts , Plant Oils , Pomegranate , Rats, Sprague-Dawley , Spleen , Animals , Spleen/drug effects , Spleen/metabolism , Female , Rats , Pomegranate/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Momordica charantia/chemistry , Plant Oils/chemistry , Plant Oils/pharmacology , Dietary Supplements , Seeds/chemistry , Breast Neoplasms/chemically induced , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Mammary Neoplasms, Experimental/chemically induced , Mammary Neoplasms, Experimental/pathology , Mammary Neoplasms, Experimental/metabolism
11.
J Helminthol ; 98: e40, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38738533

ABSTRACT

In the past decade, interest has significantly increased regarding the medicinal and nutritional benefits of pomegranate (Punica granatum) peel. This study examined the effects of using pomegranate peel extract (PGE) alone and in combination with albendazole (ABZ) on ultrastructural and immunological changes in cystic echinococcosis in laboratory-infected mice. Results revealed that the smallest hydatid cyst size and weight (0.48 ± 0.47mm, 0.17 ± 0.18 gm) with the highest drug efficacy (56.2%) was detected in the PGE + ABZ group, which also exhibited marked histopathological improvement. Ultrastructural changes recorded by transmission electron microscopy including fragmentation of the nucleus, glycogen depletion, and multiple lysosomes in vacuolated cytoplasm were more often observed in PGE + ABZ group. IFN-γ levels were significantly increased in the group treated with ABZ, with a notable reduction following PGE treatment, whether administered alone or in combination with ABZ. Thus, PGE enhanced the therapeutic efficiency of ABZ, with improvement in histopathological and ultrastructural changes.


Subject(s)
Albendazole , Echinococcosis , Plant Extracts , Pomegranate , Animals , Plant Extracts/pharmacology , Plant Extracts/administration & dosage , Pomegranate/chemistry , Mice , Echinococcosis/drug therapy , Echinococcosis/parasitology , Albendazole/pharmacology , Albendazole/administration & dosage , Anthelmintics/pharmacology , Anthelmintics/administration & dosage , Disease Models, Animal , Microscopy, Electron, Transmission , Interferon-gamma/blood , Female , Male
12.
Int J Biol Macromol ; 270(Pt 1): 132382, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38754652

ABSTRACT

Listeria monocytogenes (L. monocytogenes) and Staphylococcus aureus (S. aureus) are widely acknowledged as two of the most dangerous foodborne pathogens. Nevertheless, reports on the development of non-toxic food preservatives that specifically target these two bacterial strains are scarce. Here, we present an inclusion complex (IC) of Hinoki essential oil with ß-cyclodextrin, which exhibited dual anti-L. monocytogenes and anti-S. aureus activities. For the first time, an innovative ultrasound-aided co-precipitation technique was utilized for the preparation of IC. Compared with the traditional co-precipitation method, this new technique demonstrated superior encapsulation and time efficiencies, making it well-suited for large-scale production. X-ray diffraction and scanning electron microscopy analyses revealed a transition in the morphological and crystal structures after formation of the IC. Fourier transform infrared spectroscopy and Raman spectroscopy analyses indicated that Hinoki essential oil was effectively encapsulated by ß-cyclodextrin. The differential scanning calorimetry and thermogravimetric thermograms indicated that the formed IC was more thermally stable than the free Hinoki essential oil. Importantly, 100 % antibacterial ratios for both L. monocytogenes and S. aureus were determined, indicating that the IC prepared in this study is a promising food preservative.


Subject(s)
Anti-Bacterial Agents , Listeria monocytogenes , Oils, Volatile , Staphylococcus aureus , beta-Cyclodextrins , Listeria monocytogenes/drug effects , Staphylococcus aureus/drug effects , beta-Cyclodextrins/chemistry , Oils, Volatile/chemistry , Oils, Volatile/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Microbial Sensitivity Tests , Ultrasonic Waves , Pomegranate/chemistry , X-Ray Diffraction
13.
PLoS One ; 19(4): e0298404, 2024.
Article in English | MEDLINE | ID: mdl-38598496

ABSTRACT

AIM: Dental erosion is a chemical-mechanical process that leads to the loss of dental hard tissues. This study aimed to investigate the effect of pomegranate juice on the enamel. METHODS: Enamel blocks were randomly divided into three groups: deionized water, cola, and pomegranate juice. The blocks were immersed in the solutions four times a day for 14 days, and stored in artificial saliva for the remaining period. The surface hardness was measured on days 7 and 14. The surface structures of the demineralized blocks were observed via scanning electron microscopy (SEM), and the depth of demineralization was observed via confocal laser scanning microscopy (CLSM). The pH, calcium, and phosphorus levels of the three solutions were analyzed. RESULTS: The microhardness values of the blocks in the pomegranate juice and cola groups decreased with the increase in the demineralization time. The blocks in the pomegranate juice group exhibited large fractures in the enamel column, whereas those in the cola group had pitted enamels with destruction of the interstitial enamel column. Compared with cola group, fluorescent penetration increased in pomegranate juice (P < 0.01). The pH of cola (2.32 ± 0.09) was lower than that of pomegranate juice (3.16 ± 0.16). Furthermore, the calcium content in pomegranate juice was significantly higher than that in cola (P < 0.01). Alternatively, the concentration of phosphorous in cola was significantly higher than that in pomegranate juice (P < 0.01). CONCLUSION: These findings indicate that pomegranate juice can cause enamel demineralization with an erosive potential comparable to that of cola.


Subject(s)
Pomegranate , Tooth Erosion , Humans , Calcium , Hydrogen-Ion Concentration , Tooth Erosion/chemically induced , Hardness , Cola , Dental Enamel
14.
Indian J Pharmacol ; 56(2): 84-90, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38687311

ABSTRACT

INTRODUCTION: The autoimmune disorder, oral lichen planus (OLP), primarily affects oral mucous membranes. Current drug treatments are only palliative and have serious side effects. Pomegranate has been used as a potential herbal remedy for the treatment of OLP. MATERIALS AND METHODS: The study consisted of a sample size of 30 individuals who were diagnosed with symptomatic OLP based on both clinical and histological evidence and were equally assigned to Group A (4% topical Punica granatum seed extract gel, which has been customized for this particular study purpose only) and Group B (0.1% topical steroid). All patients were evaluated for the outcome criteria of pain, burning sensation, and lesion size. RESULTS: In the present study, results were highly statistically significant (P = 0.001) in intragroup observation for both Group A and Group B from baseline to the end of 30 days of follow-up for all three parameters. There was no statistically significant difference between groups for each week of follow-up. CONCLUSION: P. granatum has been used in very few studies, but this is one of the few where a gel made from P. granatum seed extract is used as an oral gel. In conclusion, it can be said that topical P. granatum extract gel is as good as topical corticosteroids at getting rid of the signs and symptoms of OLP, so it can be used as an alternative treatment.


Subject(s)
Gels , Lichen Planus, Oral , Plant Extracts , Pomegranate , Humans , Lichen Planus, Oral/drug therapy , Plant Extracts/therapeutic use , Plant Extracts/administration & dosage , Female , Male , India , Middle Aged , Adult , Phytotherapy , Treatment Outcome , Administration, Topical , Seeds
15.
Food Funct ; 15(9): 5012-5025, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38618675

ABSTRACT

Punicic acid (PA), mainly found in pomegranate seed oil (PSO), has attracted increasing attention due to its potential to mitigate obesity. The regulation of intestinal microflora was identified as a crucial factor and an effective strategy to reverse obesity-related hyperlipidemia and non-alcoholic fatty liver disease (NAFLD). To assess the impact of PSO on hyperlipidemia related to obesity, we investigated the hepatic lipid status and gut microbiota regulation in mice over 13 weeks of feeding a high-fructose high-fat diet (HFHFD). Serum lipid markers, including TG, TC and LDL-C, were markedly reduced in hyperlipidemic mice. PSO supplementation reduced hepatic lipid accumulation and steatosis, inhibited the expression of pro-inflammatory mediators (including IL-6 and IL-1ß), and restored the normal levels of the anti-inflammatory cytokine IL-10. In addition, PSO also alleviated oxidative stress and increased T-AOC and SOD activities, as well as GSH levels, while reducing the MDA content in the liver of HFHFD-fed mice. The activation of TLR4/MyD88/NF-κB and TLR4/IL-22/STAT3 signaling pathways in the liver due to the HFHFD was also evidently inhibited by PSO. Furthermore, supplementation of PSO ameliorated the HFHFD-induced dysbiosis of intestinal microflora, resulting in a markedly increased proportion of Muribaculaceae, a decreased ratio of Blautia, and elevated levels of microbiota-derived short-chain fatty acids (SCFAs). Moreover, the expression of tight junction proteins correlated with intestinal barrier function was notably restored in the colon. The collected results indicate that PSO may be an effective nutraceutical ingredient for attenuating lipid metabolic disorders.


Subject(s)
Gastrointestinal Microbiome , Hyperlipidemias , Linolenic Acids , Lipopolysaccharides , Mice, Inbred C57BL , Obesity , Signal Transduction , Animals , Gastrointestinal Microbiome/drug effects , Mice , Hyperlipidemias/drug therapy , Male , Signal Transduction/drug effects , Obesity/metabolism , Obesity/drug therapy , Linolenic Acids/pharmacology , Diet, High-Fat , Non-alcoholic Fatty Liver Disease/drug therapy , Pomegranate/chemistry , Liver/metabolism , Liver/drug effects , Oxidative Stress/drug effects
16.
J Ethnopharmacol ; 330: 118243, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-38677577

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Pomegranate 'Punica granatum' offers multiple health benefits, including managing hypertension, dyslipidemia, hyperglycemia, insulin resistance, and enhancing wound healing and infection resistance, thanks to its potent antioxidant and anti-inflammatory properties. It has been symbolized by life, health, femininity, fecundity, and spirituality. AIM OF THE STUDY: Although laboratory and animal studies have been conducted on the healing effects of pomegranate, there needs to be a comprehensive review on its anti-oxidative and anti-inflammatory effects in chronic disorders. We aim to provide a comprehensive review of these effects based on in-vitro, in-vivo, and clinical studies conducted in managing various disorders. MATERIALS AND METHODS: A comprehensive search of in-vitro, in-vivo, and clinical findings of pomegranate and its derivatives focusing on the highly qualified original studies and systematic reviews are carried out in valid international web databases, including Web of Science, PubMed, Scopus, and Cochrane Library. RESULTS: Relevant studies have demonstrated that pomegranate and its derivatives can modulate the expression and activity of several genes, enzymes, and receptors through influencing oxidative stress and inflammation pathways. Different parts of pomegranate; roots, bark, blossoms, fruits, and leaves contain various bioactive compounds, such as polyphenols, flavonoids, anthocyanins, and ellagitannins, that have preventive and therapeutic effects against many disorders such as cardiovascular diseases, diabetes, neurological diseases, and cancers without any serious adverse effects. CONCLUSIONS: Most recent scientific evidence indicates that all parts of the pomegranate can be helpful in treating a wide range of chronic disorders due to its anti-oxidative and anti-inflammatory activities. Since the safety of pomegranate fruit, juice, and extracts is established, further investigations can be designed by targeting its active antioxidant and anti-inflammatory constituents to discover new drugs.


Subject(s)
Anti-Inflammatory Agents , Antioxidants , Inflammation , Oxidative Stress , Pomegranate , Humans , Pomegranate/chemistry , Oxidative Stress/drug effects , Animals , Inflammation/drug therapy , Anti-Inflammatory Agents/pharmacology , Antioxidants/pharmacology , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Plant Extracts/chemistry , Phytotherapy
17.
Chemosphere ; 358: 142086, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38670510

ABSTRACT

Furan is generated in a wide array of heat-treated foods through thermal degradation, leading to severe impairments in the male reproductive system. The main objective of this study was to investigate the potential of pomegranate peel extract (PGPE) in mitigating testicular dysfunctions induced by furan. Male rats were categorized into four groups: control/untreated, PGPE, furan, and PGPE + furan group. The study results revealed that furan-treated rats exhibited significantly elevated aminotransferase and phosphatase activity, and also generated increased oxidative stress, and reduced antioxidative stress protein activity. Additionally, protein content levels (ALT, AST, ALP, and ACP) and activities of steroidogenic Leydig cell hydroxysteroid dehydrogenase (3ß-HSD and 17ß-HSD) enzymes were significantly decreased. Significant variations in testicular parameters, apoptotic genes (Bcl-2, P53, and Caspase3), inflammatory and anti-inflammatory cytokines (IL1ß, IL10), male sex hormones follicle-stimulating hormone (FSH), luteinizing hormone (LH), testosterone, and sperm quality were also observed. Furthermore, testicular histological abnormalities were confirmed by biochemical and molecular modifications. Notably, PGPE pre-treated furan-intoxicated animals exhibited significant improvements in most of the assessed parameters compared to furan-treated groups. In conclusion, PGPE presents essential preventive measures and a novel pharmacological potential therapy against furan-induced testicular injury.


Subject(s)
Apoptosis , Furans , Oxidative Stress , Plant Extracts , Pomegranate , Testis , Male , Animals , Oxidative Stress/drug effects , Testis/drug effects , Testis/metabolism , Testis/pathology , Rats , Plant Extracts/pharmacology , Plant Extracts/chemistry , Apoptosis/drug effects , Pomegranate/chemistry , Furans/pharmacology , Testosterone/metabolism , Luteinizing Hormone , 17-Hydroxysteroid Dehydrogenases/metabolism , Follicle Stimulating Hormone , Leydig Cells/drug effects , Leydig Cells/metabolism , Antioxidants/metabolism
18.
J Hazard Mater ; 470: 134234, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38608584

ABSTRACT

Agricultural waste management poses a significant challenge in circular economy strategies. Olive mill wastes (OMW) contain valuable biomolecules, especially phenolic compounds, with significant agricultural potential. Our study evaluate the effects of phenolic extract (PE) derived from olive mill solid wastes (OMSW) on pomegranate agro-physiological and biochemical responses, as well as soil-related attributes. Pomegranate plants were treated with PE at doses of 100 ppm and 200 ppm via foliar spray (L100 and L200) and soil application (S100 and S200). Results showed increased biomass with PE treatments, especially with soil application (S100 and S200). Proline and soluble sugar accumulation in leaves suggested plant adaptation to PE with low-level stress. Additionally, PE application reduced malondialdehyde (MDA) and hydrogen peroxide (H2O2) contents. Higher doses of PE (S200) significantly improved net photosynthesis (Pn), transpiration rate (E), water use efficiency (WUEi), and photosynthetic efficiency (fv/fm and PIabs). Furthermore, PE treatments enhanced levels of chlorophylls, carotenoids, polyphenols, flavonoids, and antioxidant activity. Soil application of PE also increased soil enzyme activities and microbial population. Our findings suggest the beneficial impact of PE application on pomegranate agro-physiological responses, laying the groundwork for further research across various plant species and soil types to introduce nutrient-enriched PE as an eco-friendly biostimulant.


Subject(s)
Olea , Phenols , Pomegranate , Pomegranate/chemistry , Phenols/analysis , Olea/chemistry , Soil/chemistry , Industrial Waste , Solid Waste , Rhizosphere , Photosynthesis/drug effects , Antioxidants/metabolism , Antioxidants/pharmacology , Plant Extracts/pharmacology , Plant Extracts/chemistry , Soil Microbiology , Hydrogen Peroxide/metabolism , Plant Leaves/drug effects , Plant Leaves/chemistry , Agriculture
19.
Int J Mol Sci ; 25(7)2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38612575

ABSTRACT

Multifunctional delivery systems capable of modulating drug release and exerting adjunctive pharmacological activity have attracted particular attention. Chitosan (CS) and pomegranate seed oil (PO) appear to be attractive bioactive components framing the strategy of complex therapy and multifunctional drug carriers. This research is aimed at evaluating the potential of CS in combination with PO in studies on topical emulgels containing hydrocortisone as a model anti-inflammatory agent. Its particular goal was to distinguish alterations in anti-inflammatory action followed with drug dissolution or penetrative behavior between the designed formulations that differ in CS/PO weight ratio. All formulations favored hydrocortisone release with up to a two-fold increase in the drug dissolution rate within first 5 h as compared to conventional topical preparations. The clear effect of CS/PO on the emulgel biological performance was observed, and CS was found to be prerequisite for the modulation of hydrocortisone absorption and accumulation. In turn, a greater amount of PO played the predominant role in the inhibition of hyaluronidase activity and enhanced the anti-inflammatory effect of preparation E-3. Emulgels showed a negligible reduction in mouse fibroblasts' L929 cell viability, confirming their non-irritancy with skin cells. Overall, the designed formulation with a CS/PO ratio of 6:4 appeared to be the most promising topical carrier for the effective treatment of inflammatory skin diseases among the tested subjects.


Subject(s)
Chitosan , Pomegranate , Animals , Mice , Humans , Hydrocortisone/pharmacology , Anti-Inflammatory Agents/pharmacology , Plant Oils/pharmacology
20.
Food Chem ; 446: 138907, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38452508

ABSTRACT

This study investigated the effects of oven-roasting temperature (160, 180, and 200 â„ƒ) and time (5, 10, 15, and 20 min) on pomegranate seeds. Physicochemical properties, such as color (L*, a*, and b* values), browning index (BI), total phenolic and flavonoid contents, 2,2-diphenyl-1-picrylhydrazyl radical scavenging capacity, and chemosensory properties, including taste and volatile compounds, were analyzed. The L* and a* values, and level of sourness, umami, sweetness, and terpenes decreased, whereas the b* value, BI, and level of saltiness, bitterness, furan derivatives, pyrazines, and sulfur-containing compounds, increased with roasting time. The findings of this study showed that the positive roasting conditions for pomegranate seeds were 10-20 min at 160 â„ƒ and, 5-10 min at 180 â„ƒ. This study is expected to be used as a primary reference for selecting the optimal oven-roasting conditions in which positive effects appear and for developing products utilizing pomegranate seeds.


Subject(s)
Pomegranate , Seeds/chemistry , Taste
SELECTION OF CITATIONS
SEARCH DETAIL
...