Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.187
Filter
1.
Environ Sci Technol ; 58(19): 8349-8359, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38696360

ABSTRACT

Agricultural ponds are a significant source of greenhouse gases, contributing to the ongoing challenge of anthropogenic climate change. Nations are encouraged to account for these emissions in their national greenhouse gas inventory reports. We present a remote sensing approach using open-access satellite imagery to estimate total methane emissions from agricultural ponds that account for (1) monthly fluctuations in the surface area of individual ponds, (2) rates of historical accumulation of agricultural ponds, and (3) the temperature dependence of methane emissions. As a case study, we used this method to inform the 2024 National Greenhouse Gas Inventory reports submitted by the Australian government, in compliance with the Paris Agreement. Total annual methane emissions increased by 58% from 1990 (26 kilotons CH4 year-1) to 2022 (41 kilotons CH4 year-1). This increase is linked to the water surface of agricultural ponds growing by 51% between 1990 (115 kilo hectares; 1,150 km2) and 2022 (173 kilo hectares; 1,730 km2). In Australia, 16,000 new agricultural ponds are built annually, expanding methane-emitting water surfaces by 1,230 ha yearly (12.3 km2 year-1). On average, the methane flux of agricultural ponds in Australia is 0.238 t CH4 ha-1 year-1. These results offer policymakers insights into developing targeted mitigation strategies to curb these specific forms of anthropogenic emissions. For instance, financial incentives, such as carbon or biodiversity credits, can mobilize widespread investments toward reducing greenhouse gas emissions and enhancing the ecological and environmental values of agricultural ponds. Our data and modeling tools are available on a free cloud-based platform for other countries to adopt this approach.


Subject(s)
Agriculture , Greenhouse Gases , Methane , Ponds , Methane/analysis , Greenhouse Gases/analysis , Australia , Environmental Monitoring , Climate Change
2.
Sci Total Environ ; 931: 172909, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38703834

ABSTRACT

The concentration of heavy metals (HMs) in aquaculture pond sediments significantly affects aquatic food safety and environmental quality. The contamination characteristics, drivers and potential sources of HMs in typical bulk freshwater aquaculture pond sediments in major provinces of China were systematically investigated using a variety of methods and models. Specifically, 130 surface sediment samples were collected from the study area, and the geoaccumulation index (Igeo) and potential ecological risk index (RI) were used to jointly evaluate the characteristics of the HMs. Spearman's correlation and redundancy analysis revealed the main drivers of the HMs. Additionally, the positive matrix factorization (PMF) model and absolute principal component score-multiple linear regression (APCS-MLR) model were used to identify the sources of HMs. The results revealed that the pond sediments were safe for fish culture in most of the study areas. Aquafeed protein content is an important driver of HM concentrations in sediments. The total organic carbon (TOC) content, percentage of clay particles, and pH of the aquaculture pond sediments determined the sediment HMs enrichment abilities as 13.6 %, 52 %, and 9.8 %, respectively. Cd, a significantly enriched pollutant, posed a greater ecological risk than the other five HMs (Cr, Cu, Zn, As, and Pb). Three sources of HMs were identified, including agricultural activity (e.g., aquafeeds, pesticides, and fertilizers), industrial production, and natural sources, with contributions of 44.29 %, 36.66 %, and 19.05 %, respectively. This study provides a scientific basis for minimizing the input and accumulation of HMs in freshwater aquaculture pond sediments, and this can provide insights into the prevention and control of the ecological risks posed by HMs.


Subject(s)
Aquaculture , Environmental Monitoring , Geologic Sediments , Metals, Heavy , Ponds , Water Pollutants, Chemical , China , Metals, Heavy/analysis , Geologic Sediments/chemistry , Water Pollutants, Chemical/analysis , Ponds/chemistry , Fresh Water/chemistry
3.
J Environ Manage ; 359: 120992, 2024 May.
Article in English | MEDLINE | ID: mdl-38704953

ABSTRACT

Unlocking the full potential of ponds (small water bodies) and pondscapes (network of ponds) as Nature-based Solutions (NbS) is critical pursuit for enhancing ecosystems and societal resilience to climate change and other societal challenges. Despite scattered initiatives for pond/pondscape creation, restoration and management-each considered here a distinct NbS-there is a significant knowledge gap in utilising ponds/pondscapes as effective NbS. We aimed to assess these NbS in terms of their objectives, outcomes, effectiveness, multifunctionality, delivery of potentially conflicting effects, and the implementation process while considering their Nature's Contributions to People (NCPs, i.e., benefits to society). We compiled data on 183 NbS actions implemented across 93 ponds/pondscapes from 24 countries, predominantly from Europe, via a questionnaire distributed to experienced stakeholders implementing NbS in ponds/pondscapes. One single pond/pondscape may imply more than one NbS action. Two-thirds were in rural areas, and one-third in urban settings. Our analysis revealed that Creation of habitat for biodiversity was a primary delivery objective (targeted NCP) in the implementation of most NbS in ponds/pondscapes, often also combined with other NCPs such as Learning and inspiration, Regulation of water quantity, and Physical and psychological experiences, showcasing their intended multifunctionality. Implemented NbS primarily focused on climate change adaptation (especially Regulation of hazards and extreme events, and water quantity) rather than mitigation, with less emphasis on measures like direct greenhouse gas emissions reduction or enhancing carbon sinks. The costs associated with pond's NbS varied significantly depending on factors such as project scope, objectives, location, socio-economic-cultural system, and specific implementation requirements. The creation of ponds/pondscapes often entailed the highest financial investment, much more than their restoration or their management. In conclusion, our study underscores the multifunctionality of ponds/pondscapes and provides insights about their significant potential as cost-effective NbS for enhancing ecosystem and societal resilience to climate change and biodiversity. It underscores the importance of further research to fully understand and measure the diverse range of NbS they offer, particularly in the context of climate change mitigation. Standardised measurements of the NCP provided by these NbS in ponds/pondscapes are essential for validating managers' claims and exploring their role in addressing climate change.


Subject(s)
Climate Change , Conservation of Natural Resources , Ecosystem , Ponds , Biodiversity
4.
J Environ Manage ; 359: 121013, 2024 May.
Article in English | MEDLINE | ID: mdl-38723495

ABSTRACT

Aquaculture pond sediments have a notable influence on the ecosystem balance and farmed animal health. In this study, microalgal-bacterial immobilization (MBI) was designed to improve aquaculture pond sediments via synergistic interactions. The physicochemical characteristics, bacterial communities, and the removal efficiencies of emerging pollutants were systematically investigated. The consortium containing diatom Navicula seminulum and Alcaligenes faecalis was cultivated and established in the free and immobilized forms for evaluating the treatment performance. The results indicated that the immobilized group exhibited superior performance in controlling nutrient pollutants, shaping and optimizing the bacterial community compositions with the enrichment of functional bacteria. Additionally, it showed a stronger positive correlation between the bacterial community shifts and nutrient pollutants removal compared to free cells. Furthermore, the immobilized system maintained the higher removal performance of emerging pollutants (heavy metals, antibiotics, and pathogenic Vibrios) than free group. These findings confirmed that the employment of immobilized N. seminulum and A. faecalis produced more synergistic benefits and exerted more improvements than free cells in ameliorating aquaculture pond sediments, suggesting the potential for engineering application of functional microalgal-bacterial consortium in aquaculture.


Subject(s)
Aquaculture , Microalgae , Ponds , Microalgae/metabolism , Geologic Sediments/microbiology , Metals, Heavy , Water Pollutants, Chemical/metabolism , Bacteria/metabolism , Animals
5.
Article in English | MEDLINE | ID: mdl-38805031

ABSTRACT

Two Gram-negative bacteria, designated as strains LF1T and HM2-2T, were isolated from an artificial pond in a honey farm at Hoengseong-gun, Gangwon-do, Republic of Korea. The 16S rRNA sequence analysis results revealed that strain LF1T belonged to the genus Lysobacter and had the highest sequence similarity to Lysobacter niastensis GH41-7T (99.0 %), Lysobacter panacisoli CJ29T (98.9 %), and Lysobacter prati SYSU H10001T (98.2 %). Its growth occurred at 20-37 °C, at pH 5.0-12.0, and in the presence of 0-2% NaCl. The major fatty acids were iso-C15 : 0, iso-C16 : 0, and summed feature 9 (iso-C17 : 1 ω9c and/or C16 : 0 10-methyl). The major polar lipids were phosphatidylethanolamine, phosphatidylglycerol, and diphosphatidylglycerol. The DNA G+C content was 67.5 mol%. The average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values between strain LF1T and species of the genus Lysobacter were 79.1-84.4% and 22.0-27.5 %, respectively. The 16S rRNA sequence analysis results revealed that strain HM2-2T belonged to the genus Limnohabitans and was most closely related to Limnohabitans planktonicus II-D5T (98.9 %), Limnohabitans radicicola JUR4T (98.4%), and Limnohabitans parvus II-B4T (98.4 %). Its growth occurred at 10-35 °C, at pH 5.0-11.0, and in the presence of 0-2% NaCl. The major fatty acids were C16 : 0 and summed feature 3 (C16 : 1 ω7c/C16 : 1 ω6c). The major polar lipid was phosphatidylethanolamine. The DNA G+C content was 59.9 mol%. The ANI and dDDH values between strain HM2-2T and its closely related strains were 75.1-83.0% and 20.4-26.4 %, respectively. Phenotypic, genomic, and phylogenetic data revealed that strains LF1T and HM2-2T represent novel species in the genera Lysobacter and Limnohabitans, for which the names Lysobacter stagni sp. nov. and Limnohabitans lacus sp. nov. are proposed, respectively. The type strain of Lys. stagni is LF1T (=KACC 23251T=TBRC 17648T), and that of Lim. lacus is HM2-2T (=KACC 23250T=TBRC 17649T).


Subject(s)
Bacterial Typing Techniques , Base Composition , DNA, Bacterial , Fatty Acids , Lysobacter , Nucleic Acid Hybridization , Phylogeny , Ponds , RNA, Ribosomal, 16S , Sequence Analysis, DNA , RNA, Ribosomal, 16S/genetics , Fatty Acids/chemistry , Fatty Acids/analysis , Lysobacter/genetics , Lysobacter/classification , Lysobacter/isolation & purification , DNA, Bacterial/genetics , Republic of Korea , Ponds/microbiology , Molecular Sequence Data , Phospholipids/analysis
6.
J Hazard Mater ; 472: 134577, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38749248

ABSTRACT

Tailings ponds formed by long-term accumulation of mineral processing waste have become a global environmental problem. Even worse, tailings ponds are often simply abandoned or landfilled after they cease to be used. This allows pollution to persist and continue to spread in the environment. The significance of primary succession mediated by biological soil crusts for tailings pond remediation has been illustrated by previous studies. However, the process of primary succession may not be the same at different stages during the lifetime of tailings ponds. Therefore, we investigated the environmental differences and the successional characteristics of microbial communities in the primary successional stage of tailings ponds at three different states. The results showed that the primary succession process positively changed the environment of tailings ponds in any state of tailings ponds. The primary successional stage determined the environmental quality more than the state of the tailings pond. In the recently abandoned tailings ponds, abundant species were more subjected to heavy metal stress, while rare species were mainly limited by nutrient content. We found that as the succession progressed, rare species gradually acquired their own community space and became more responsive to environmental stresses. Rare species played an important role in microbial keystone species groups.


Subject(s)
Soil Microbiology , Ponds/microbiology , Metals, Heavy/analysis , Soil Pollutants/analysis , Bacteria/classification , Soil/chemistry , Industrial Waste , Microbiota
7.
World J Microbiol Biotechnol ; 40(6): 172, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38630153

ABSTRACT

The exploitation of exciting features of plastics for diverse applications has resulted in significant plastic waste generation, which negatively impacts environmental compartments, metabolic processes, and the well-being of aquatic ecosystems biota. A shotgun metagenomic approach was deployed to investigate the microbial consortia, degradation pathways, and enzyme systems involved in the degradation of plastics in a tropical lentic pond sediment (APS). Functional annotation of the APS proteome (ORFs) using the PlasticDB database revealed annotation of 1015 proteins of enzymes such as depolymerase, esterase, lipase, hydrolase, nitrobenzylesterase, chitinase, carboxylesterase, polyesterase, oxidoreductase, polyamidase, PETase, MHETase, laccase, alkane monooxygenase, among others involved in the depolymerization of the plastic polymers. It also revealed that polyethylene glycol (PEG), polyhydroxyalkanoates (PHA), polyhydroxybutyrate (PHB), polylactic acid (PLA), polybutylene adipate terephthalate (PBAT), polyethylene terephthalate (PET), and nylon have the highest number of annotated enzymes. Further annotation using the KEGG GhostKOALA revealed that except for terephthalate, all the other degradation products of the plastic polymers depolymerization such as glyoxylate, adipate, succinate, 1,4-butanediol, ethylene glycol, lactate, and acetaldehyde were further metabolized to intermediates of the tricarboxylic acid cycle. Taxonomic characterization of the annotated proteins using the AAI Profiler and BLASTP revealed that Pseudomonadota members dominate most plastic types, followed by Actinomycetota and Acidobacteriota. The study reveals novel plastic degraders from diverse phyla hitherto not reported to be involved in plastic degradation. This suggests that plastic pollution in aquatic environments is prevalent with well-adapted degrading communities and could be the silver lining in mitigating the impacts of plastic pollution in aquatic environments.


Subject(s)
Ecosystem , Microbial Consortia , Phthalic Acids , Microbial Consortia/genetics , Ponds , Lipase , Adipates , Polymers
8.
Chemosphere ; 357: 141978, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38608774

ABSTRACT

Human impacts on wild populations are numerous and extensive, degrading habitats and causing population declines across taxa. Though these impacts are often studied individually, wild populations typically face suites of stressors acting concomitantly, compromising the fitness of individuals and populations in ways poorly understood and not easily predicted by the effects of any single stressor. Developing understanding of the effects of multiple stressors and their potential interactions remains a critical challenge in environmental biology. Here, we focus on assessing the impacts of two prominent stressors associated with anthropogenic activities that affect many organisms across the planet - elevated salinity (e.g., from road de-icing salt) and temperature (e.g. from climate change). We examined a suite of physiological traits and components of fitness across populations of wood frogs originating from ponds that differ in their proximity to roads and thus their legacy of exposure to pollution from road salt. When experimentally exposed to road salt, wood frogs showed reduced survival (especially those from ponds adjacent to roads), divergent developmental rates, and reduced longevity. Family-level effects mediated these outcomes, but high salinity generally eroded family-level variance. When combined, exposure to both temperature and salt resulted in very low survival, and this effect was strongest in roadside populations. Taken together, these results suggest that temperature is an important stressor capable of exacerbating impacts from a prominent contaminant confronting many freshwater organisms in salinized habitats. More broadly, it appears likely that toxicity might often be underestimated in the absence of multi-stressor approaches.


Subject(s)
Salinity , Animals , Climate Change , Ecosystem , Water Pollutants, Chemical/toxicity , Temperature , Anura/physiology , Stress, Physiological , Ponds , Sodium Chloride/toxicity
9.
J Invertebr Pathol ; 204: 108105, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38614293

ABSTRACT

Myxozoans are obligate parasites with complex life cycles, typically infecting fish and annelids. Here, we examined annelids from fish farm pond sediments in the Beit Shean Valley, in the Syrian-African Rift Valley, Israel, for myxozoan infections. We examined 1486 oligochaetes, and found 74 (5 %) were infected with actinospore stages. We used mitochondrial 16S sequencing to infer identity of 25 infected annelids as species of Potamothrix, Psammoryctides, Tubifex and Dero. We identified 7 myxozoan types from collective groups Neoactinomyxum and Sphaeractinomyxon, and characterized them by small subunit ribosomal DNA sequencing. The Neoactinomyxum type was genetically most similar (∼93 %) to cyprinid fish-infecting Myxobolus spp. The six Sphaeractinomyxon types were genetically similar (93-100 %) to Mugilid-infecting Myxobolus spp.; with one being the previously unknown actinospore stage of a myxospore that infects mullet from aquaculture from the Israeli coast of the Mediterranean Sea. As the farm pond system is artificial and geographically isolated from the Mediterranean, the presence of at least seven myxozoans in their annelid hosts demonstrates introduction and establishment of these parasites in a novel, brackish environment.


Subject(s)
Aquaculture , Myxozoa , Ponds , Animals , Myxozoa/genetics , Myxozoa/physiology , Ponds/parasitology , Life Cycle Stages , Parasitic Diseases, Animal/parasitology , Israel , Fish Diseases/parasitology
10.
Neotrop Entomol ; 53(3): 630-640, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38656590

ABSTRACT

Diverse abiotic and biotic factors drive the ecological variation of communities across spatial and temporal dimensions. Within the Amazonian landscape, various freshwater environments exhibit distinct physicochemical characteristics. Thus, our study delved into the fluctuations of Odonata assemblages amidst distinct water bodies within Amazonia, encompassing two distinct climatic seasons. Comparative analysis was conducted on Odonata species diversity and assemblage composition across a blackwater pond, a lake, and a stream, spanning the initiation and culmination of the dry season in the southwestern Amazon region in Peru. Our methodology involved capturing adult Odonata using entomological nets on three separate occasions between 11:00 and 14:00 h for each water body in May (beginning of the dry season) and October (end of the dry season) of 2018. We also evaluated the influence of temperature, precipitation, and percent cloud cover on the abundance and richness of adult Odonata. Species richness and composition differed among the three water bodies in both periods of the dry season. No effect of the dry season periods on species richness and abundance was observed. However, except in the oxbow lake, the more abundant species were substituted to the end of the dry season. Our study highlights the influence of water body types on Odonata species diversity and composition. The effects of the sampling period during the dry season may not be immediately apparent in conventional diversity metrics, such as species richness and abundance. Instead, its effects manifest predominantly in the relative abundance of the species that compose these assemblages.


Subject(s)
Biodiversity , Lakes , Odonata , Seasons , Animals , Peru , Odonata/classification , Ponds , Rivers , Temperature
11.
Food Chem ; 451: 139325, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38657519

ABSTRACT

Muscle protein stability during freeze-thaw (F-T) cycles was investigated with tilapia cultured in recirculating aquaculture systems (RAS) and traditional aquaculture in ponds (TAP). This study found that fatty acids (eg., palmitic acid) were enriched in TAP, while antioxidants (eg., glutathione) were enriched in RAS. Generally, proteins in the RAS group exhibited greater stability against denaturation during the F-T cycle, suggested by a less decrease in haem protein content (77% in RAS and 86% in TAP) and a less increase in surface hydrophobicity of sarcoplasmic protein (63% in RAS and 101% in TAP). There was no significant difference in oxidative stability of myofibrillar protein between the two groups. This study provides a theoretical guide for the quality control of tilapia cultured in RAS during frozen storage.


Subject(s)
Aquaculture , Fish Proteins , Freezing , Protein Stability , Tilapia , Animals , Tilapia/metabolism , Fish Proteins/chemistry , Fish Proteins/metabolism , Muscle Proteins/metabolism , Muscle Proteins/chemistry , Metabolomics , Ponds/chemistry , Muscles/chemistry , Muscles/metabolism , Fatty Acids/metabolism , Fatty Acids/chemistry , Fatty Acids/analysis
12.
FEMS Microbiol Ecol ; 100(5)2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38632040

ABSTRACT

Aquatic ecosystems are large contributors to global methane (CH4) emissions. Eutrophication significantly enhances CH4-production as it stimulates methanogenesis. Mitigation measures aimed at reducing eutrophication, such as the addition of metal salts to immobilize phosphate (PO43-), are now common practice. However, the effects of such remedies on methanogenic and methanotrophic communities-and therefore on CH4-cycling-remain largely unexplored. Here, we demonstrate that Fe(II)Cl2 addition, used as PO43- binder, differentially affected microbial CH4 cycling-processes in field experiments and batch incubations. In the field experiments, carried out in enclosures in a eutrophic pond, Fe(II)Cl2 application lowered in-situ CH4 emissions by lowering net CH4-production, while sediment aerobic CH4-oxidation rates-as found in batch incubations of sediment from the enclosures-did not differ from control. In Fe(II)Cl2-treated sediments, a decrease in net CH4-production rates could be attributed to the stimulation of iron-dependent anaerobic CH4-oxidation (Fe-AOM). In batch incubations, anaerobic CH4-oxidation and Fe(II)-production started immediately after CH4 addition, indicating Fe-AOM, likely enabled by favorable indigenous iron cycling conditions and the present methanotroph community in the pond sediment. 16S rRNA sequencing data confirmed the presence of anaerobic CH4-oxidizing archaea and both iron-reducing and iron-oxidizing bacteria in the tested sediments. Thus, besides combatting eutrophication, Fe(II)Cl2 application can mitigate CH4 emissions by reducing microbial net CH4-production and stimulating Fe-AOM.


Subject(s)
Archaea , Geologic Sediments , Methane , Oxidation-Reduction , Ponds , Methane/metabolism , Ponds/microbiology , Anaerobiosis , Geologic Sediments/microbiology , Archaea/metabolism , Archaea/genetics , Iron/metabolism , Bacteria/metabolism , Bacteria/genetics , Eutrophication , RNA, Ribosomal, 16S/genetics , Ferrous Compounds/metabolism
13.
Article in English | MEDLINE | ID: mdl-38656473

ABSTRACT

A Gram-stain-negative, aerobic, oxidase-positive, weakly catalase-positive, motile by means of a single polar flagellum, rod-shaped bacterium designated as strain S2-9T was isolated from sediment sampled in Wiyang pond, Republic of Korea. Growth of this strain was observed at 10-40 °C (optimum, 35 °C) and pH 5.5-9.5 (optimum, pH 7.0-8.0) and in the presence of 0-0.5 % NaCl in Reasoner's 2A broth. The major fatty acids (>10 %) of strain S2-9T were C16 : 0 and summed feature 3 (comprising a mixture of C16 : 1 ω7c and/or C16 : 1 ω6c). Ubiquinone-8 was detected as the respiratory quinone. The major polar lipids were phosphatidylethanolamine and phosphatidylglycerol. Strain S2-9T showed the highest 16S rRNA gene sequence similarity to Paucibacter oligotrophus CHU3T (98.7 %), followed by 'Paucibacter aquatile' CR182 (98.4 %), all type strains of Pelomonas species (98.1-98.3 %), Mitsuaria chitosanitabida NBRC 102408T (97.9 %), Kinneretia asaccharophila KIN192T (97.8 %), Mitsuaria chitinivorans HWN-4T (97.4 %), and Paucibacter toxinivorans 2C20T (97.4 %). Phylogenetic trees based on the 16S rRNA gene and whole-genome sequences showed that strain S2-9T formed a tight phylogenetic lineage with Paucibacter species (CHU3T, CR182, and 2C20T). Average nucleotide identity and digital DNA-DNA hybridization values between strain S2-9T and Paucibacter strains were 76.6-79.3% and 19.5-21.5 %, respectively. The genomic DNA G+C content of strain S2-9T was 68.3 mol%. Notably, genes responsible for both sulphur oxidation and reduction and denitrification were found in the genome of strain S2-9T, suggesting that strain S2-9T is involved in the nitrogen and sulphur cycles in pond ecosystems. Based on the polyphasic taxonomic results, strain S2-9T represents a novel species of the genus Paucibacter, for which the name Paucibacter sediminis sp. nov. is proposed. The type strain is S2-9T (= KACC 22267T= JCM 34541T).


Subject(s)
Bacterial Typing Techniques , Base Composition , DNA, Bacterial , Fatty Acids , Geologic Sediments , Phylogeny , Ponds , RNA, Ribosomal, 16S , Sequence Analysis, DNA , Ubiquinone , Fatty Acids/analysis , RNA, Ribosomal, 16S/genetics , Geologic Sediments/microbiology , Ponds/microbiology , DNA, Bacterial/genetics , Republic of Korea , Nucleic Acid Hybridization
14.
Proc Biol Sci ; 291(2020): 20232768, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38565154

ABSTRACT

Prior research on metacommunities has largely focused on snapshot surveys, often overlooking temporal dynamics. In this study, our aim was to compare the insights obtained from metacommunity analyses based on a spatial approach repeated over time, with a spatio-temporal approach that consolidates all data into a single model. We empirically assessed the influence of temporal variation in the environment and spatial connectivity on the structure of metacommunities in tropical and Mediterranean temporary ponds. Employing a standardized methodology across both regions, we surveyed multiple freshwater taxa in three time periods within the same hydrological year from multiple temporary ponds in each region. To evaluate how environmental, spatial and temporal influences vary between the two approaches, we used nonlinear variation partitioning analyses based on generalized additive models. Overall, this study underscores the importance of adopting spatio-temporal analytics to better understand the processes shaping metacommunities. While the spatial approach suggested that environmental factors had a greater influence, our spatio-temporal analysis revealed that spatial connectivity was the primary driver influencing metacommunity structure in both regions. Temporal effects were equally important as environmental effects, suggesting a significant role of ecological succession in metacommunity structure.


Subject(s)
Fresh Water , Ponds , Climate , Spatio-Temporal Analysis , Ecosystem
15.
J Vis Exp ; (205)2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38587389

ABSTRACT

In recent years, a number of technologies have emerged to purify biogas into biomethane. This purification entails a reduction in the concentration of polluting gases such as carbon dioxide and hydrogen sulfide to increase the content of methane. In this study, we used a microalgal cultivation technology to treat and purify biogas produced from organic waste from the swine industry to obtain ready-to-use biomethane. For cultivation and purification, two 22.2 m3 open-pond photobioreactors coupled with an absorption-desorption column system were set up in San Juan de los Lagos, Mexico. Several recirculation liquid/biogas ratios (L/G) were tested to obtain the highest removal efficiencies; other parameters, such as pH, dissolved oxygen (DO), temperature, and biomass growth, were measured. The most efficient L/Gs were 1.6 and 2.5, resulting in a treated biogas effluent with a composition of 6.8%vol and 6.6%vol in CO2, respectively, and removal efficiencies for H2S up to 98.9%, as well as maintaining O2 contamination values of less than 2%vol. We found that pH greatly determines CO2 removal, more so than L/G, during cultivation because of its participation in the photosynthetic process of microalgae and its ability to vary pH when solubilized due to its acidic nature. DO, and temperature oscillated as expected from the light-dark natural cycles of photosynthesis and the time of day, respectively. Biomass growth varied with CO2 and nutrient feeding as well as reactor harvesting; however, the trend remained primed for growth.


Subject(s)
Biofuels , Microalgae , Animals , Swine , Ponds , Carbon Dioxide/analysis , Bacteria , Biomass
16.
Sci Total Environ ; 927: 172077, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38569955

ABSTRACT

Human activities affect terrestrial and aquatic habitats leading to changes at both individual and population levels in wild animal species. In this study, we investigated the phenotype and demographics of the Mediterranean pond turtle Mauremys leprosa (Schweigger, 1812) in contrasted environments of Southern France: two peri-urban rivers receiving effluents from wastewater treatment plants (WWTP), and another one without sewage treatment plant. Our findings revealed the presence of pesticides and pharmaceuticals in the three rivers of investigation, the highest diversities and concentrations of pollutants being found in the river subsections impacted by WWTP effluents. Principal component analysis and hierarchical clustering identified three levels of habitat quality, with different pollutant concentrations, thermal conditions, nutrient, and organic matter levels. The highest turtle densities, growth rates, and body sizes were estimated in the most disturbed habitats, suggesting potential adult benefits derived from harsh environmental conditions induced by pollution and eutrophication. Conversely, juveniles were the most abundant in the least polluted habitats, suggesting adverse effects of pollution on juvenile survival or adult reproduction. This study suggests that turtles living in polluted habitats may benefit from enhanced growth and body size, at the expense of reproductive success.


Subject(s)
Ecosystem , Environmental Monitoring , Turtles , Water Pollutants, Chemical , Animals , Turtles/physiology , France , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity , Ponds
17.
PLoS One ; 19(4): e0299101, 2024.
Article in English | MEDLINE | ID: mdl-38573913

ABSTRACT

The influence of intraspecific trait variation on species interactions makes trait-based approaches critical to understanding eco-evolutionary processes. Because species occupy habitats that are patchily distributed in space, species interactions are influenced not just by the degree of intraspecific trait variation but also the relative proportion of trait variation that occurs within- versus between-patches. Advancement in trait-based ecology hinges on understanding how trait variation is distributed within and between habitat patches across the landscape. We sampled larval spotted salamanders (Ambystoma maculatum) across six spatially discrete ponds to quantify within- and between-pond variation in mass, length, and various metrics associated with their relationship (scaling, body condition, shape). Across all traits, within-pond variation contributed more to total observed morphological variation than between-pond variation. Between-pond variation was not negligible, however, and explained 20-41% of total observed variation in measured traits. Between-pond variation was more pronounced in salamander tail morphology compared to head or body morphology, suggesting that pond-level factors more strongly influence tails than other body parts. We also observed differences in mass-length relationships across ponds, both in terms of scaling slopes and intercepts, though differences in the intercepts were much stronger. Preliminary evidence hinted that newly constructed ponds were a driver of the observed differences in mass-length relationships and morphometrics. General pond-level difference in salamander trait covariation suggest that allometric scaling of morphological traits is context dependent in patchy landscapes. Effects of pond age offer the hypothesis that habitat restoration through pond construction is a driver of variation in trait scaling, which managers may leverage to bolster trait diversity.


Subject(s)
Ambystoma , Ponds , Animals , Urodela , Ecosystem , Ecology
18.
Microb Ecol ; 87(1): 51, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38488929

ABSTRACT

In aquatic environments, Vibrio and cyanobacteria establish varying relationships influenced by environmental factors. To investigate their association, this study spanned 5 months at a local shrimp farm, covering the shrimp larvae stocking cycle until harvesting. A total of 32 samples were collected from pond A (n = 6), pond B (n = 6), effluent (n = 10), and influent (n = 10). Vibrio species and cyanobacteria density were observed, and canonical correspondence analysis (CCA) assessed their correlation. CCA revealed a minor correlation (p = 0.847, 0.255, 0.288, and 0.304) between Vibrio and cyanobacteria in pond A, pond B, effluent, and influent water, respectively. Notably, Vibrio showed a stronger correlation with pH (6.14-7.64), while cyanobacteria correlated with pH, salinity (17.4-24 ppt), and temperature (30.8-31.5 °C), with salinity as the most influential factor. This suggests that factors beyond cyanobacteria influence Vibrio survival. Future research could explore species-specific relationships, regional dynamics, and multidimensional landscapes to better understand Vibrio-cyanobacteria connections. Managing water parameters may prove more efficient in controlling vibriosis in shrimp farms than targeting cyanobacterial populations.


Subject(s)
Cyanobacteria , Penaeidae , Vibrio parahaemolyticus , Vibrio , Animals , Ponds , Water , Aquaculture , Penaeidae/microbiology
19.
Sci Rep ; 14(1): 5594, 2024 03 07.
Article in English | MEDLINE | ID: mdl-38454013

ABSTRACT

Denitrifying bacteria harboring the nitrate reductase S (nirS) gene convert active nitrogen into molecular nitrogen, and alleviate eutrophication in aquaculture water. Suspended particulate matter (SPM) is an important component of aquaculture water and a carrier for denitrification. SPM with different particle sizes were collected from a coastal high-altitude aquaculture pond in Maoming City, China. Diversity, community structure, abundance of nirS-type denitrifying bacteria on SPM and environmental influencing factors were studied using high-throughput sequencing, fluorescence quantitative PCR, and statistical analysis. Pseudomonas, Halomonas, and Wenzhouxiangella were the dominant genera of nirS-type denitrifying bacteria on SPM from the ponds. Network analysis revealed Pseudomonas and Halomonas as the key genera involved in the interaction of nirS-type denitrifying bacteria on SPM in the ponds. qPCR indicated a trend toward greater nirS gene abundance in progressively larger SPM. Dissolved oxygen, pH, temperature, and SPM particle size were the main environmental factors influencing changes in the nirS-type denitrifying bacterial community on SPM in coastal high-altitude aquaculture pond water. These findings increase our understanding of the microbiology of nitrogen cycle processes in aquaculture ecosystem, and will help optimize aquatic tailwater treatment strategies.


Subject(s)
Ecosystem , Ponds , Nitrate Reductase , Particulate Matter , Altitude , Denitrification , Bacteria/genetics , Aquaculture , Nitrogen , Water/chemistry
20.
Sci Total Environ ; 926: 172108, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38556013

ABSTRACT

Global aquaculture production is expected to rise to meet the growing demand for food worldwide, potentially leading to increased anthropogenic greenhouse gases (GHG) emissions. As the demand for fish protein increases, so will stocking density, feeding amounts, and nitrogen loading in aquaculture ponds. However, the impact of GHG emissions and the underlying microbial processes remain poorly understood. This study investigated the GHG emission characteristics, key microbial processes, and environmental drivers underlying GHG emissions in low and high nitrogen loading aquaculture ponds (LNP and HNP). The N2O flux in HNP (43.1 ± 11.3 µmol m-2 d-1) was significantly higher than in LNP (-11.3 ± 25.1 µmol m-2 d-1), while the dissolved N2O concentration in HNP (52.8 ± 7.1 nmol L-1) was 150 % higher than in LNP (p < 0.01). However, the methane (CH4) and carbon dioxide (CO2) fluxes and concentrations showed no significant differences (p > 0.05). N2O replaced CH4 as the main source of Global Warming Potential in HNP. Pond sediments acted as a sink for N2O but a source for CH4 and CO2. The △N2O/(△N2O + â–³N2) in HNP (0.015 ± 0.007 %) was 7.7-fold higher than in LNP (0.002 ± 0.001 %) (p < 0.05). The chemical oxygen demand to NO2-N ratio was the most important environmental factor explaining the variability of N2O fluxes. Ammonia-oxidizing bacteria driven nitrification in water was the predominant N2O source, while comammox-driven nitrification and nosZII-driven N2O reduction in water were key processes for reducing N2O emission in LNP but decreased in HNP. The strong CH4 oxidization by Methylocystis and CO2 assimilation by algae resulted in low CH4 emissions and CO2 sink in the aquaculture pond. The Mantel test indicated that HNP increased N2O fluxes mainly through altering functional genes composition in water and sediment. Our findings suggest that there is a significant underestimation of N2O emissions without considering the significantly increased △N2O/(△N2O + â–³N2) caused by increased nitrogen loading.


Subject(s)
Greenhouse Gases , Animals , Ponds , Carbon Dioxide/analysis , Nitrogen , Environmental Monitoring , Aquaculture/methods , Water , Methane/analysis , Nitrous Oxide/analysis , Soil
SELECTION OF CITATIONS
SEARCH DETAIL
...