Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Brain ; 13(1): 67, 2020 05 05.
Article in English | MEDLINE | ID: mdl-32370769

ABSTRACT

The linear nucleus (Li) was identified in 1978 from its projections to the cerebellum. However, there is no systematic study of its connections with other areas of the central nervous system possibly due to the challenge of injecting retrograde tracers into this nucleus. The present study examines its afferents from some nuclei involved in motor and cardiovascular control with anterograde tracer injections. BDA injections into the central amygdaloid nucleus result in labeled fibers to the ipsilateral Li. Bilateral projections with an ipsilateral dominance were observed after injections in a) jointly the paralemniscal nucleus, the noradrenergic group 7/ Köllike -Fuse nucleus/subcoeruleus nucleus, b) the gigantocellular reticular nucleus, c) and the solitary nucleus/the parvicellular/intermediate reticular nucleus. Retrogradely labeled neurons were observed in Li after BDA injections into all these nuclei except the central amygdaloid and the paralemniscal nuclei. Our results suggest that Li is involved in a variety of physiological functions apart from motor and balance control it may exert via its cerebellar projections.


Subject(s)
Biotin/analogs & derivatives , Dextrans/pharmacology , Dorsal Raphe Nucleus/drug effects , Neurons/drug effects , Afferent Pathways , Amygdala/cytology , Amygdala/drug effects , Amygdala/metabolism , Animals , Biotin/pharmacology , Cerebellum/drug effects , Cerebellum/metabolism , Dorsal Raphe Nucleus/cytology , Dorsal Raphe Nucleus/metabolism , Medulla Oblongata/metabolism , Mice , Mice, Inbred C57BL , Neural Pathways/drug effects , Neural Pathways/metabolism , Neurons/cytology , Neurons/metabolism , Pontine Tegmentum/cytology , Pontine Tegmentum/drug effects , Pontine Tegmentum/metabolism , Trigeminal Nuclei/cytology , Trigeminal Nuclei/drug effects , Trigeminal Nuclei/metabolism , Vestibular Nuclei/cytology , Vestibular Nuclei/drug effects , Vestibular Nuclei/metabolism
2.
Neuron ; 103(6): 1044-1055.e7, 2019 09 25.
Article in English | MEDLINE | ID: mdl-31473062

ABSTRACT

Sleep is crucial for our survival, and many diseases are linked to long-term poor sleep quality. Before we can use sleep to enhance our health and performance and alleviate diseases associated with poor sleep, a greater understanding of sleep regulation is necessary. We have identified a mutation in the ß1-adrenergic receptor gene in humans who require fewer hours of sleep than most. In vitro, this mutation leads to decreased protein stability and dampened signaling in response to agonist treatment. In vivo, the mice carrying the same mutation demonstrated short sleep behavior. We found that this receptor is highly expressed in the dorsal pons and that these ADRB1+ neurons are active during rapid eye movement (REM) sleep and wakefulness. Activating these neurons can lead to wakefulness, and the activity of these neurons is affected by the mutation. These results highlight the important role of ß1-adrenergic receptors in sleep/wake regulation.


Subject(s)
Receptors, Adrenergic, beta-1/genetics , Sleep/genetics , Wakefulness/genetics , Animals , Gene Knock-In Techniques , Humans , Mice , Mutation , Neurons/metabolism , Pedigree , Pontine Tegmentum/cytology , Pontine Tegmentum/metabolism , Sleep Wake Disorders/genetics , Sleep, REM/genetics
3.
J Comp Neurol ; 526(3): 397-411, 2018 Feb 15.
Article in English | MEDLINE | ID: mdl-28921616

ABSTRACT

In mammals, thalamic axons are guided internally toward their neocortical target by corridor (Co) neurons that act as axonal guideposts. The existence of Co-like neurons in non-mammalian species, in which thalamic axons do not grow internally, raised the possibility that Co cells might have an ancestral role. Here, we investigated the contribution of corridor (Co) cells to mature brain circuits using a combination of genetic fate-mapping and assays in mice. We unexpectedly found that Co neurons contribute to striatal-like projection neurons in the central extended amygdala. In particular, Co-like neurons participate in specific nuclei of the bed nucleus of the stria terminalis, which plays essential roles in anxiety circuits. Our study shows that Co neurons possess an evolutionary conserved role in anxiety circuits independently from an acquired guidepost function. It furthermore highlights that neurons can have multiple sequential functions during brain wiring and supports a general role of tangential migration in the building of subpallial circuits.


Subject(s)
Afferent Pathways/physiology , Axon Guidance/genetics , Cell Movement/physiology , Gene Expression Regulation, Developmental/physiology , Pontine Tegmentum , Thalamus , Animals , Animals, Newborn , Cholera Toxin/metabolism , Deoxyuridine/analogs & derivatives , Deoxyuridine/metabolism , Embryo, Mammalian , Female , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , LIM-Homeodomain Proteins/genetics , LIM-Homeodomain Proteins/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Pontine Tegmentum/cytology , Pontine Tegmentum/embryology , Pontine Tegmentum/growth & development , Pregnancy , Receptors, Dopamine D2/genetics , Receptors, Dopamine D2/metabolism , Thalamus/cytology , Thalamus/embryology , Thalamus/growth & development , Thyroid Nuclear Factor 1/metabolism , Trans-Activators/genetics , Trans-Activators/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
4.
J Comp Neurol ; 524(6): 1270-91, 2016 Apr 15.
Article in English | MEDLINE | ID: mdl-26400815

ABSTRACT

We recently characterized physiologically a pontine reticulospinal (pRS) projection in the neonatal mouse that mediates synaptic effects on spinal motoneurons via parallel uncrossed and crossed pathways (Sivertsen et al. [2014] J Neurophysiol 112:1628-1643). Here we characterize the origins, anatomical organization, and supraspinal axon trajectories of these pathways via retrograde tracing from the high cervical spinal cord. The two pathways derive from segregated populations of ipsilaterally and contralaterally projecting pRS neurons with characteristic locations within the pontine reticular formation (PRF). We obtained estimates of relative neuron numbers by counting from sections, digitally generated neuron position maps, and 3D reconstructions. Ipsilateral pRS neurons outnumber contralateral pRS neurons by threefold and are distributed about equally in rostral and caudal regions of the PRF, whereas contralateral pRS neurons are concentrated in the rostral PRF. Ipsilateral pRS neuron somata are on average larger than contralateral. No pRS neurons are positive in transgenic mice that report the expression of GAD, suggesting that they are predominantly excitatory. Putative GABAergic interneurons are interspersed among the pRS neurons, however. Ipsilateral and contralateral pRS axons have distinctly different trajectories within the brainstem. Their initial spinal funicular trajectories also differ, with ipsilateral and contralateral pRS axons more highly concentrated medially and laterally, respectively. The larger size and greater number of ipsilateral vs. contralateral pRS neurons is compatible with our previous finding that the uncrossed projection transmits more reliably to spinal motoneurons. The information about supraspinal and initial spinal pRS axon trajectories should facilitate future physiological assessment of synaptic connections between pRS neurons and spinal neurons.


Subject(s)
Axons/physiology , Motor Neurons/physiology , Pontine Tegmentum/physiology , Spinal Cord/physiology , Animals , Animals, Newborn , Axons/chemistry , Brain Stem/chemistry , Brain Stem/cytology , Brain Stem/physiology , Mice , Mice, Inbred ICR , Motor Neurons/chemistry , Neural Pathways/chemistry , Neural Pathways/physiology , Pons/chemistry , Pons/cytology , Pons/physiology , Pontine Tegmentum/chemistry , Pontine Tegmentum/cytology , Spinal Cord/chemistry , Spinal Cord/cytology
5.
J Comp Neurol ; 524(5): 963-85, 2016 Apr 01.
Article in English | MEDLINE | ID: mdl-26287809

ABSTRACT

Birds are almost always said to have two visual pathways from the retina to the telencephalon: thalamofugal terminating in the Wulst, and tectofugal terminating in the entopallium. Often ignored is a second tectofugal pathway that terminates in the nidopallium medial to and separate from the entopallium (e.g., Gamlin and Cohen [1986] J Comp Neurol 250:296-310). Using standard tract-tracing and electroanatomical techniques, we extend earlier evidence of a second tectofugal pathway in songbirds (Wild [1994] J Comp Neurol 349:512-535), by showing that visual projections to nucleus uvaeformis (Uva) of the posterior thalamus in zebra finches extend farther rostrally than to Uva, as generally recognized in the context of the song control system. Projections to "rUva" resulted from injections of biotinylated dextran amine into the lateral pontine nucleus (PL), and led to extensive retrograde labeling of tectal neurons, predominantly in layer 13. Injections in rUva also resulted in extensive retrograde labeling of predominantly layer 13 tectal neurons, retrograde labeling of PL neurons, and anterograde labeling of PL. It thus appears that some tectal neurons could project to rUva and PL via branched axons. Ascending projections of rUva terminated throughout a visually responsive region of the intermediate nidopallium (NI) lying between the nucleus interface medially and the entopallium laterally. Lastly, as shown by Clarke in pigeons ([1977] J Comp Neurol 174:535-552), we found that PL projects to caudal cerebellar folia.


Subject(s)
Finches/physiology , Pontine Tegmentum/physiology , Posterior Thalamic Nuclei/physiology , Tectum Mesencephali/physiology , Acoustic Stimulation/methods , Animals , Female , Finches/anatomy & histology , Male , Photic Stimulation/methods , Pontine Tegmentum/cytology , Posterior Thalamic Nuclei/cytology , Songbirds , Tectum Mesencephali/cytology , Visual Pathways/cytology
6.
Cereb Cortex ; 25(3): 748-64, 2015 Mar.
Article in English | MEDLINE | ID: mdl-24068552

ABSTRACT

The caudal part of the macaque ventrolateral prefrontal (VLPF) cortex hosts several distinct areas or fields--45B, 45A, 8r, caudal 46vc, and caudal 12r--connected to the frontal eye field (area 8/FEF). To assess whether these areas/fields also display subcortical projections possibly mediating a role in controlling oculomotor behavior, we examined their descending projections, based on anterograde tracer injections in each area/field, and compared them with those of area 8/FEF. All the studied areas/fields displayed projections to brainstem preoculomotor structures, precerebellar centers, and striatal sectors that are also targets of projections originating from area 8/FEF. Specifically, these projections involved: (1) the intermediate and superficial layers of the superior colliculus; (2) the mesencephalic and pontine reticular formation; (3) the dorsomedial and lateral pontine nuclei and the reticularis tegmenti pontis; and (4) the body of the caudate nucleus. Furthermore, area 45B projected also to the regions around the trochlear nucleus and to the raphe interpositus. The present data provide evidence for a role of the caudal VLPF areas/fields in controlling oculomotor behavior not only through their connections to area 8/FEF, but also in parallel through a direct access to preoculomotor brainstem structures and to the cerebellar and basal ganglia oculomotor loops.


Subject(s)
Basal Ganglia/cytology , Brain Stem/cytology , Cerebellum/cytology , Eye Movements , Prefrontal Cortex/cytology , Animals , Caudate Nucleus/cytology , Macaca fascicularis , Macaca mulatta , Neural Pathways/cytology , Neuroanatomical Tract-Tracing Techniques , Pontine Tegmentum/cytology , Superior Colliculi/cytology , Tegmentum Mesencephali/cytology
7.
J Neurophysiol ; 112(4): 981-98, 2014 Aug 15.
Article in English | MEDLINE | ID: mdl-25128560

ABSTRACT

The central auditory system has traditionally been divided into lemniscal and nonlemniscal pathways leading from the midbrain through the thalamus to the cortex. This view has served as an organizing principle for studying, modeling, and understanding the encoding of sound within the brain. However, there is evidence that the lemniscal pathway could be further divided into at least two subpathways, each potentially coding for sound in different ways. We investigated whether such an interpretation is supported by the spatial distribution of response features in the central nucleus of the inferior colliculus (ICC), the part of the auditory midbrain assigned to the lemniscal pathway. We recorded responses to pure tone stimuli in the ICC of ketamine-xylazine-anesthetized guinea pigs and used three-dimensional brain reconstruction techniques to map the location of the recording sites. Compared with neurons in caudal-and-medial regions within an isofrequency lamina of the ICC, neurons in rostral-and-lateral regions responded with shorter first-spike latencies with less spiking jitter, shorter durations of spiking responses, a higher proportion of spikes occurring near the onset of the stimulus, lower thresholds, and larger local field potentials with shorter latencies. Further analysis revealed two distinct clusters of response features located in either the caudal-and-medial or the rostral-and-lateral parts of the isofrequency laminae of the ICC. Thus we report substantial differences in coding properties in two regions of the ICC that are consistent with the hypothesis that the lemniscal pathway is made up of at least two distinct subpathways from the midbrain up to the cortex.


Subject(s)
Auditory Pathways/physiology , Evoked Potentials, Auditory, Brain Stem , Inferior Colliculi/physiology , Pontine Tegmentum/physiology , Animals , Auditory Pathways/cytology , Female , Guinea Pigs , Inferior Colliculi/cytology , Male , Neurons/physiology , Pontine Tegmentum/cytology , Reaction Time
SELECTION OF CITATIONS
SEARCH DETAIL
...