Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.335
Filter
1.
J Vis Exp ; (207)2024 May 17.
Article in English | MEDLINE | ID: mdl-38829112

ABSTRACT

The construction of gene expression vectors is an important component of laboratory work in experimental biology. With technical advancements like Gibson Assembly, vector construction becomes relatively simple and efficient. However, when the full-length genome of Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) cannot be easily amplified by a single polymerase chain reaction (PCR) from cDNA, or it is difficult to acquire a full-length gene expression vector by homologous recombination of multiple inserts in vitro, the current Gibson Assembly technique fails to achieve this goal. Consequently, we aimed to divide the PRRSV genome into several fragments and introduce appropriate restriction sites into the reverse primer for obtaining PCR-amplified fragments. After joining the previous DNA fragment into the vector by homologous recombination technology, the new vector acquired the restriction enzyme cleavage site. Thus, we can linearize the vector by using the newly added enzyme cleavage site and introduce the next DNA fragment downstream of the upstream DNA fragment. The introduced restriction enzyme cleavage site at the 3' end of the upstream DNA fragment will be eliminated, and a new cleavage site will be introduced into the 3' end of the downstream DNA fragment. In this way, we can join DNA fragments to the vector one by one. This method is applicable to successfully construct the PRRSV expression vector and is an effective method for assembling a large number of fragments into the expression vector.


Subject(s)
Cloning, Molecular , Genetic Vectors , Porcine respiratory and reproductive syndrome virus , Porcine respiratory and reproductive syndrome virus/genetics , Genetic Vectors/genetics , Cloning, Molecular/methods , Animals , Polymerase Chain Reaction/methods , Swine , Genome, Viral/genetics
2.
J Gen Virol ; 105(5)2024 May.
Article in English | MEDLINE | ID: mdl-38776134

ABSTRACT

Porcine reproductive and respiratory syndrome (PRRSV) is an enveloped single-stranded positive-sense RNA virus and one of the main pathogens that causes the most significant economical losses in the swine-producing countries. PRRSV is currently divided into two distinct species, PRRSV-1 and PRRSV-2. The PRRSV virion envelope is composed of four glycosylated membrane proteins and three non-glycosylated envelope proteins. Previous work has suggested that PRRSV-linked glycans are critical structural components for virus assembly. In addition, it has been proposed that PRRSV glycans are implicated in the interaction with host cells and critical for virus infection. In contrast, recent findings showed that removal of N-glycans from PRRSV does not influence virus infection of permissive cells. Thus, there are not sufficient evidences to indicate compellingly that N-glycans present in the PRRSV envelope play a direct function in viral infection. To gain insights into the role of N-glycosylation in PRRSV infection, we analysed the specific contribution of the envelope protein-linked N-glycans to infection of permissive cells. For this purpose, we used a novel strategy to modify envelope protein-linked N-glycans that consists of production of monoglycosylated PRRSV and viral glycoproteins with different glycan states. Our results showed that removal or alteration of N-glycans from PRRSV affected virus infection. Specifically, we found that complex N-glycans are required for an efficient infection in cell cultures. Furthermore, we found that presence of high mannose type glycans on PRRSV surface is the minimal requirement for a productive viral infection. Our findings also show that PRRSV-1 and PRRSV-2 have different requirements of N-glycan structure for an optimal infection. In addition, we demonstrated that removal of N-glycans from PRRSV does not affect viral attachment, suggesting that these carbohydrates played a major role in regulating viral entry. In agreement with these findings, by performing immunoprecipitation assays and colocalization experiments, we found that N-glycans present in the viral envelope glycoproteins are not required to bind to the essential viral receptor CD163. Finally, we found that the presence of N-glycans in CD163 is not required for PRRSV infection.


Subject(s)
Polysaccharides , Porcine Reproductive and Respiratory Syndrome , Porcine respiratory and reproductive syndrome virus , Porcine respiratory and reproductive syndrome virus/physiology , Porcine respiratory and reproductive syndrome virus/metabolism , Porcine respiratory and reproductive syndrome virus/genetics , Glycosylation , Animals , Swine , Polysaccharides/metabolism , Porcine Reproductive and Respiratory Syndrome/virology , Porcine Reproductive and Respiratory Syndrome/metabolism , Viral Envelope Proteins/metabolism , Viral Envelope Proteins/genetics , Cell Line , Receptors, Cell Surface/metabolism , Antigens, Differentiation, Myelomonocytic/metabolism , Antigens, CD/metabolism , Viral Envelope/metabolism
3.
Viruses ; 16(5)2024 04 25.
Article in English | MEDLINE | ID: mdl-38793560

ABSTRACT

Porcine reproductive and respiratory syndrome virus (PRRSV), a member of the Arteriviridae family, represents a persistent menace to the global pig industry, causing reproductive failure and respiratory disease in pigs. In this study, we delved into the role of histone deacetylases (HDAC2) during PRRSV infection. Our findings revealed that HDAC2 expression is downregulated upon PRRSV infection. Notably, suppressing HDAC2 activity through specific small interfering RNA led to an increase in virus production, whereas overexpressing HDAC2 effectively inhibited PRRSV replication by boosting the expression of IFN-regulated antiviral molecules. Furthermore, we identified the virus's nonstructural protein 11 (nsp11) as a key player in reducing HDAC2 levels. Mutagenic analyses of PRRSV nsp11 revealed that its antagonistic effect on the antiviral activity of HDAC2 is dependent on its endonuclease activity. In summary, our research uncovered a novel immune evasion mechanism employed by PRRSV, providing crucial insights into the pathogenesis of this virus and guiding the development of innovative prevention strategies against PRRSV infection.


Subject(s)
Endoribonucleases , Histone Deacetylase 2 , Immune Evasion , Immunity, Innate , Porcine Reproductive and Respiratory Syndrome , Porcine respiratory and reproductive syndrome virus , Viral Nonstructural Proteins , Virus Replication , Porcine respiratory and reproductive syndrome virus/immunology , Porcine respiratory and reproductive syndrome virus/genetics , Animals , Viral Nonstructural Proteins/metabolism , Viral Nonstructural Proteins/genetics , Swine , Porcine Reproductive and Respiratory Syndrome/virology , Porcine Reproductive and Respiratory Syndrome/immunology , Endoribonucleases/metabolism , Endoribonucleases/genetics , Histone Deacetylase 2/metabolism , Histone Deacetylase 2/genetics , Cell Line , Humans
4.
Viruses ; 16(5)2024 04 26.
Article in English | MEDLINE | ID: mdl-38793564

ABSTRACT

Porcine reproductive and respiratory syndrome virus (PRRSV) is a pathogen that causes severe abortions in sows and high piglet mortality, resulting in huge economic losses to the pig industry worldwide. The emerging and novel PRRSV isolates are clinically and biologically important, as there are likely recombination and pathogenic differences among PRRSV genomes. Furthermore, the NADC34-like strain has become a major epidemic strain in some parts of China, but the characterization and pathogenicity of the latest strain in Inner Mongolia have not been reported in detail. In this study, an NADC34-like strain (CHNMGKL1-2304) from Tongliao City, Inner Mongolia was successfully isolated and characterized, and confirmed the pathogenicity in pigs. The phylogenetic tree showed that this strain belonged to sublineage 1.5 and had high homology with the strain JS2021NADC34. There is no recombination between CHNMGKL1-2304 and any other domestic strains. Animal experiments show that the CHNMGKL1-2304 strain is moderately virulent to piglets, which show persistent fever, weight loss and high morbidity but no mortality. The presence of PRRSV nucleic acids was detected in both blood, tissues, nasal and fecal swabs. In addition, obvious pathological changes and positive signals were observed in lung, lymph node, liver and spleen tissues when subjected to hematoxylin-eosin (HE) staining and immunohistochemistry (IHC). This report can provide a basis for epidemiological investigations and subsequent studies of PRRSV.


Subject(s)
Genome, Viral , Phylogeny , Porcine Reproductive and Respiratory Syndrome , Porcine respiratory and reproductive syndrome virus , Animals , Swine , Porcine respiratory and reproductive syndrome virus/genetics , Porcine respiratory and reproductive syndrome virus/pathogenicity , Porcine respiratory and reproductive syndrome virus/isolation & purification , Porcine respiratory and reproductive syndrome virus/classification , China , Porcine Reproductive and Respiratory Syndrome/virology , Porcine Reproductive and Respiratory Syndrome/pathology , Virulence , Evolution, Molecular
5.
Viruses ; 16(5)2024 04 30.
Article in English | MEDLINE | ID: mdl-38793594

ABSTRACT

Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most important pathogens in the pig industry. Marc-145 cells are widely used for PRRSV isolation, vaccine production, and investigations into virus biological characteristics. Despite their significance in PRRSV research, Marc-145 cells struggle to isolate specific strains of the North American virus genotype (PRRSV-2). The involvement of viral GP2a, GP2b, and GP3 in this phenomenon has been noted. However, the vital amino acids have not yet been identified. In this study, we increased the number of blind passages and successfully isolated two strains that were previously difficult to isolate with Marc-145 cells. Both strains carried an amino acid substitution in GP2a, specifically phenylalanine to leucine at the 98th amino acid position. Through a phylogenetic and epidemiologic analysis of 32 strains, those that were not amenable to isolation widely exhibited this mutation. Then, by using the PRRSV reverse genetics system, IFA, and Western blotting, we identified the mutation that could affect the tropism of PRRSV-2 for Marc-145 cells. Furthermore, an animal experiment was conducted. Through comparisons of clinical signs, mortality rates, and viral load in the organs and sera, we found that mutation did not affect the pathogenicity of PRRSV-2. In conclusion, our study firmly establishes the 98th amino acid in GP2a as a key determinant of PRRSV-2 tropism for Marc-145 cells.


Subject(s)
Amino Acid Substitution , Phylogeny , Porcine Reproductive and Respiratory Syndrome , Porcine respiratory and reproductive syndrome virus , Porcine respiratory and reproductive syndrome virus/genetics , Porcine respiratory and reproductive syndrome virus/physiology , Animals , Swine , Cell Line , Porcine Reproductive and Respiratory Syndrome/virology , Viral Envelope Proteins/genetics , Viral Envelope Proteins/metabolism , Viral Tropism , Mutation , Genotype , Amino Acids/metabolism
6.
Virology ; 595: 110083, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38696887

ABSTRACT

Porcine reproductive and respiratory syndrome virus (PRRSV) infection inhibits swine leukocyte antigen class I (SLA-I) expression in pigs, resulting in inefficient antigen presentation and subsequent low levels of cellular PRRSV-specific immunity as well as persistent viremia. We previously observed that the non-structural protein 4 (nsp4) of PRRSV contributed to inhibition of the ß2-microglobulin (ß2M) and SLA-I expression in cells. Here, we constructed a series of nsp4 mutants with different combination of amino acid mutations to attenuate the inhibitory effect of nsp4 on ß2M and SLA-I expression. Almost all nsp4 mutants exogenously expressed in cells showed an attenuated effect on inhibition of ß2M and SLA-I expression, but the recombinant PRRSV harboring these nsp4 mutants failed to be rescued with exception of the rPRRSV-nsp4-mut10 harboring three amino acid mutations. However, infection of rPRRSV-nsp4-mut10 not only enhanced ß2M and SLA-I expression in both cells and pigs but also promoted the DCs to active the CD3+CD8+T lymphocytes more efficiently, as compared with its parental PRRSV (rPRRVS-nsp4-wt). These data suggested that the inhibition of nsp4-mediated ß2M downregulation improved ß2M/SLA-I expression in pigs.


Subject(s)
Down-Regulation , Histocompatibility Antigens Class I , Porcine Reproductive and Respiratory Syndrome , Porcine respiratory and reproductive syndrome virus , Viral Nonstructural Proteins , beta 2-Microglobulin , Porcine respiratory and reproductive syndrome virus/genetics , Porcine respiratory and reproductive syndrome virus/physiology , Porcine respiratory and reproductive syndrome virus/immunology , Animals , Swine , Porcine Reproductive and Respiratory Syndrome/virology , Porcine Reproductive and Respiratory Syndrome/immunology , Porcine Reproductive and Respiratory Syndrome/genetics , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism , Viral Nonstructural Proteins/immunology , beta 2-Microglobulin/genetics , beta 2-Microglobulin/metabolism , Histocompatibility Antigens Class I/genetics , Histocompatibility Antigens Class I/metabolism , Histocompatibility Antigens Class I/immunology , Histocompatibility Antigens Class II/genetics , Histocompatibility Antigens Class II/metabolism , Histocompatibility Antigens Class II/immunology , Cell Line , CD8-Positive T-Lymphocytes/immunology , Mutation
7.
Viruses ; 16(5)2024 05 13.
Article in English | MEDLINE | ID: mdl-38793655

ABSTRACT

Porcine reproductive and respiratory syndrome virus (PRRVS) is a major swine viral pathogen that affects the pig industry worldwide. Control of early PRRSV infection is essential, and different types of PRRSV-positive samples can reflect the time point of PRRSV infection. This study aims to investigate the epidemiological characteristics of PRRSV in China from Q4 2021 to Q4 2022, which will be beneficial for porcine reproductive and respiratory syndrome virus (PRRSV)control in the swine production industry in the future. A total of 7518 samples (of processing fluid, weaning serum, and oral fluid) were collected from 100 intensive pig farms in 21 provinces, which covered all five pig production regions in China, on a quarterly basis starting from the fourth quarter of 2021 and ending on the fourth quarter of 2022. Independent of sample type, 32.1% (2416/7518) of the total samples were PCR-positive for PRRSV, including 73.6% (1780/2416) samples that were positive for wild PRRSV, and the remaining were positive for PRRSV vaccine strains. On the basis of the time of infection, 58.9% suckling piglets (processing fluid) and 30.8% weaning piglets (weaning serum) showed PRRSV infection at an early stage (approximately 90% of the farms). The sequencing analysis results indicate a wide range of diverse PRRSV wild strains in China, with lineage 1 as the dominant strain. Our study clearly demonstrates the prevalence, infection stage, and diversity of PRRSV in China. This study provides useful data for the epidemiological understanding of PRRSV, which can contribute to the strategic and systematic prevention and control of PRRSV in China.


Subject(s)
Phylogeny , Porcine Reproductive and Respiratory Syndrome , Porcine respiratory and reproductive syndrome virus , Porcine respiratory and reproductive syndrome virus/genetics , Porcine respiratory and reproductive syndrome virus/classification , Porcine respiratory and reproductive syndrome virus/isolation & purification , Animals , Porcine Reproductive and Respiratory Syndrome/epidemiology , Porcine Reproductive and Respiratory Syndrome/virology , Swine , China/epidemiology , Prevalence , Genetic Variation , Farms , RNA, Viral/genetics
8.
Viruses ; 16(5)2024 05 16.
Article in English | MEDLINE | ID: mdl-38793678

ABSTRACT

The porcine reproductive and respiratory syndrome virus (PRRSV) has significantly impacted the global pork industry for over three decades. Its high mutation rates and frequent recombination greatly intensifies its epidemic and threat. To explore the fidelity characterization of Chinese highly pathogenic PRRSV JXwn06 and the NADC30-like strain CHsx1401, self-recombination and mutation in PAMs, MARC-145 cells, and pigs were assessed. In vitro, CHsx1401 displayed a higher frequency of recombination junctions and a greater diversity of junction types than JXwn06. In vivo, CHsx1401 exhibited fewer junction types yet maintained a higher junction frequency. Notably, JXwn06 showed more accumulation of mutations. To pinpoint the genomic regions influencing their fidelity, chimeric viruses were constructed, with the exchanged nsp9-10 regions between JXwn06 and CHsx1401. The SJn9n10 strain, which incorporates JXwn06's nsp9-10 into the CHsx1401 genome, demonstrated reduced sensitivity to nucleotide analogs compared to CHsx1401. Conversely, compared with JXwn06, the JSn9n10 strain showed increased sensitivity to these inhibitors. The swapped nsp9-10 also influences the junction frequency and accumulated mutations as their donor strains. The results indicate a propensity for different types of genetic variations between these two strains and further highlight the nsp9-10 region as a critical determinant of their fidelity.


Subject(s)
Genome, Viral , Mutation , Porcine Reproductive and Respiratory Syndrome , Porcine respiratory and reproductive syndrome virus , Porcine respiratory and reproductive syndrome virus/genetics , Porcine respiratory and reproductive syndrome virus/classification , Animals , Swine , Porcine Reproductive and Respiratory Syndrome/virology , Cell Line , Recombination, Genetic , Virus Replication
9.
Front Immunol ; 15: 1376958, 2024.
Article in English | MEDLINE | ID: mdl-38590524

ABSTRACT

Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most globally devastating viruses threatening the swine industry worldwide. Substantial advancements have been achieved in recent years towards comprehending the pathogenesis of PRRSV infection and the host response, involving both innate and adaptive immune responses. Not only a multitude of host proteins actively participate in intricate interactions with viral proteins, but microRNAs (miRNAs) also play a pivotal role in the host response to PRRSV infection. If a PRRSV-host interaction at the protein level is conceptualized as the front line of the battle between pathogens and host cells, then their fight at the RNA level resembles the hidden front line. miRNAs are endogenous small non-coding RNAs of approximately 20-25 nucleotides (nt) that primarily regulate the degradation or translation inhibition of target genes by binding to the 3'-untranslated regions (UTRs). Insights into the roles played by viral proteins and miRNAs in the host response can enhance our comprehensive understanding of the pathogenesis of PRRSV infection. The intricate interplay between viral proteins and cellular targets during PRRSV infection has been extensively explored. This review predominantly centers on the contemporary understanding of the host response to PRRSV infection at the RNA level, in particular, focusing on the twenty-six miRNAs that affect viral replication and the innate immune response.


Subject(s)
MicroRNAs , Porcine respiratory and reproductive syndrome virus , Swine , Animals , Porcine respiratory and reproductive syndrome virus/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Immunity, Innate , Viral Proteins
10.
Vet Immunol Immunopathol ; 271: 110754, 2024 May.
Article in English | MEDLINE | ID: mdl-38613865

ABSTRACT

In this computational study, we advanced the understanding of the antigenic properties of the NADC-34-like isolate of the Porcine Reproductive and Respiratory Syndrome Virus (PRRSV), named YC-2020, relevant in veterinary pathology. We utilized sequence comparison analyses of the M and N proteins, comparing them with those of NADC34, identifying substantial amino acid homology that allowed us to highlight conserved epitopes and crucial variants. Through the application of Clustal Omega for multiple sequence alignment and platforms like Vaxijen and AllerTOP for predicting antigenic and allergenic potential, our analyses revealed important insights into the conservation and variation of epitopes essential for the development of effective diagnostic tools and vaccines. Our findings, aligned with initial experimental studies, underscore the importance of these epitopes in the development of targeted immunodiagnostic platforms and significantly contribute to the management and control of PRRSV. However, further studies are required to validate the computational predictions of antigenicity for this new viral isolate. This approach underscores the potential of computational models to enable ongoing monitoring and control of PRRSV evolution in swine. While this study provides valuable insights into the antigenic properties of the novel PRRSV isolate YC-2020 through computational analysis, it is important to acknowledge the limitations inherent to in silico predictions, specifically, the absence of laboratory validation.


Subject(s)
Antigens, Viral , Porcine Reproductive and Respiratory Syndrome , Porcine respiratory and reproductive syndrome virus , Porcine respiratory and reproductive syndrome virus/immunology , Porcine respiratory and reproductive syndrome virus/genetics , Animals , Swine , Porcine Reproductive and Respiratory Syndrome/immunology , Porcine Reproductive and Respiratory Syndrome/virology , Antigens, Viral/immunology , Amino Acid Sequence , Computational Biology , Epitopes/immunology , Sequence Alignment/veterinary
11.
Comp Immunol Microbiol Infect Dis ; 109: 102179, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38636297

ABSTRACT

porcine reproductive and respiratory syndrome (PRRS), caused by porcine reproductive and respiratory syndrome virus (PRRSV) infection, is an important swine infectious disease that causes substantial losses worldwide each year. PRRSV is a positive-sense single-stranded RNA virus that is highly susceptible to mutation and recombination, making vaccine and drug research for the disease extremely difficult. In this study, the binding of PRRSV nsp2 to HSP71 protein was detected by using the IP/MS technique. And the inhibitory effect of HSP71 on nsp2 antagonistic activity was validated by measuring NF-kB luciferase reporter. According to stress from inhibitory effects, the amino acid variation profile of PRRSV nsp2 under HSP71 stress was further analyzed using second-generation sequencing. Surprisingly, the results indicated that HSP71 pressure limits the random mutations of PRRSV nsp2 and maintains the dominant PRRSV strain within the population. Mutant strain showed weaker antagonistic activity and replication capability in cell. These results imply the binding of HSP71 with PRRSV nsp2 may lead to maintain the stability of highly virulent strains of PRRSV.


Subject(s)
Mutation , Porcine Reproductive and Respiratory Syndrome , Porcine respiratory and reproductive syndrome virus , Viral Nonstructural Proteins , Virus Replication , Porcine respiratory and reproductive syndrome virus/genetics , Animals , Swine , Porcine Reproductive and Respiratory Syndrome/virology , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism , Cell Line , Protein Binding , NF-kappa B/metabolism , NF-kappa B/genetics
12.
Virus Res ; 345: 199380, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38657837

ABSTRACT

The aim of this study was to investigate the in vitro and in vivo antiviral effects of CLEVir-X, against porcine reproductive and respiratory syndrome virus (PRRSV). CLEVir-X is a nucleoside analogue and a dialdehyde form of xanthosine. CLEVir-X demonstrated antiviral action during the in vitro portion of this experiment with its inosine monophosphate dehydrogenase (IMPDH) inhibition against PRRSV. The anti-PRRSV effect of CLEVir-X was recovered through supplementation with guanosine. This suggests that PRRSV replication may be regulated through IMPDH and its guanosine biosynthetic pathway. CLEVir-X treatment in cultures resulted in mutation frequency increase of up to 7.8-fold within the viral genomes (e.g. ORF6) compared to their parallel, untreated cultures. The incorporation of CLEVir-X into the viral genome causes lethal mutagenesis and subsequent decrease in specific infectivity. During the in vivo antiviral experiment, 21-day-old pigs began oral administration of 5 mL of phosphate buffered saline containing CLEVir-X (with purity of 68 % and dosage of 40 mg/kg body weight). This treatment was provided twice daily at 9:00AM and 5:00PM for 14 days. Pigs were simultaneously intranasally inoculated with PRRSV at the beginning of CLEVir-X treatment (21 days of age). Several beneficial effects from the oral administration of CLEVir-X were observed including reduction of body temperature, alleviation of respiratory clinical signs, decreased PRRSV load in both blood and lung tissues, and mitigation of lung interstitial pneumonia lesions. The results of the present study demonstrated that CLEVir-X has mutagenic and nonmutagenic modes of antiviral action against PRRSV based on both in vitro and in vivo antiviral experiments.


Subject(s)
Antiviral Agents , Porcine Reproductive and Respiratory Syndrome , Porcine respiratory and reproductive syndrome virus , Animals , Porcine respiratory and reproductive syndrome virus/drug effects , Porcine respiratory and reproductive syndrome virus/genetics , Swine , Antiviral Agents/pharmacology , Porcine Reproductive and Respiratory Syndrome/drug therapy , Porcine Reproductive and Respiratory Syndrome/virology , Virus Replication/drug effects , Lung/virology , Lung/drug effects , Lung/pathology , Viral Load/drug effects , Administration, Oral
13.
Front Cell Infect Microbiol ; 14: 1376725, 2024.
Article in English | MEDLINE | ID: mdl-38590440

ABSTRACT

In China, porcine reproductive and respiratory syndrome virus (PRRSV) vaccines are widely used. These vaccines, which contain inactivated and live attenuated vaccines (LAVs), are produced by MARC-145 cells derived from the monkey kidney cell line. However, some PRRSV strains in MARC-145 cells have a low yield. Here, we used two type 2 PRRSV strains (CH-1R and HuN4) to identify the genes responsible for virus yield in MARC-145 cells. Our findings indicate that the two viruses have different spread patterns, which ultimately determine their yield. By replacing the viral envelope genes with a reverse genetics system, we discovered that the minor envelope proteins, from GP2a to GP4, play a crucial role in determining the spread pattern and yield of type 2 PRRSV in MARC-145 cells. The cell-free transmission pattern of type 2 PRRSV appears to be more efficient than the cell-to-cell transmission pattern. Overall, these findings suggest that GP2a to GP4 contributes to the spread pattern and yield of type 2 PRRSV.


Subject(s)
Guanidines , Piperazines , Porcine Reproductive and Respiratory Syndrome , Porcine respiratory and reproductive syndrome virus , Vaccines , Swine , Animals , Porcine respiratory and reproductive syndrome virus/genetics , Cell Line
14.
Viruses ; 16(4)2024 03 30.
Article in English | MEDLINE | ID: mdl-38675887

ABSTRACT

PRRS is a viral disease that profoundly impacts the global swine industry, causing significant economic losses. The development of a novel and effective vaccine is crucial to halt the rapid transmission of this virus. There have been several vaccination attempts against PRRSV using both traditional and alternative vaccine design development approaches. Unfortunately, there is no currently available vaccine that can completely control this disease. Thus, our study aimed to develop an mRNA vaccine using the antigens expressed by single or fused PRRSV structural proteins. In this study, the nucleotide sequence of the immunogenic mRNA was determined by considering the antigenicity of structural proteins and the stability of spatial structure. Purified GP5 protein served as the detection antigen in the immunological evaluation. Furthermore, cellular mRNA expression was detected by immunofluorescence and western blotting. In a mice experiment, the Ab titer in serum and the activation of spleen lymphocytes triggered by the antigen were detected by ELISA and ICS, respectively. Our findings demonstrated that both mRNA vaccines can significantly stimulate cellular and humoral immune responses. More specifically, the GP5-mRNA exhibited an immunological response that was similar to that of the commercially available vaccine when administered in high doses. To conclude, our vaccine may show promising results against the wild-type virus in a natural host.


Subject(s)
Antibodies, Viral , Immunity, Cellular , Immunity, Humoral , Mice, Inbred BALB C , Porcine Reproductive and Respiratory Syndrome , Porcine respiratory and reproductive syndrome virus , Viral Envelope Proteins , Viral Vaccines , mRNA Vaccines , Animals , Porcine respiratory and reproductive syndrome virus/immunology , Porcine respiratory and reproductive syndrome virus/genetics , Mice , Porcine Reproductive and Respiratory Syndrome/prevention & control , Porcine Reproductive and Respiratory Syndrome/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Viral Vaccines/immunology , Viral Vaccines/administration & dosage , Viral Vaccines/genetics , Swine , Female , Viral Structural Proteins/immunology , Viral Structural Proteins/genetics , RNA, Messenger/genetics
15.
Prev Vet Med ; 226: 106186, 2024 May.
Article in English | MEDLINE | ID: mdl-38518657

ABSTRACT

Porcine reproductive and respiratory virus (PRRSV), one of the most significant viruses in the swine industry, has been challenging to control due to its high mutation and recombination rates and complexity. This retrospective study aimed to describe and compare the distribution of PRRSV lineages obtained at the individual farm, production system, and regional levels. PRRSV-2 (type 2) sequences (n = 482) identified between 2017 - 2021 were provided by a regional state laboratory (Ohio Department of Agriculture, Animal Disease Diagnostic Center (ODA-ADDL)) collected from swine farms in Ohio and neighboring states, including Indiana, Michigan, Pennsylvania, and West Virginia. Additional sequences (n = 138) were provided by one collaborating swine production system. The MUSCLE algorithm on Geneious Prime® was used to align the ORF5 region of PRRSV-2 sequences along with PRRSV live attenuated vaccine strains (n = 6) and lineage anchors (n = 169). Sequenced PRRSV-2 were assigned to the most identical lineage anchors/vaccine strains. Among all sequences (n = 620), 29.8% (185/620) were ≥ 98.0% identity with the vaccine strains, where 93.5% (173/185) and 6.5% (12/185) were identical with the L5 Ingelvac PRRS® MLV and L8 Fostera® PRRS vaccine strains, respectively, and excluded from the analysis. At the regional level across five years, the top five most identified lineages included L1A, L5, L1H, L1C, and L8. Among non-vaccine sequences with production system known, L1A sequences were mostly identified (64.3% - 100.0%) in five systems, followed by L1H (0.0% - 28.6%), L1C (0.0% - 10.5%), L5 (0.0% - 14.4%), L8 (0.0% - 1.3%), and L1F (0.0% - 0.5%). Furthermore, among non-vaccine sequences with the premise identification available (n = 262), the majority of sequences from five individual farms were either classified into L1A or L5. L1A and L5 sequences coexisted in three farms, while samples submitted by one farm contained L1A, L1H, and L5 sequences. Additionally, the lineage classification results of non-vaccine sequences were associated with their restriction fragment length polymorphism (RFLP) patterns (Fisher's exact test, p < 0.05). Overall, our results show that individual farm and production system-level PRRSV-2 lineage patterns do not necessarily correspond to regional-level patterns, highlighting the influence of individual farms and systems in shaping PRRSV occurrence within those levels, and highlighting the crucial goal of within-farm and system monitoring and early detection for accurate knowledge on PRRSV-2 lineage occurrence and emergence.


Subject(s)
Porcine Reproductive and Respiratory Syndrome , Porcine respiratory and reproductive syndrome virus , Swine Diseases , Animals , Swine , Porcine respiratory and reproductive syndrome virus/genetics , Porcine Reproductive and Respiratory Syndrome/epidemiology , Farms , Ohio/epidemiology , Retrospective Studies , Vaccines, Attenuated , Phylogeny
16.
Vet Res ; 55(1): 28, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38449049

ABSTRACT

The prevalence of porcine reproductive and respiratory syndrome virus 1 (PRRSV1) isolates has continued to increase in Chinese swine herds in recent years. However, no effective control strategy is available for PRRSV1 infection in China. In this study, we generated the first infectious cDNA clone (rHLJB1) of a Chinese PRRSV1 isolate and subsequently used it as a backbone to construct an ORF2-6 chimeric virus (ORF2-6-CON). This virus contained a synthesized consensus sequence of the PRRSV1 ORF2-6 gene encoding all the envelope proteins. The ORF2-6 consensus sequence shared > 90% nucleotide similarity with four representative strains (Amervac, BJEU06-1, HKEU16 and NMEU09-1) of PRRSV1 in China. ORF2-6-CON had replication efficacy similar to that of the backbone rHLJB1 virus in primary alveolar macrophages (PAMs) and exhibited cell tropism in Marc-145 cells. Piglet inoculation and challenge studies indicated that ORF2-6-CON is not pathogenic to piglets and can induce enhanced cross-protection against a heterologous SD1291 isolate. Notably, ORF2-6-CON inoculation induced higher levels of heterologous neutralizing antibodies (nAbs) against SD1291 than rHLJB1 inoculation, which was concurrent with a higher percentage of T follicular helper (Tfh) cells in tracheobronchial lymph nodes (TBLNs), providing the first clue that porcine Tfh cells are correlated with heterologous PRRSV nAb responses. The number of SD1291-strain-specific IFNγ-secreting cells was similar in ORF2-6-CON-inoculated and rHLJB1-inoculated pigs. Overall, our findings support that the Marc-145-adapted ORF2-6-CON can trigger Tfh cell and heterologous nAb responses to confer improved cross-protection and may serve as a candidate strain for the development of a cross-protective PRRSV1 vaccine.


Subject(s)
Porcine respiratory and reproductive syndrome virus , Animals , Swine , Porcine respiratory and reproductive syndrome virus/genetics , T Follicular Helper Cells , Antibodies, Neutralizing , China , Consensus Sequence
17.
Microb Pathog ; 190: 106633, 2024 May.
Article in English | MEDLINE | ID: mdl-38554778

ABSTRACT

Interferon-stimulated gene product 15 (ISG15) can be conjugated to substrates through ISGylation. Currently, the E3 ligase for porcine ISGylation remains unclear. Here, we identified porcine HERC5 and HERC6 (pHERC5/6) as ISGylation E3 ligases with pHERC6 acting as a major one by reconstitution of porcine ISGylation system in HEK-293 T cell via co-transfecting E1, E2 and porcine ISG15(pISG15) genes. Meanwhile, our data demonstrated that co-transfection of pISG15 and pHERC5/6 was sufficient to confer ISGylation, suggesting E1 and E2 of ISGylation are interchangeable between human and porcine. Using an immunoprecipitation based ISGylation analysis, our data revealed pHERC6 was a substrate for ISGylation and confirmed that K707 and K993 of pHERC6 were auto-ISGylation sites. Mutation of these sites reduced pHERC6 half-life and inhibited ISGylation, suggesting that auto-ISGylation of pHERC6 was required for effective ISGylation. Conversely, sustained ISGylation induced by overexpression of pISG15 and pHERC6 could be inhibited by a well-defined porcine ISGylation antagonist, the ovarian tumor (OTU) protease domain of Porcine Reproductive and Respiratory Syndrome Virus (PRRSV)-nsp2 and PRRSV-nsp1ß, further indicating such method could be used for identification of virus-encoded ISG15 antagonist. In conclusion, our study contributes new insights towards porcine ISGylation system and provides a novel tool for screening viral-encoded ISG15 antagonist.


Subject(s)
Ubiquitin-Protein Ligases , Ubiquitins , Animals , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Swine , Humans , HEK293 Cells , Ubiquitins/metabolism , Ubiquitins/genetics , Porcine respiratory and reproductive syndrome virus/metabolism , Porcine respiratory and reproductive syndrome virus/genetics , Cytokines/metabolism , Ubiquitination , Viral Nonstructural Proteins/metabolism , Viral Nonstructural Proteins/genetics
18.
J Biol Chem ; 300(4): 107199, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38508309

ABSTRACT

Porcine reproductive and respiratory syndrome virus (PRRSV), a highly infectious virus, causes severe losses in the swine industry by regulating the inflammatory response, inducing tissue damage, suppressing the innate immune response, and promoting persistent infection in hosts. Interleukin-13 (IL-13) is a cytokine that plays a critical role in regulating immune responses and inflammation, particularly in immune-related disorders, certain types of cancer, and numerous bacterial and viral infections; however, the underlying mechanisms of IL-13 regulation during PRRSV infection are not well understood. In this study, we demonstrated that PRRSV infection elevates IL-13 levels in porcine alveolar macrophages. PRRSV enhances m6A-methylated RNA levels while reducing the expression of fat mass and obesity associated protein (FTO, an m6A demethylase), thereby augmenting IL-13 production. PRRSV nonstructural protein 9 (nsp9) was a key factor for this modulation. Furthermore, we found that the residues Asp567, Tyr586, Leu593, and Asp595 were essential for nsp9 to induce IL-13 production via attenuation of FTO expression. These insights delineate PRRSV nsp9's role in FTO-mediated IL-13 release, advancing our understanding of PRRSV's impact on host immune and inflammatory responses.


Subject(s)
Interleukin-13 , Macrophages, Alveolar , Porcine Reproductive and Respiratory Syndrome , Porcine respiratory and reproductive syndrome virus , Viral Nonstructural Proteins , Animals , Porcine respiratory and reproductive syndrome virus/genetics , Swine , Interleukin-13/metabolism , Interleukin-13/genetics , Viral Nonstructural Proteins/metabolism , Viral Nonstructural Proteins/genetics , Macrophages, Alveolar/metabolism , Macrophages, Alveolar/virology , Macrophages, Alveolar/immunology , Porcine Reproductive and Respiratory Syndrome/metabolism , Porcine Reproductive and Respiratory Syndrome/virology , Porcine Reproductive and Respiratory Syndrome/immunology , Porcine Reproductive and Respiratory Syndrome/genetics , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/metabolism , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/genetics , Up-Regulation
19.
Microbiol Spectr ; 12(5): e0407123, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38511956

ABSTRACT

Porcine reproductive and respiratory syndrome virus (PRRSV) causes significant economic losses in the swine industry. Frequent mutations and recombinations account for PRRSV immune evasion and the emergence of novel strains. In this study, we isolated and characterized two novel PRRSV-2 strains from Southwest China exhibiting distinct recombination patterns. They were designated SCABTC-202305 and SCABTC-202309. Phylogenetic results indicated that SCABTC-202305 was classified as lineage 8, and SCABTC-202309 was classified as lineage 1.8. Amino acid mutation analysis identified unique amino acid substitutions and deletions in ORF5 and Nsp2 genes. The results of the recombination analysis revealed that SCABTC-202305 is a recombinant with JXA1 as the major parental strain and NADC30 as the minor parental strain. At the same time, SCABTC-202309 is identified as a recombinant with NADC30 as the major parental strain and JXA1 as the minor parental strain. In this study, we infected piglets with SCABTC-202305, SCABTC-202309, or mock inoculum (control) to study the pathogenicity of these isolates. Although both isolated strains were pathogenic, SCABTC-202305-infected piglets exhibited more severe clinical signs and higher mortality, viral load, and antibody response than SCABTC-202309-infected piglets. SCABTC-202305 also caused more extensive lung lesions based on histopathology. Our findings suggest that the divergent pathogenicity observed between the two novel PRRSV isolates may be attributed to variations in the genetic information encoded by specific genomic regions. Elucidating the genetic determinants governing PRRSV virulence and transmissibility will inform efforts to control this devastating swine pathogen.IMPORTANCEPorcine reproductive and respiratory syndrome virus (PRRSV) is one of the most critical pathogens impacting the global swine industry. Frequent mutations and recombinations have made the control of PRRSV increasingly difficult. Following the NADC30-like PRRSV pandemic, recombination events involving PRRSV strains have further increased. We isolated two novel field PRRSV recombinant strains, SCABTC-202305 and SCABTC-202309, exhibiting different recombination patterns and compared their pathogenicity in animal experiments. The isolates caused higher viral loads, persistent fever, marked weight loss, moderate respiratory clinical signs, and severe histopathologic lung lesions in piglets. Elucidating correlations between recombinant regions and pathogenicity in these isolates can inform epidemiologic tracking of emerging strains and investigations into viral adaptive mechanisms underlying PRRSV immunity evasion. Our findings underscore the importance of continued genomic surveillance to curb this economically damaging pathogen.


Subject(s)
Phylogeny , Porcine Reproductive and Respiratory Syndrome , Porcine respiratory and reproductive syndrome virus , Recombination, Genetic , Porcine respiratory and reproductive syndrome virus/genetics , Porcine respiratory and reproductive syndrome virus/pathogenicity , Porcine respiratory and reproductive syndrome virus/isolation & purification , Animals , Swine , Porcine Reproductive and Respiratory Syndrome/virology , China , Virulence/genetics , Mutation , Genome, Viral/genetics
20.
Vet Microbiol ; 292: 110061, 2024 May.
Article in English | MEDLINE | ID: mdl-38547545

ABSTRACT

Porcine reproductive and respiratory syndrome virus (PRRSV) has caused significant economic losses in the swine industry. In this study, the high-throughput sequencing, microRNAs (miRNAs) mimic, and lentivirus were used to screen for potential miRNAs that can promote PRRSV infection in porcine alveolar macrophages or Marc-145 cells. It was observed that novel-216, a previously unidentified miRNA, was upregulated through the p38 signaling pathway during PRRSV infection, and its overexpression significantly increased PRRSV replication. Further analysis revealed that novel-216 regulated PRRSV replication by directly targeting mitochondrial antiviral signaling protein (MAVS), an upstream molecule of type Ⅰ IFN that mediates the production and response of type Ⅰ IFN. The proviral function of novel-216 on PRRSV replication was abolished by MAVS overexpression, and this effect was reversed by the 3'UTR of MAVS, which served as the target site of novel-216. In conclusion, this study demonstrated that PRRSV-induced upregulation of novel-216 served to inhibit the production and response of typeⅠ IFN and facilitate viral replication, providing new insights into viral immune evasion and persistent infection.


Subject(s)
MicroRNAs , Porcine Reproductive and Respiratory Syndrome , Porcine respiratory and reproductive syndrome virus , Swine Diseases , Swine , Animals , Porcine respiratory and reproductive syndrome virus/genetics , Porcine Reproductive and Respiratory Syndrome/genetics , 3' Untranslated Regions/genetics , MicroRNAs/genetics , Virus Replication/physiology , Swine Diseases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...