Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 7.801
Filter
1.
Clin Exp Dent Res ; 10(3): e891, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38706420

ABSTRACT

OBJECTIVES: Periodontal inflammation may be assessed by bleeding on probing and subgingival temperature. This pilot study evaluated the intrapatient relationship between subgingival temperature and selected bacterial groups/species in deep periodontal pockets with bleeding on probing. MATERIALS AND METHODS: In each of eight adults, an electronic temperature probe identified three "hot" pockets with elevated subgingival temperature and three "cool" pockets with normal subgingival temperature among premolars/molars with 6‒10 mm probing depths and bleeding on probing. Microbial samples collected separately from the hot and cool periodontal pockets were cultured for selected periodontal pathogens. RESULTS: Hot compared to cool periodontal pockets revealed significantly higher absolute and normalized subgingival temperatures and yielded higher mean proportions of Porphyromonas gingivalis (10.2% for hot vs. 2.5% for cool, p = 0.030) and total red/orange complex periodontal pathogens (48.0% for hot vs. 24.6% for cool, p = 0.012). CONCLUSIONS: Hot versus cool deep periodontal pockets harbored significantly higher levels of major periodontal pathogens. Subgingival temperature measurements may potentially be useful to assess risk of periodontitis progression and the efficacy of periodontal therapy.


Subject(s)
Periodontal Pocket , Porphyromonas gingivalis , Humans , Male , Female , Pilot Projects , Middle Aged , Periodontal Pocket/microbiology , Porphyromonas gingivalis/isolation & purification , Adult , Periodontitis/microbiology , Body Temperature , Bacterial Load , Gingiva/microbiology , Aged
2.
Clin Exp Dent Res ; 10(3): e887, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38798089

ABSTRACT

OBJECTIVE: This study aimed to evaluate the impact of silver nanoparticles (AgNPs) synthesized from propolis on the formation of Porphyromonas gingivalis biofilms. MATERIAL AND METHODS: AgNPs were synthesized from propolis, and their inhibitory effect on P. gingivalis biofilm formation was assessed. Different concentrations of AgNPs (0.1%, 0.3%, and 0.5%) were tested to determine the dose-dependent antibacterial activity. RESULTS: The results of this study indicated that AgNPs exhibited an inhibitory effect on P. gingivalis biofilm formation. The antibacterial activity of AgNPs was dose-dependent, with concentrations of 0.1%, 0.3%, and 0.5% showing effectiveness. Notably, the concentration of 0.5% demonstrated the most significant anti-biofilm formation activity. CONCLUSION: The results of this study suggest that AgNPs synthesized from propolis have potential as an effective option for enhancing periodontal treatment outcomes. The inhibitory effect of AgNPs on P. gingivalis biofilm formation highlights their potential as alternative antimicrobial agents in the management of periodontal diseases.


Subject(s)
Anti-Bacterial Agents , Biofilms , Metal Nanoparticles , Porphyromonas gingivalis , Silver , Porphyromonas gingivalis/drug effects , Biofilms/drug effects , Silver/pharmacology , Silver/chemistry , Metal Nanoparticles/chemistry , Anti-Bacterial Agents/pharmacology , Green Chemistry Technology , Propolis/pharmacology , Propolis/chemistry , Microbial Sensitivity Tests , Dose-Response Relationship, Drug , Humans
3.
Dent Mater J ; 43(3): 477-484, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38719582

ABSTRACT

We aimed to evaluate the antibacterial activity of phytochemicals with or without an experimental fluoride varnish against Porphyromonas gingivalis. Five phytochemicals, chrysophanol (CHR), emodin (EMO), anthrarufin (ANT), bavachalcone (BCC), and isobavachromene (IBC), were tested using agar diffusion, minimal inhibition concentration (MIC), and minimum bacterial concentration (MBC) assays. We also assessed the cell viability and cytotoxicity of phytochemicals. All phytochemicals showed clear inhibition zones in the agar diffusion test. The inhibition zones of all phytochemical-containing fluoride varnishes were similar to or larger than that of the positive control, excluding that of 1 mM EMO. With or without the fluoride varnish, BCC exhibited the lowest MIC and MBC levels. Cell viability was high in the presence of all phytochemicals except 200 µM EMO. In conclusion, BCC was most effective as a phytochemical alone, while all phytochemical-containing fluoride varnishes inhibited P. gingivalis growth without cytotoxicity.


Subject(s)
Anti-Bacterial Agents , Cell Survival , Microbial Sensitivity Tests , Periodontal Diseases , Phytochemicals , Porphyromonas gingivalis , Porphyromonas gingivalis/drug effects , Anti-Bacterial Agents/pharmacology , Phytochemicals/pharmacology , Cell Survival/drug effects , Periodontal Diseases/prevention & control , Periodontal Diseases/microbiology , Fluorides, Topical/pharmacology , Humans
4.
BMC Oral Health ; 24(1): 525, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702623

ABSTRACT

OBJECTIVE: To evaluate the antibacterial effectiveness of a combination of ε-poly-L-lysine (ε-PL), funme peptide (FP) as well as domiphen against oral pathogens, and assess the efficacy of a BOP® mouthwash supplemented with this combination in reducing halitosis and supragingival plaque in a clinical trial. MATERIALS AND METHODS: The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of the compound against Fusobacterium nucleatum, Porphyromonas gingivalis, Streptococcus mutans, and Aggregatibacter actinomycetemcomitans were determined by the gradient dilution method. Subsequently, the CCK-8 assay was used to detect the toxicity of mouthwash on human gingival fibroblastst, and the effectiveness in reducing halitosis and supragingival plaque of the mouthwash supplemented with the combination was analyzed by a randomized, double-blind, parallel-controlled clinical trial. RESULTS: The combination exhibited significant inhibitory effects on tested oral pathogens with the MIC < 1.56% (v/v) and the MBC < 3.13% (v/v), and the mouthwash containing this combination did not inhibit the viability of human gingival fibroblasts at the test concentrations. The clinical trial showed that the test group displayed notably lower volatile sulfur compounds (VSCs) at 0, 10, 24 h, and 7 d post-mouthwash (P < 0.05), compared with the baseline. After 7 days, the VSC levels of the and control groups were reduced by 50.27% and 32.12%, respectively, and notably cutting severe halitosis by 57.03% in the test group. Additionally, the Plaque Index (PLI) of the test and control group decreased by 54.55% and 8.38%, respectively, and there was a significant difference in PLI between the two groups after 7 days (P < 0.01). CONCLUSIONS: The combination of ε-PL, FP and domiphen demonstrated potent inhibitory and bactericidal effects against the tested oral pathogens, and the newly formulated mouthwash added with the combination exhibited anti-dental plaque and anti-halitosis properties in a clinical trial and was safe. TRIAL REGISTRATION: The randomized controlled clinical trial was registered on Chinese Clinical Trial Registry (No. ChiCTR2300073816, Date: 21/07/2023).


Subject(s)
Dental Plaque , Halitosis , Mouthwashes , Polylysine , Humans , Halitosis/prevention & control , Halitosis/drug therapy , Halitosis/microbiology , Mouthwashes/therapeutic use , Dental Plaque/microbiology , Dental Plaque/prevention & control , Double-Blind Method , Male , Female , Polylysine/therapeutic use , Adult , Microbial Sensitivity Tests , Young Adult , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/pharmacology , Porphyromonas gingivalis/drug effects , Fusobacterium nucleatum/drug effects , Fibroblasts/drug effects , Peptides/therapeutic use , Peptides/pharmacology , Aggregatibacter actinomycetemcomitans/drug effects , Streptococcus mutans/drug effects
5.
Turk J Med Sci ; 54(1): 357-365, 2024.
Article in English | MEDLINE | ID: mdl-38812644

ABSTRACT

Background/aim: Scaling and root planing remain inadequate in periodontitis treatment caused by dysbiotic microbial dental plaque. The aim of this clinical trial is to evaluate the effects of probiotics and kefir consumption in initial periodontal therapy (IPT) on oral microbiota composition and treatment outcomes in patients with periodontitis. Materials and methods: The study was carried out in the Gazi University Department of Periodontology, including a sample size of 36 individuals and utilizing a randomized controlled design. Thirty-six patients with periodontitis were randomly allocated to three groups: one receiving probiotic treatment, another receiving kefir, and a third serving as the control group. Obtaining subgingival microbial samples, we recorded plaque, gingival index, bleeding on probing, periodontal pocket depth, and clinical attachment level (periodontal clinical indices) and then performed IPT. For 14 days, patients took either probiotics, kefir, or no supplements. Data for the first and third months were collected using periodontal clinical indices. DNA sequencing was performed to detect Tannerella forsythia, Porphyromonas gingivalis, and Treponema denticola in subgingival plaque samples collected at baseline and three months. Results: Significant differences were observed regarding periodontal clinical indices among groups in the intragroup comparisons. Moreover, levels of Tannerella forsythia were significantly decreased in all groups. Conclusion: Kefir can be administered in addition to IPT, providing results similar to those observed with probiotics.


Subject(s)
Dysbiosis , Probiotics , Humans , Probiotics/therapeutic use , Male , Dysbiosis/therapy , Female , Adult , Middle Aged , Porphyromonas gingivalis/isolation & purification , Kefir/microbiology , Tannerella forsythia/isolation & purification , Periodontitis/microbiology , Periodontitis/therapy , Periodontitis/prevention & control , Treponema denticola/isolation & purification , Periodontal Index , Treatment Outcome , Periodontal Diseases/microbiology , Periodontal Diseases/prevention & control , Periodontal Diseases/therapy
6.
Int J Mol Sci ; 25(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38731952

ABSTRACT

Porphyromonas gingivalis (Pg), a Gram-negative oral pathogen, promotes and accelerates periodontitis-associated gut disorders. Intestinal epithelial barrier dysfunction is crucial in the pathogenesis of intestinal and systemic diseases. In this study, we sought to elucidate the protective role of cinnamaldehyde (CNM, an activator of Nrf2) against P. gingivalis (W83) and Pg-derived lipopolysaccharide (Pg-LPS) induced intestinal epithelial barrier dysfunction via antioxidative mechanisms in IEC-6 cells. IEC-6 (ATCC, CRL-1592) cells were pretreated with or without CNM (100 µM), in the presence or absence of P. gingivalis (strain W83, 109 MOI) or Pg-LPS (1, 10, and 100 µg/mL), respectively, between 0-72 h time points by adopting a co-culture method. Intestinal barrier function, cytokine secretion, and intestinal oxidative stress protein markers were analyzed. P. gingivalis or Pg-LPS significantly (p < 0.05) increased reactive oxygen species (ROS) and malondialdehyde (MDA) levels expressing oxidative stress damage. Pg-LPS, as well as Pg alone, induces inflammatory cytokines via TLR-4 signaling. Furthermore, infection reduced Nrf2 and NAD(P)H quinone dehydrogenase 1 (NQO1). Interestingly, inducible nitric oxide synthase (iNOS) protein expression significantly (p < 0.05) increased with Pg-LPS or Pg infection, with elevated levels of nitric oxide (NO). CNM treatment suppressed both Pg- and Pg-LPS-induced intestinal oxidative stress damage by reducing ROS, MDA, and NO production. Furthermore, CNM treatment significantly upregulated the expression of tight junction proteins via increasing the phosphorylation levels of PI3K/Akt/Nrf2 suppressing inflammatory cytokines. CNM protected against Pg infection-induced intestinal epithelial barrier dysfunction by activating the PI3K/Akt-mediated Nrf2 signaling pathway in IEC-6 cells.


Subject(s)
Acrolein , Intestinal Mucosa , NF-E2-Related Factor 2 , Nitric Oxide , Phosphatidylinositol 3-Kinases , Porphyromonas gingivalis , Proto-Oncogene Proteins c-akt , Signal Transduction , NF-E2-Related Factor 2/metabolism , Acrolein/analogs & derivatives , Acrolein/pharmacology , Animals , Signal Transduction/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Rats , Porphyromonas gingivalis/pathogenicity , Phosphatidylinositol 3-Kinases/metabolism , Intestinal Mucosa/metabolism , Intestinal Mucosa/drug effects , Intestinal Mucosa/microbiology , Intestinal Mucosa/pathology , Nitric Oxide/metabolism , Cell Line , Lipopolysaccharides , Oxidative Stress/drug effects , Epithelial Cells/metabolism , Epithelial Cells/drug effects , Toll-Like Receptor 4/metabolism , Reactive Oxygen Species/metabolism , Cytokines/metabolism
7.
Int J Mol Sci ; 25(10)2024 May 07.
Article in English | MEDLINE | ID: mdl-38791123

ABSTRACT

Periodontitis is linked to the onset and progression of oral squamous cell carcinoma (OSCC), an epidemiologically frequent and clinically aggressive malignancy. In this context, Fusobacterium (F.) nucleatum and Porphyromonas (P.) gingivalis, two bacteria that cause periodontitis, are found in OSCC tissues as well as in oral premalignant lesions, where they exert pro-tumorigenic activities. Since the two bacteria are present also in endodontic diseases, playing a role in their pathogenesis, here we analyze the literature searching for information on the impact that endodontic infection by P. gingivalis or F. nucleatum could have on cellular and molecular events involved in oral carcinogenesis. Results from the reviewed papers indicate that infection by P. gingivalis and/or F. nucleatum triggers the production of inflammatory cytokines and growth factors in dental pulp cells or periodontal cells, affecting the survival, proliferation, invasion, and differentiation of OSCC cells. In addition, the two bacteria and the cytokines they induce halt the differentiation and stimulate the proliferation and invasion of stem cells populating the dental pulp or the periodontium. Although most of the literature confutes the possibility that bacteria-induced endodontic inflammatory diseases could impact on oral carcinogenesis, the papers we have analyzed and discussed herein recommend further investigations on this topic.


Subject(s)
Fusobacterium Infections , Fusobacterium nucleatum , Mouth Neoplasms , Porphyromonas gingivalis , Humans , Porphyromonas gingivalis/pathogenicity , Fusobacterium nucleatum/pathogenicity , Mouth Neoplasms/microbiology , Mouth Neoplasms/pathology , Fusobacterium Infections/microbiology , Fusobacterium Infections/complications , Carcinogenesis , Bacteroidaceae Infections/microbiology , Bacteroidaceae Infections/complications , Carcinoma, Squamous Cell/microbiology , Carcinoma, Squamous Cell/etiology , Carcinoma, Squamous Cell/pathology , Periodontitis/microbiology , Animals , Cytokines/metabolism
8.
Int J Mol Sci ; 25(10)2024 May 07.
Article in English | MEDLINE | ID: mdl-38791137

ABSTRACT

The most common type of periodontal disease is chronic periodontitis, an inflammatory condition caused by pathogenic bacteria in subgingival plaque. The aim of our study was the development of a real-time PCR test as a diagnostic tool for the detection and differentiation of five periodontopathogenic bacteria, Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, Tannerella forsythia, Prevotella intermedia, and Treponema denticola, in patients with periodontitis. We compared the results of our in-house method with the micro-IDent® semiquantitative commercially available test based on the PCR hybridization method. DNA was isolated from subgingival plaque samples taken from 50 patients and then analyzed by both methods. Comparing the results of the two methods, they show a specificity of 100% for all bacteria. The sensitivity for A. actinomycetemcomitans was 97.5%, for P. gingivalis 96.88%, and for P. intermedia 95.24%. The sensitivity for Tannerella forsythia and T. denticola was 100%. The Spearman correlation factor of two different measurements was 0.976 for A. actinomycetemcomitans, 0.967 for P. gingivalis, 0.949 for P. intermedia, 0.966 for Tannerella forsythia, and 0.917 for T. denticola. In conclusion, the in-house real-time PCR method developed in our laboratory can provide information about relative amount of five bacterial species present in subgingival plaque in patients with periodontitis. It is likely that such a test could be used in dental diagnostics in assessing the efficacy of any treatment to reduce the bacterial burden.


Subject(s)
Periodontitis , Porphyromonas gingivalis , Real-Time Polymerase Chain Reaction , Humans , Real-Time Polymerase Chain Reaction/methods , Periodontitis/microbiology , Periodontitis/diagnosis , Porphyromonas gingivalis/isolation & purification , Porphyromonas gingivalis/genetics , Aggregatibacter actinomycetemcomitans/isolation & purification , Aggregatibacter actinomycetemcomitans/genetics , Treponema denticola/isolation & purification , Treponema denticola/genetics , Male , Female , Tannerella forsythia/isolation & purification , Tannerella forsythia/genetics , Sensitivity and Specificity , Prevotella intermedia/isolation & purification , Prevotella intermedia/genetics , Middle Aged , Adult , DNA, Bacterial/genetics , Dental Plaque/microbiology , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/classification
9.
Lett Appl Microbiol ; 77(5)2024 May 03.
Article in English | MEDLINE | ID: mdl-38769598

ABSTRACT

Porphyromonas gingivalis is a nonmotile, obligate anaerobic, Gram-negative bacterium known for its association with periodontal disease and its involvement in systemic diseases such as atherosclerosis, cardiovascular disease, colon cancer, and Alzheimer's disease. This bacterium produces several virulence factors, including capsules, fimbriae, lipopolysaccharides, proteolytic enzymes, and hemagglutinins. A comparative genomic analysis revealed the open pangenome of P. gingivalis and identified complete type IV secretion systems in strain KCOM2805 and almost complete type VI secretion systems in strains KCOM2798 and ATCC49417, which is a new discovery as previous studies did not find the proteins involved in secretion systems IV and VI. Conservation of some virulence factors between different strains was observed, regardless of their genetic diversity and origin. In addition, we performed for the first time a reconstruction analysis of the gene regulatory network, identifying transcription factors and proteins involved in the regulatory mechanisms of bacterial pathogenesis. In particular, QseB regulates the expression of hemagglutinin and arginine deaminase, while Rex may suppress the release of gingipain through interactions with PorV and the formatum/nitrate transporter. Our study highlights the central role of conserved virulence factors and regulatory pathways, particularly QseB and Rex, in P. gingivalis and provides insights into potential therapeutic targets.


Subject(s)
Gene Regulatory Networks , Genome, Bacterial , Metabolic Networks and Pathways , Porphyromonas gingivalis , Virulence Factors , Porphyromonas gingivalis/genetics , Porphyromonas gingivalis/metabolism , Porphyromonas gingivalis/pathogenicity , Virulence Factors/genetics , Metabolic Networks and Pathways/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Humans , Gene Expression Regulation, Bacterial
10.
PeerJ ; 12: e17252, 2024.
Article in English | MEDLINE | ID: mdl-38708345

ABSTRACT

Background: Periodontitis is a chronic infectious disease, characterized by an exacerbated inflammatory response and a progressive loss of the supporting tissues of the teeth. Porphyromonas gingivalis is a key etiologic agent in periodontitis. Cystatin C is an antimicrobial salivary peptide that inhibits the growth of P. gingivalis. This study aimed to evaluate the antimicrobial activity of this peptide and its effect on cytokine production, nitric oxide (NO) release, reactive oxygen species (ROS) production, and programmed cell death in human macrophages infected with P. gingivalis. Methods: Monocyte-derived macrophages generated from peripheral blood were infected with P. gingivalis (MOI 1:10) and stimulated with cystatin C (2.75 µg/ml) for 24 h. The intracellular localization of P. gingivalis and cystatin C was determined by immunofluorescence and transmission electron microscopy (TEM). The intracellular antimicrobial activity of cystatin C in macrophages was assessed by counting Colony Forming Units (CFU). ELISA assay was performed to assess inflammatory (TNFα, IL-1ß) and anti-inflammatory (IL-10) cytokines. The production of nitrites and ROS was analyzed by Griess reaction and incubation with 2',7'-dichlorodihydrofluorescein diacetate (H2DCFDA), respectively. Programmed cell death was assessed with the TUNEL assay, Annexin-V, and caspase activity was also determined. Results: Our results showed that cystatin C inhibits the extracellular growth of P. gingivalis. In addition, this peptide is internalized in the infected macrophage, decreases the intracellular bacterial load, and reduces the production of inflammatory cytokines and NO. Interestingly, peptide treatment increased ROS production and substantially decreased bacterial-induced macrophage apoptosis. Conclusions: Cystatin C has antimicrobial and immuno-regulatory activity in macrophages infected with P. gingivalis. These findings highlight the importance of understanding the properties of cystatin C for its possible therapeutic use against oral infections such as periodontitis.


Subject(s)
Cystatin C , Macrophages , Nitric Oxide , Porphyromonas gingivalis , Reactive Oxygen Species , Porphyromonas gingivalis/immunology , Humans , Macrophages/immunology , Macrophages/drug effects , Macrophages/metabolism , Macrophages/microbiology , Cystatin C/metabolism , Reactive Oxygen Species/metabolism , Nitric Oxide/metabolism , Cytokines/metabolism , Periodontitis/microbiology , Periodontitis/immunology , Periodontitis/drug therapy , Periodontitis/pathology , Apoptosis/drug effects
11.
Mil Med Res ; 11(1): 30, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38764065

ABSTRACT

BACKGROUND: Benign prostatic hyperplasia (BPH) is the most common disease in elderly men. There is increasing evidence that periodontitis increases the risk of BPH, but the specific mechanism remains unclear. This study aimed to explore the role and mechanism of the key periodontal pathogen Porphyromonas gingivalis (P. gingivalis) in the development of BPH. METHODS: The subgingival plaque (Sp) and prostatic fluid (Pf) of patients with BPH concurrent periodontitis were extracted and cultured for 16S rDNA sequencing. Ligature-induced periodontitis, testosterone-induced BPH and the composite models in rats were established. The P. gingivalis and its toxic factor P. gingivalis lipopolysaccharide (P.g-LPS) were injected into the ventral lobe of prostate in rats to simulate its colonization of prostate. P.g-LPS was used to construct the prostate cell infection model for mechanism exploration. RESULTS: P. gingivalis, Streptococcus oralis, Capnocytophaga ochracea and other oral pathogens were simultaneously detected in the Pf and Sp of patients with BPH concurrent periodontitis, and the average relative abundance of P. gingivalis was found to be the highest. P. gingivalis was detected in both Pf and Sp in 62.5% of patients. Simultaneous periodontitis and BPH synergistically aggravated prostate histological changes. P. gingivalis and P.g-LPS infection could induce obvious hyperplasia of the prostate epithelium and stroma (epithelial thickness was 2.97- and 3.08-fold that of control group, respectively), and increase of collagen fibrosis (3.81- and 5.02-fold that of control group, respectively). P. gingivalis infection promoted prostate cell proliferation, inhibited apoptosis, and upregulated the expression of inflammatory cytokines interleukin-6 (IL-6; 4.47-fold), interleukin-6 receptor-α (IL-6Rα; 5.74-fold) and glycoprotein 130 (gp130; 4.47-fold) in prostatic tissue. P.g-LPS could significantly inhibit cell apoptosis, promote mitosis and proliferation of cells. P.g-LPS activates the Akt pathway through IL-6/IL-6Rα/gp130 complex, which destroys the imbalance between proliferation and apoptosis of prostate cells, induces BPH. CONCLUSION: P. gingivalis was abundant in the Pf of patients with BPH concurrent periodontitis. P. gingivalis infection can promote BPH, which may affect the progression of BPH via inflammation and the Akt signaling pathway.


Subject(s)
Interleukin-6 , Porphyromonas gingivalis , Prostatic Hyperplasia , Receptors, Interleukin-6 , Male , Prostatic Hyperplasia/complications , Porphyromonas gingivalis/pathogenicity , Rats , Humans , Animals , Interleukin-6/analysis , Interleukin-6/metabolism , Prostate , Periodontitis/complications , Periodontitis/microbiology , Aged , Middle Aged , Rats, Sprague-Dawley , Disease Models, Animal , Signal Transduction/physiology
12.
Arch Microbiol ; 206(6): 244, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702412

ABSTRACT

Aggregatibacter actinomycetemcomitans is an opportunistic Gram-negative periodontopathogen strongly associated with periodontitis and infective endocarditis. Recent evidence suggests that periodontopathogens can influence the initiation and progression of oral squamous cell carcinoma (OSCC). Herein we aimed to investigate the effect of A. actinomycetemcomitans-derived extracellular vesicles (EVs) on OSCC cell behavior compared with EVs from periodontopathogens known to associate with carcinogenesis. EVs were isolated from: A. actinomycetemcomitans and its mutant strains lacking the cytolethal distending toxin (CDT) or lipopolysaccharide (LPS) O-antigen; Porphyromonas gingivalis; Fusobacterium nucleatum; and Parvimonas micra. The effect of EVs on primary and metastatic OSCC cells was assessed using cell proliferation, apoptosis, migration, invasion, and tubulogenesis assays. A. actinomycetemcomitans-derived EVs reduced the metastatic cancer cell proliferation, invasion, tubulogenesis, and increased apoptosis, mostly in CDT- and LPS O-antigen-dependent manner. EVs from F. nucleatum impaired the metastatic cancer cell proliferation and induced the apoptosis rates in all OSCC cell lines. EVs enhanced cancer cell migration regardless of bacterial species. In sum, this is the first study demonstrating the influence of A. actinomycetemcomitans-derived EVs on oral cancer in comparison with other periodontopathogens. Our findings revealed a potential antitumorigenic effect of these EVs on metastatic OSCC cells, which warrants further in vivo investigations.


Subject(s)
Aggregatibacter actinomycetemcomitans , Apoptosis , Cell Proliferation , Extracellular Vesicles , Mouth Neoplasms , Aggregatibacter actinomycetemcomitans/genetics , Extracellular Vesicles/metabolism , Mouth Neoplasms/microbiology , Mouth Neoplasms/pathology , Humans , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Movement , Fusobacterium nucleatum/physiology , Carcinoma, Squamous Cell/microbiology , Carcinoma, Squamous Cell/pathology , Porphyromonas gingivalis/genetics
13.
Front Immunol ; 15: 1355357, 2024.
Article in English | MEDLINE | ID: mdl-38576615

ABSTRACT

Chronic periodontitis (CP), an inflammatory disease of periodontal tissues driven by a dysbiotic subgingival bacterial biofilm, is also associated with several systemic diseases, including rheumatoid arthritis (RA). Porphyromonas gingivalis, one of the bacterial species implicated in CP as a keystone pathogen produces peptidyl arginine deiminase (PPAD) that citrullinates C-terminal arginine residues in proteins and peptides. Autoimmunity to citrullinated epitopes is crucial in RA, hence PPAD activity is considered a possible mechanistic link between CP and RA. Here we determined the PPAD enzymatic activity produced by clinical isolates of P. gingivalis, sequenced the ppad gene, and correlated the results with clinical determinants of CP in patients from whom the bacteria were isolated. The analysis revealed variations in PPAD activity and genetic diversity of the ppad gene in clinical P. gingivalis isolates. Interestingly, the severity of CP was correlated with a higher level of PPAD activity that was associated with the presence of a triple mutation (G231N, E232T, N235D) in PPAD in comparison to W83 and ATCC 33277 type strains. The relation between mutations and enhanced activity was verified by directed mutagenesis which showed that all three amino acid residue substitutions must be introduced into PPAD expressed by the type strains to obtain the super-active enzyme. Cumulatively, these results may lead to the development of novel prognostic tools to assess the progress of CP in the context of associated RA by analyzing the ppad genotype in CP patients infected with P. gingivalis.


Subject(s)
Chronic Periodontitis , Porphyromonas gingivalis , Humans , Protein-Arginine Deiminases/genetics , Protein-Arginine Deiminases/metabolism , Peptides , Periodontium/metabolism , Chronic Periodontitis/genetics
14.
BMJ Open ; 14(4): e082116, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38626983

ABSTRACT

OBJECTIVES: To make a descriptive comparison of antibodies to four major periodontal bacteria and their relation to the respiratory diseases asthma and bronchitis/emphysema, and to cancer incidence. METHODS: The serum of a random sample of men with no history of cancer incidence (n=621) was analysed by the ELISA method for antibody levels of four periodontal bacteria; the anaerobes of the so-called red complex Tannerella forsythia (TF), Porphyromonas gingivalis (PG), and Treponema denticola (TD), and the facultative anaerobe Aggregatibacter actinomycetemcomitans (AA). The antibody readings were divided into quartiles and the distribution of cases of the relevant diseases as compared with the non-cases. Comparisons of the quartile distributions were by the Pearson χ2 test. Data and serum from the Oslo II study of Norwegian men from 2000 were used. The ELISA analyses were performed on thawed frozen serum. Cancer data from 17.5 years of follow-up were provided by the Norwegian Cancer Registry. RESULTS: In all, 52 men had reported asthma and 23 men had bronchitis/emphysema at the health screening. Results on cancer incidence are given for all respiratory cancers, n=23, and bronchi and lung cancers separately, n=18. Stratified analyses were performed for the four endpoints showing significant association with low levels of TD antibodies for bronchitis; p=0.035. Both TF and TD were significant for low levels of antibodies among daily smokers; p=0.030 for TF and p<0.001 for TD in the analysis of the full study sample. For PG and AA, no such associations were observed. An association with respiratory cancers was not observed. CONCLUSION: A low level of TD was associated with bronchitis/emphysema compared with the rest of the cohort. In the total study sample, low levels of antibodies to both TF and TD were associated with daily smoking.


Subject(s)
Asthma , Bronchitis , Emphysema , Neoplasms , Respiratory Tract Diseases , Male , Humans , Cohort Studies , Porphyromonas gingivalis , Antibodies , Neoplasms/epidemiology , Respiratory Tract Diseases/epidemiology , Asthma/epidemiology
15.
Shanghai Kou Qiang Yi Xue ; 33(1): 49-53, 2024 Feb.
Article in Chinese | MEDLINE | ID: mdl-38583024

ABSTRACT

PURPOSE: To study the antimicrobial effect of different concentrations of new bioactive glass(BG) on common bacteria in apical periodontitis of deciduous teeth. METHODS: The diameter (mm) of the inhibitory rings formed after treatment of Enterococcus faecalis, Porphyromonas gingivalis and Clostridium nucleatum with the new bioactive glass was detected and observed by paper diffusion method, and the minimal inhibitory concentration(MIC), minimal bactericidal concentration (MBC) and minimal biofilm eradication concentration (MBEC) of E. faecalis, P. gingivalis and C. pseudomallei were determined. The mixed plaques of the three bacteria were treated with 20, 40, 60 and 80 mg/mL of the new bioactive glass for 24 h. The results were analyzed by laser confocal microscopy. The antibacterial effect of the new bioactive glass on the mixed plaque was observed by confocal laser scanning microscopy (CLSM). Statistical analysis was performed with GraphPad Prism 10.0 software. RESULTS: The new bioactive glass showed strong antibacterial potential against the common bacteria of apical periodontitis; the MBEC of the new bioactive glass on the plaque was significantly greater than MIC and MBC of Enterococcus faecalis, Porphyromonas gingivalis and Clostridium nucleatum, and as the concentration of the new bioactive glass increased, the number of dead bacteria in the mixed plaque increased, and there was significant difference from that of the blank control group (P<0.05). CONCLUSIONS: The novel bioactive glass shows significant antibacterial efficacy against Enterococcus faecalis, Porphyromonas gingivalis and Clostridium nucleatum, which are the common bacteria in apical periodontitis of deciduous teeth.


Subject(s)
Anti-Bacterial Agents , Periapical Periodontitis , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Porphyromonas gingivalis , Tooth, Deciduous , Biofilms
16.
Arch Oral Biol ; 163: 105965, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38593562

ABSTRACT

OBJECTIVE: Porphyromonas gingivalis (P. gingivalis) is a key etiological agent in periodontitis and functions as a facultative intracellular microorganism and involves many virulence factors. These virulence factors participate in multiple intracellular processes, like ferroptosis, the mechanistic underpinnings remain to be elucidated. Aim of this study was to investigate the effects of virulence factors on the host cells. DESIGN: Human umbilical vein endothelial cells (HUVECs) were treated with 4% paraformaldehyde-fixed P. gingivalis, and subsequent alterations in gene expression were profiled via RNA-seq. Further, the molecules associated with ferroptosis were quantitatively analyzed using qRT-PCR and Western blot. RESULTS: A total of 1125 differentially expressed genes (DEGs) were identified, encompassing 225 upregulated and 900 downregulated. Ferroptosis was conspicuously represented in the kyoto encyclopedia of genes and genomes (KEGG) enrichment analysis, with notable upregulation of Heme oxygenase 1 (HMOX1), Ferritin light chain (FTL), and Solute carrier family 3 member 2 (SLC3A2) and downregulation of Scavenger receptor class A member 5 (SCARA5) and glutaminase (GLS). Random selection of DEGs for validation through qRT-PCR corroborated the RNA-Seq data (R2 = 0.93). Kelch like ECH associated protein 1 (Keap1) protein expression decreased after 4 and 8 h, while NFE2 like bZIP transcription factor 2 (Nrf2) and HMOX1 were elevated, with significant nuclear translocation of Nrf2. CONCLUSIONS: The virulence factors of P. gingivalis may potentially instigating ferroptosis through activation of the Keap1-Nrf2-HMOX1 signaling cascade, in conjunction with modulating the expression of other ferroptosis-associated elements. Further research is necessary to achieve a thorough comprehension of these complex molecular interactions.


Subject(s)
Ferroptosis , Human Umbilical Vein Endothelial Cells , Porphyromonas gingivalis , Virulence Factors , Porphyromonas gingivalis/pathogenicity , Porphyromonas gingivalis/genetics , Ferroptosis/genetics , Humans , Virulence Factors/genetics , Up-Regulation , Heme Oxygenase-1/genetics , Heme Oxygenase-1/metabolism , Blotting, Western , Down-Regulation , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism
17.
Int Immunopharmacol ; 133: 112094, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38652969

ABSTRACT

Periodontitis is a bacteria-induced inflammatory disease that damages the tissues supporting the teeth, gums, periodontal ligaments, and alveolar bone. Conventional treatments such as surgical procedures, anti-inflammatory drugs, and antibiotics, are somewhat effective; however, these may lead to discomfort and adverse events, thereby affecting patient outcomes. Therefore, this study aimed to find an effective method to prevent the onset of periodontal disease and explore the specific mechanisms of their action.The impact of thiostrepton on Porphyromonas gingivalis and periodontal ligament stem cells was evaluated in an inflammatory microenvironment. In vivo experiments were performed using a mouse periodontitis model to assess the effectiveness of locally applied thiostrepton combined with a silk fibroin hydrogel in impeding periodontitis progression. Thiostrepton exhibited significant antimicrobial effects against Porphyromonas gingivalis and anti-inflammatory properties by regulating the MAPK pathway through DUSP2. Locally applied thiostrepton effectively impeded the progression of periodontitis and reduced tissue damage. Thiostrepton treatment is a promising and tolerable preventive strategy for periodontitis, offering antimicrobial and anti-inflammatory benefits. These findings suggest the potential of thiostrepton as a valuable addition to periodontitis management, warranting further research and clinical exploration to improve patient outcomes.


Subject(s)
Anti-Bacterial Agents , Anti-Inflammatory Agents , Periodontitis , Porphyromonas gingivalis , Animals , Porphyromonas gingivalis/drug effects , Periodontitis/drug therapy , Mice , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Humans , MAP Kinase Signaling System/drug effects , Periodontal Ligament/drug effects , Periodontal Ligament/pathology , Disease Models, Animal , Mice, Inbred C57BL , Stem Cells/drug effects , Male , Periodontium/drug effects , Periodontium/microbiology , Periodontium/pathology
18.
Int J Mol Sci ; 25(8)2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38674094

ABSTRACT

Porphyromonas gingivalis (Pg) and its gingipain proteases contribute to Alzheimer's disease (AD) pathogenesis through yet unclear mechanisms. Cellular secretion of small extracellular vesicles or exosomes (EXO) increases with aging as part of the senescence-associated secretory phenotype (SASP). We have shown that EXO isolated from Pg-infected dendritic cells contain gingipains and other Pg antigens and transmit senescence to bystander gingival cells, inducing alveolar bone loss in mice in vivo. Here, EXO were isolated from the gingiva of mice and humans with/without periodontitis (PD) to determine their ability to penetrate the blood-brain barrier (BBB) in vitro and in vivo. PD was induced by Pg oral gavage for 6 weeks in C57B6 mice. EXO isolated from the gingiva or brain of donor Pg-infected (PD EXO) or control animals (Con EXO) were characterized by NTA, Western blot, and TEM. Gingival PD EXO or Con EXO were labeled and injected into the gingiva of uninfected WT mouse model. EXO biodistribution in brains was tracked by an in vivo imaging system (IVIS) and confocal microscopy. The effect of human PD EXO on BBB integrity and permeability was examined using TEER and FITC dextran assays in a human in vitro 3D model of the BBB. Pg antigens (RGP and Mfa-1) were detected in EXO derived from gingival and brain tissues of donor Pg-infected mice. Orally injected PD EXO from donor mice penetrated the brains of recipient uninfected mice and colocalized with hippocampal microglial cells. IL-1ß and IL-6 were expressed in human PD EXO and not in Con EXO. Human PD EXO promoted BBB permeability and penetrated the BBB in vitro. This is the first demonstration that microbial-induced EXO in the oral cavity can disseminate, cross the BBB, and may contribute to AD pathogenesis.


Subject(s)
Blood-Brain Barrier , Extracellular Vesicles , Gingiva , Periodontitis , Porphyromonas gingivalis , Blood-Brain Barrier/metabolism , Animals , Humans , Mice , Extracellular Vesicles/metabolism , Porphyromonas gingivalis/metabolism , Porphyromonas gingivalis/pathogenicity , Periodontitis/microbiology , Periodontitis/metabolism , Periodontitis/pathology , Gingiva/metabolism , Gingiva/microbiology , Mice, Inbred C57BL , Male , Exosomes/metabolism , Female , Bacteroidaceae Infections/microbiology , Bacteroidaceae Infections/metabolism
19.
Int J Mol Sci ; 25(8)2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38674095

ABSTRACT

During periodontitis, the extracellular capsule of Porphyromonas gingivalis favors alveolar bone loss by inducing Th1 and Th17 patterns of lymphocyte response in the infected periodontium. Dendritic cells recognize bacterial antigens and present them to T lymphocytes, defining their activation and polarization. Thus, dendritic cells could be involved in the Th1 and Th17 response induced against the P. gingivalis capsule. Herein, monocyte-derived dendritic cells were obtained from healthy individuals and then stimulated with different encapsulated strains of P. gingivalis or two non-encapsulated isogenic mutants. Dendritic cell differentiation and maturation were analyzed by flow cytometry. The mRNA expression levels for distinct Th1-, Th17-, or T-regulatory-related cytokines and transcription factors, as well as TLR2 and TLR4, were assessed by qPCR. In addition, the production of IL-1ß, IL-6, IL-23, and TNF-α was analyzed by ELISA. The encapsulated strains and non-encapsulated mutants of P. gingivalis induced dendritic cell maturation to a similar extent; however, the pattern of dendritic cell response was different. In particular, the encapsulated strains of P. gingivalis induced higher expression of IRF4 and NOTCH2 and production of IL-1ß, IL-6, IL-23, and TNF-α compared with the non-encapsulated mutants, and thus, they showed an increased capacity to trigger Th1 and Th17-type responses in human dendritic cells.


Subject(s)
Cytokines , Dendritic Cells , Porphyromonas gingivalis , Th17 Cells , Toll-Like Receptor 2 , Toll-Like Receptor 4 , Porphyromonas gingivalis/immunology , Humans , Dendritic Cells/immunology , Dendritic Cells/metabolism , Dendritic Cells/microbiology , Th17 Cells/immunology , Th17 Cells/metabolism , Toll-Like Receptor 2/metabolism , Toll-Like Receptor 2/genetics , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 4/genetics , Cytokines/metabolism , Cell Differentiation , Th1 Cells/immunology , Interferon Regulatory Factors/metabolism , Interferon Regulatory Factors/genetics , Receptor, Notch2/genetics , Receptor, Notch2/metabolism , Cells, Cultured , Bacterial Capsules/immunology , Bacterial Capsules/metabolism , Bacteroidaceae Infections/immunology , Bacteroidaceae Infections/microbiology , Tumor Necrosis Factor-alpha/metabolism
20.
Zhonghua Kou Qiang Yi Xue Za Zhi ; 59(5): 486-495, 2024 May 09.
Article in Chinese | MEDLINE | ID: mdl-38637003

ABSTRACT

Objective: To observe whether endothelial cells undergo pyroptosis in the inflammatory periodontal environment by using a model in vivo and in vitro, providing an experimental basis for indepth understanding of the underlying pathogenesis of periodontitis. Methods: According to the classification of periodontal diseases of 2018, gingival tissues were collected from periodontally healthy subjects and patients with stage Ⅲ-Ⅳ, grade C periodontitis, who presented Department of Oral and Maxillofacial Surgery and Department of Periodontology, School of Stomatology, The Fourth Military Medical University from April to May 2022. Immunohistochemical staining was performed to detect the expression level and distribution of gasdermin D (GSDMD), a hallmark protein of cell pyroptosis, in gingival tissues. Periodontitis models were established in each group by ligating the maxillary second molar teeth of three mice for 2 weeks (ligation group). The alveolar bone resorption was determined by micro-CT (mice without ligation treatment were used as the control group), and the colocalization of GSDMD and CD31 were quantitatively analyzed by immunofluorescence staining in gingival tissues of healthy and inflammatory mice. Human umbilical vein endothelial cells (HUVECs) were cultured in vitro and treated with lipopolysaccharide (LPS) of Porphyromonas gingivalis (Pg) combined with adenosine triphosphate (ATP) at various concentrations of 0.5, 1.0, 2.5, 5.0, and 10.0 mg/L, respectively, and the 0 mg/L group was set as the control group at the same time. Scanning electron microscopy was used to observe the morphology of HUVECs. Western blotting was used to detect the expression of gasdermin D-N terminal domains (GSDMD-N) protein and immunofluorescence cell staining was used to detect the expression and distribution of GSDMD. Cell counting kit-8 (CCK-8) was used to detect the proliferative ability of HUVECs, and propidium iodide (PI) staining was used to detect the integrity of cell membrane of HUVECs. Results: Immunohistochemistry showed that GSDMD in gingival tissues of periodontitis was mainly distributed around blood vessels and its expression level was higher than that in healthy tissues. Micro-CT showed that alveolar bone resorption around the maxillary second molar significantly increased in ligation group mice compared with control subjects (t=8.88, P<0.001). Immunofluorescence staining showed significant colocalization of GSDMD with CD31 in the gingival vascular endothelial cells in mice of ligation group. The results of scanning electron microscopy showed that there were pores of different sizes, the typical morphology of pyroptosis, on HUVECs cell membranes in the inflammatory environment simulated by ATP combined with different concentrations of LPS, and 2.5 mg/L group showed the most dilated and fused pores on cell membranes, with the cells tended to lyse and die. Western blotting showed that the expression of GSDMD-N, the hallmark protein of cell pyroptosis, was significantly higher in 2.5 and 5.0 mg/L groups than that in the control group (F=3.86, P<0.01). Immunofluorescence cell staining showed that the average fluorescence intensity of GSDMD in 2.5 mg/L group elevated the most significantly in comparison with that in the control group (F=35.25, P<0.001). The CCK-8 proliferation assay showed that compared to the control group (1.00±0.02), 0.5 mg/L (0.52±0.07), 1.0 mg/L (0.57±0.10), 2.5 mg/L (0.58±0.04), 5.0 mg/L (0.55±0.04), 10.0 mg/L (0.61±0.03) groups inhibited cell proliferation (F=39.95, P<0.001). PI staining showed that the proportion of positive stained cells was highest [(56.07±3.22)%] in 2.5 mg/L group (F=88.24, P<0.001). Conclusions: Endothelial cells undergo significant pyroptosis in both in vivo and in vitro periodontal inflammatory environments, suggesting that endothelial cell pyroptosis may be an important pathogenic factor contributing to the pathogenesis of periodontitis.


Subject(s)
Endothelial Cells , Gingiva , Human Umbilical Vein Endothelial Cells , Periodontitis , Phosphate-Binding Proteins , Platelet Endothelial Cell Adhesion Molecule-1 , Pyroptosis , Animals , Mice , Humans , Periodontitis/metabolism , Periodontitis/pathology , Platelet Endothelial Cell Adhesion Molecule-1/metabolism , Gingiva/pathology , Gingiva/metabolism , Gingiva/cytology , Phosphate-Binding Proteins/metabolism , Endothelial Cells/metabolism , Alveolar Bone Loss/pathology , Alveolar Bone Loss/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , X-Ray Microtomography , Disease Models, Animal , Porphyromonas gingivalis
SELECTION OF CITATIONS
SEARCH DETAIL
...