Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Comp Neurol ; 529(10): 2558-2575, 2021 07 01.
Article in English | MEDLINE | ID: mdl-33458823

ABSTRACT

Ventroposterior medialis parvocellularis (VPMP) nucleus of the primate thalamus receives direct input from the nucleus of the solitary tract, whereas the homologous thalamic structure in the rodent does not. To reveal whether the synaptic circuitries in these nuclei lend evidence for conservation of design principles in the taste thalamus across species or across sensory thalamus in general, we characterized the ultrastructural and molecular properties of the VPMP in a close relative of primates, the tree shrew (Tupaia belangeri), and compared these to known properties of the taste thalamus in rodent, and the visual thalamus in mammals. Electron microscopy analysis to categorize the synaptic inputs in the VPMP revealed that the largest-size terminals contained many vesicles and formed large synaptic zones with thick postsynaptic density on multiple, medium-caliber dendrite segments. Some formed triads within glomerular arrangements. Smaller-sized terminals contained dark mitochondria; most formed a single asymmetric or symmetric synapse on small-diameter dendrites. Immuno-EM experiments revealed that the large-size terminals contained VGLUT2, whereas the small-size terminal populations contained VGLUT1 or ChAT. These findings provide evidence that the morphological and molecular characteristics of synaptic circuitry in the tree shrew VPMP are similar to that in nonchemical sensory thalamic nuclei. Furthermore, the results indicate that all primary sensory nuclei of the thalamus in higher mammals share a structural template for processing thalamocortical sensory information. In contrast, substantial morphological and molecular differences in rodent versus tree shrew taste nuclei suggest a fundamental divergence in cellular processing mechanisms of taste input in these two species.


Subject(s)
Posterior Thalamic Nuclei/physiology , Posterior Thalamic Nuclei/ultrastructure , Taste Perception/physiology , Tupaiidae/anatomy & histology , Tupaiidae/physiology , Animals , Immunohistochemistry , Microscopy, Electron, Transmission , Neurons/ultrastructure
2.
Cereb Cortex ; 31(5): 2625-2638, 2021 03 31.
Article in English | MEDLINE | ID: mdl-33367517

ABSTRACT

Synapses are able to form in the absence of neuronal activity, but how is their subsequent maturation affected in the absence of regulated vesicular release? We explored this question using 3D electron microscopy and immunoelectron microscopy analyses in the large, complex synapses formed between cortical sensory efferent axons and dendrites in the posterior thalamic nucleus. Using a Synaptosome-associated protein 25 conditional knockout (Snap25 cKO), we found that during the first 2 postnatal weeks the axonal boutons emerge and increase in the size similar to the control animals. However, by P18, when an adult-like architecture should normally be established, axons were significantly smaller with 3D reconstructions, showing that each Snap25 cKO bouton only forms a single synapse with the connecting dendritic shaft. No excrescences from the dendrites were formed, and none of the normally large glomerular axon endings were seen. These results show that activity mediated through regulated vesicular release from the presynaptic terminal is not necessary for the formation of synapses, but it is required for the maturation of the specialized synaptic structures between layer 5 corticothalamic projections in the posterior thalamic nucleus.


Subject(s)
Posterior Thalamic Nuclei/ultrastructure , Presynaptic Terminals/ultrastructure , Somatosensory Cortex/ultrastructure , Synaptosomal-Associated Protein 25/genetics , Animals , Cerebral Cortex/growth & development , Cerebral Cortex/metabolism , Cerebral Cortex/ultrastructure , Imaging, Three-Dimensional , Mice , Mice, Knockout , Mice, Transgenic , Microscopy, Electron, Scanning , Neural Pathways , Posterior Thalamic Nuclei/growth & development , Posterior Thalamic Nuclei/metabolism , Presynaptic Terminals/metabolism , Somatosensory Cortex/growth & development , Somatosensory Cortex/metabolism , Synapses/metabolism , Synapses/ultrastructure
3.
Brain Struct Funct ; 224(4): 1627-1645, 2019 May.
Article in English | MEDLINE | ID: mdl-30919051

ABSTRACT

Rodents extract information about nearby objects from the movement of their whiskers through dynamic computations that are carried out by a network of forebrain structures that includes the thalamus and the primary sensory (S1BF) and motor (M1wk) whisker cortices. The posterior nucleus (Po), a higher order thalamic nucleus, is a key hub of this network, receiving cortical and brainstem sensory inputs and innervating both motor and sensory whisker-related cortical areas. In a recent study in rats, we showed that Po inputs differently impact sensory processing in S1BF and M1wk. Here, in C57BL/6 mice, we measured Po synaptic bouton layer distribution and size, compared cortical unit response latencies to "in vivo" Po activation, and pharmacologically examined the glutamatergic receptor mechanisms involved. We found that, in S1BF, a large majority (56%) of Po axon varicosities are located in layer (L)5a and only 12% in L2-L4, whereas in M1wk this proportion is inverted to 18% and 55%, respectively. Light and electron microscopic measurements showed that Po synaptic boutons in M1wk layers 3-4 are significantly larger (~ 50%) than those in S1BF L5a. Electrical Po stimulation elicits different area-specific response patterns. In S1BF, responses show weak or no facilitation, and involve both ionotropic and metabotropic glutamate receptors, whereas in M1wk, unit responses exhibit facilitation to repetitive stimulation and involve ionotropic NMDA glutamate receptors. Because of the different laminar distribution of axon terminals, synaptic bouton size and receptor mechanisms, the impact of Po signals on M1wk and S1BF, although simultaneous, is likely to be markedly different.


Subject(s)
Axons/physiology , Axons/ultrastructure , Motor Cortex/physiology , Posterior Thalamic Nuclei/physiology , Somatosensory Cortex/physiology , Synapses/physiology , Synapses/ultrastructure , Animals , Electric Stimulation , Male , Mice, Inbred C57BL , Motor Cortex/ultrastructure , Neural Pathways/physiology , Neural Pathways/ultrastructure , Posterior Thalamic Nuclei/ultrastructure , Receptors, Metabotropic Glutamate/physiology , Receptors, N-Methyl-D-Aspartate/physiology , Somatosensory Cortex/ultrastructure , Vibrissae/physiology
4.
J Neurosci ; 28(46): 11848-61, 2008 Nov 12.
Article in English | MEDLINE | ID: mdl-19005050

ABSTRACT

Diverse sources of GABAergic inhibition are a major feature of cortical networks, but distinct inhibitory input systems have not been systematically characterized in the thalamus. Here, we contrasted the properties of two independent GABAergic pathways in the posterior thalamic nucleus of rat, one input from the reticular thalamic nucleus (nRT), and one "extrareticular" input from the anterior pretectal nucleus (APT). The vast majority of nRT-thalamic terminals formed single synapses per postsynaptic target and innervated thin distal dendrites of relay cells. In contrast, single APT-thalamic terminals formed synaptic contacts exclusively via multiple, closely spaced synapses on thick relay cell dendrites. Quantal analysis demonstrated that the two inputs displayed comparable quantal amplitudes, release probabilities, and multiple release sites. The morphological and physiological data together indicated multiple, single-site contacts for nRT and multisite contacts for APT axons. The contrasting synaptic arrangements of the two pathways were paralleled by different short-term plasticities. The multisite APT-thalamic pathway showed larger charge transfer during 50-100 Hz stimulation compared with the nRT pathway and a greater persistent inhibition accruing during stimulation trains. Our results demonstrate that the two inhibitory systems are morpho-functionally distinct and suggest and that multisite GABAergic terminals are tailored for maintained synaptic inhibition even at high presynaptic firing rates. These data explain the efficacy of extrareticular inhibition in timing relay cell activity in sensory and motor thalamic nuclei. Finally, based on the classic nomenclature and the difference between reticular and extrareticular terminals, we define a novel, multisite GABAergic terminal type (F3) in the thalamus.


Subject(s)
Intralaminar Thalamic Nuclei/metabolism , Posterior Thalamic Nuclei/metabolism , Presynaptic Terminals/metabolism , Synapses/metabolism , gamma-Aminobutyric Acid/metabolism , Afferent Pathways/metabolism , Afferent Pathways/ultrastructure , Animals , Dendrites/metabolism , Dendrites/ultrastructure , Electric Stimulation , Inhibitory Postsynaptic Potentials/physiology , Intralaminar Thalamic Nuclei/ultrastructure , Male , Microscopy, Immunoelectron , Neural Inhibition/physiology , Posterior Thalamic Nuclei/ultrastructure , Presynaptic Terminals/ultrastructure , Rats , Rats, Wistar , Superior Colliculi/metabolism , Superior Colliculi/ultrastructure , Synaptic Transmission/physiology
5.
J Comp Neurol ; 464(4): 472-86, 2003 Sep 29.
Article in English | MEDLINE | ID: mdl-12900918

ABSTRACT

The recent appreciation of the fact that the pulvinar and lateral posterior (LP) nuclei receive two distinct types of cortical input has sparked renewed interest in this region of the thalamus. A key question is whether the primary or "driving" inputs to the pulvinar/LP complex originate in cortical or subcortical areas. To begin to address this issue, we examined the synaptic targets of tectothalamic terminals within the LP nucleus. Tectothalamic terminals were labeled using the anterograde transport of biotinylated dextran amine (BDA) or Phaselous leucoagglutinin placed in the superior colliculus or using immunocytochemical staining for substance P, a neurotransmitter found to be used by the tectothalamic pathway (Hutsler and Chalupa [ 1991] J. Comp. Neurol. 312:379-390). Our results suggest that most tectothalamic terminals are large and occupy a proximal position on the dendritic arbor of LP relay cells. In the medial LP, tectothalamic terminals labeled by the transport of neuronal tracers or substance P immunocytochemistry can form tubular clusters that surround the proximal dendrites of relay cells. In a rostral and lateral subdivision of the lateral LP nucleus (LPl-2), tectothalamic terminals form more typical glomerular arrangements. When compared with existing physiological data, these results suggest that a unique integration of tectal and cortical inputs may contribute to the response properties of LP neurons.


Subject(s)
Biotin/analogs & derivatives , Cats/anatomy & histology , Cats/physiology , Nerve Endings/physiology , Superior Colliculi/physiology , Synapses/physiology , Thalamic Nuclei/physiology , Animals , Dextrans , Female , Fluorescent Dyes , Histocytochemistry , Immunohistochemistry , Lateral Thalamic Nuclei/physiology , Lateral Thalamic Nuclei/ultrastructure , Male , Microscopy, Electron , Nerve Endings/ultrastructure , Posterior Thalamic Nuclei/physiology , Posterior Thalamic Nuclei/ultrastructure , Substance P/metabolism , Superior Colliculi/ultrastructure , Thalamic Nuclei/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...