Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 83
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 12822, 2024 06 04.
Article in English | MEDLINE | ID: mdl-38834581

ABSTRACT

Postoperative cognitive dysfunction (POCD) has become the popular critical post-operative consequences, especially cardiopulmonary bypass surgery, leading to an increased risk of mortality. However, no therapeutic effect about POCD. Probiotics are beneficial bacteria living in the gut and help to reduce the risk of POCD. However, the detailed mechanism is still not entirely known. Therefore, our research aims to uncover the effect and mechanism of probiotics in relieving POCD and to figure out the possible relationship between kynurenine metabolic pathway. 36 rats were grouped into three groups: sham operated group (S group, n = 12), Cardiopulmonary bypass group (CPB group, n = 12), and probiotics+CPB (P group, n = 12). After CPB model preparation, water maze test and Garcia score scale was performed to identify the neurological function. Immunofluorescence and Hematoxylin and eosin staining has been used for hippocampal neurons detection. Brain injury related proteins, oxidative stress factors, and inflammatory factors were detected using enzyme-linked immunosorbent assays (ELISA). Neuronal apoptosis was detected by TdT-mediated dUTP nick end-labeling (TUNEL) staining and western blot. High-performance liquid chromatography/mass spectrometry (HPLC/MS) was performed to detect the key factors of the kynurenine metabolic pathway. Our results demonstrated that probiotics improved neurological function of post-CPB rats. The administration of probiotics ameliorated memory and learning in spatial terms CPB rats (P < 0.05). Hematoxylin and eosin (H&E) staining data, S-100ß and neuron-specific enolase (NSE) data convinced that probiotics agonists reduced brain damage in CPB rats (P < 0.05). Moreover, probiotics regulated inflammatory factors, meanwhile attenuated hippocampal neuronal apoptosis. Probiotics alleviated POCD in rats with CPB through regulation of kynurenine metabolic signaling pathway.


Subject(s)
Cardiopulmonary Bypass , Kynurenine , Postoperative Cognitive Complications , Probiotics , Animals , Kynurenine/metabolism , Probiotics/pharmacology , Cardiopulmonary Bypass/adverse effects , Rats , Postoperative Cognitive Complications/metabolism , Postoperative Cognitive Complications/etiology , Male , Hippocampus/metabolism , Metabolic Networks and Pathways , Apoptosis , Rats, Sprague-Dawley , Oxidative Stress , Neurons/metabolism , Maze Learning
2.
Neuropharmacology ; 257: 110034, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38878858

ABSTRACT

Clinical surgery can lead to severe neuroinflammation and cognitive dysfunctions. It has been reported that astrocytes mediate memory formation and postoperative cognitive dysfunction (POCD), however, the thalamic mechanism of astrocytes in mediating POCD remains unknown. Here, we report that reactive astrocytes in zona incerta (ZI) mediate surgery-induced recognition memory impairment in male mice. Immunostaining results showed that astrocytes are activated with GABA transporter-3 (GAT-3) being down-expressed, and neurons were suppressed in the ZI. Besides, our work revealed that reactive astrocytes caused increased tonic current in ZI neurons. Up-regulating the expression of GAT-3 in astrocytes ameliorates surgery-induced recognition memory impairment. Together, our work demonstrates that the reactive astrocytes in the ZI play a crucial role in surgery-induced memory impairment, which provides a new target for the treatment of surgery-induced neural dysfunctions.


Subject(s)
Astrocytes , GABA Plasma Membrane Transport Proteins , Memory Disorders , Up-Regulation , Zona Incerta , Animals , Male , GABA Plasma Membrane Transport Proteins/metabolism , Memory Disorders/metabolism , Mice , Up-Regulation/drug effects , Astrocytes/metabolism , Zona Incerta/metabolism , Mice, Inbred C57BL , Neurons/metabolism , Neurons/drug effects , Postoperative Cognitive Complications/metabolism , Postoperative Cognitive Complications/prevention & control , Recognition, Psychology/drug effects , Recognition, Psychology/physiology
3.
Neurochem Res ; 49(8): 2005-2020, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38814357

ABSTRACT

Postoperative cognitive dysfunction (POCD) occurs after surgery and severely impairs patients' quality of life. Finding POCD-associated variables can aid in its diagnosis and prognostication. POCD is associated with noncoding RNAs, such as microRNAs (miRNAs), involved in metabolic function, immune response alteration, and cognitive ability impairment; however, the underlying mechanisms remain unclear. The aim of this study was to investigate hub miRNAs (i.e., miRNAs that have an important regulatory role in diseases) regulating postoperative cognitive function and the associated mechanisms. Hub miRNAs were identified by bioinformatics, and their expression in mouse hippocampus tissues was determined using real-time quantitative polymerase chain reaction. Hub miRNAs were overexpressed or knocked down in cell and animal models to test their effects on neuroinflammation and postoperative cognitive function. Six differentially expressed hub miRNAs were identified. miR-206-3p was the only broadly conserved miRNA, and it was used in follow-up studies and animal experiments. Its inhibitors reduced the release of proinflammatory cytokines in BV-2 microglia by regulating its target gene, brain-derived neurotrophic factor (BDNF), and the downstream signaling pathways. miR-206-3p inhibition suppressed microglial activation in the hippocampi of mice and improved learning and cognitive decline. Therefore, miR-206-3p significantly affects POCD, implying its potential as a therapeutic target.


Subject(s)
Brain-Derived Neurotrophic Factor , Cognition , Hippocampus , Mice, Inbred C57BL , MicroRNAs , Postoperative Cognitive Complications , Animals , MicroRNAs/metabolism , MicroRNAs/genetics , Brain-Derived Neurotrophic Factor/metabolism , Brain-Derived Neurotrophic Factor/genetics , Mice , Postoperative Cognitive Complications/metabolism , Male , Hippocampus/metabolism , Cognition/physiology , Aging/metabolism , Aging/genetics , Microglia/metabolism , Cell Line
4.
Brain Res ; 1838: 148975, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38702024

ABSTRACT

Postoperative cognitive impairment (POCD) is a complication of cardiopulmonary bypass (CPB). Remimazolam is an ultra-short acting benzodiazepine that can be used for anesthesia or sedation during surgery. This study investigated the role of remimazolam in inflammasome activation and microglia polarization using CPB rat model and lipopolysaccharide (LPS)-induced microglia model. The cognitive function of rats was evaluated by Morris water maze. TUNEL assay was performed to detect apoptosis. Inflammatory cytokines concentration were analyzed by enzyme-linked immunosorbent assay. Reverse transcription-polymerase chain reaction was used to assess the expression of inflammasome and M1/M2-related microglia markers. Flow cytometry was performed to evaluate the expression of CD16/32 and CD206 in microglia. The results showed that remimazolam improved the memory and learning abilities in CPB rats. CPB rats and LPS-treated microglia showed increased apoptosis, pro-inflammatory cytokines level, and inflammasome expression as well as decreased microglia activation, while the results were reversed after remimazolam treatment. Besides, remimazolam treatment promoted the expression of M2-related markers in LPS-treated microglia. Nigericin treatment reversed the increased M2-related mRNA levels and the decreased apoptosis and inflammatory responses induced by remimazolam treatment. In conclusion, remimazolam attenuated POCD after CPB through regulating neuroinflammation and microglia M2 polarization, suggesting a new insight into the clinical treatment of POCD after CPB.


Subject(s)
Benzodiazepines , Cardiopulmonary Bypass , Microglia , Neuroinflammatory Diseases , Postoperative Cognitive Complications , Rats, Sprague-Dawley , Animals , Microglia/metabolism , Microglia/drug effects , Cardiopulmonary Bypass/adverse effects , Rats , Male , Neuroinflammatory Diseases/metabolism , Neuroinflammatory Diseases/drug therapy , Postoperative Cognitive Complications/metabolism , Postoperative Cognitive Complications/prevention & control , Postoperative Cognitive Complications/etiology , Benzodiazepines/pharmacology , Cytokines/metabolism , Apoptosis/drug effects , Cognitive Dysfunction/etiology , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/prevention & control , Lipopolysaccharides/pharmacology
5.
Biochem Pharmacol ; 224: 116261, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38705534

ABSTRACT

Delayed neurocognitive recovery (dNCR) is a common complication in geriatric surgical patients. The impact of anesthesia and surgery on patients with neurodegenerative diseases, such as Parkinson's disease (PD) or prion disease, has not yet been reported. In this study, we aimed to determine the association between a pre-existing A53T genetic background, which involves a PD-related point mutation, and the development of postoperative dNCR. We observed that partial hepatectomy induced hippocampus-dependent cognitive deficits in 5-month-old A53T transgenic mice, a model of early-stage PD without cognitive deficits, unlike in age-matched wild-type (WT) mice. We respectively examined molecular changes at 6 h, 1 day, and 2 days after partial hepatectomy and observed that cognitive changes were accompanied by weakened angiotensin-(1-7)/Mas receptor [Ang-(1-7)/MasR] axis, increased alpha-synuclein (α-syn) expression and phosphorylation, decreased methylated protein phosphatase-2A (Me-PP2A), and prompted microglia M1 polarization and neuronal apoptosis in the hippocampus at 1 day after surgery. Nevertheless, no changes in blood-brain barrier (BBB) integrity or plasma α-syn levels in either A53T or WT mice. Furthermore, intranasal administration of selective MasR agonist AVE 0991, reversed the mentioned cognitive deficits in A53T mice, enhanced MasR expression, reduced α-syn accumulation and phosphorylation, and attenuated microglia activation and apoptotic response. Our findings suggest that individuals with the A53T genetic background may be more susceptible to developing postoperative dNCR. This susceptibility could be linked to central α-syn accumulation mediated by the weakened Ang-(1-7)/MasR/methyl-PP2A signaling pathway in the hippocampus following surgery, independent of plasma α-syn level and BBB.


Subject(s)
Angiotensin I , Hippocampus , Mice, Transgenic , Peptide Fragments , Receptors, G-Protein-Coupled , alpha-Synuclein , Animals , Humans , Male , Mice , alpha-Synuclein/genetics , alpha-Synuclein/metabolism , Angiotensin I/metabolism , Hippocampus/metabolism , Hippocampus/drug effects , Mice, Inbred C57BL , Mutation , Peptide Fragments/metabolism , Postoperative Cognitive Complications/metabolism , Postoperative Cognitive Complications/genetics , Postoperative Complications/metabolism , Postoperative Complications/genetics , Proto-Oncogene Mas , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/genetics
6.
Exp Brain Res ; 242(7): 1543-1559, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38750371

ABSTRACT

Postoperative cognitive dysfunction (POCD) is a kind of serious postoperative complication in surgery with general anesthesia and it may affect patients' normal lives. Activated microglia are thought to be one of the key factors in the regulation of POCD process. Once activated, resident microglia change their phenotype and secrete kinds of cytokines to regulate inflammatory response in tissues. Among these secretory factors, brain-derived neurotrophic factor (BDNF) is considered to be able to inhibit inflammation response and protect nervous system. Therefore, the enhancement of BDNF expression derived from resident microglia is suggested to be potential treatment for POCD. In our study, we focused on the role of C8-ceramide (a kind of interventional drug) and assessed its regulatory effect on improving the expression of BDNF secreted from microglia to treat POCD. According to the results of our study, we observed that C8-ceramide stimulated primary microglia to up-regulate the expression of BDNF mRNA after being treated with lipopolysaccharide (LPS) in vitro. We proved that C8-ceramide had ability to effectively improve POCD of mice after being accepted carotid artery exposure and their abnormal behavior recovered better than that of mice from the surgery group. Furthermore, we also demonstrated that C8-ceramide enhanced the cognitive function of mice via the PKCδ/NF-κB signaling pathway. In general, our study has confirmed a potential molecular mechanism that led to the occurrence of POCD caused by surgery and provided a new clinical strategy to treat POCD.


Subject(s)
Brain-Derived Neurotrophic Factor , Ceramides , Microglia , NF-kappa B , Postoperative Cognitive Complications , Protein Kinase C-delta , Signal Transduction , Animals , Microglia/drug effects , Microglia/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Signal Transduction/drug effects , Signal Transduction/physiology , Mice , NF-kappa B/metabolism , Postoperative Cognitive Complications/metabolism , Postoperative Cognitive Complications/prevention & control , Ceramides/metabolism , Protein Kinase C-delta/metabolism , Male , Mice, Inbred C57BL
7.
Cell Mol Biol Lett ; 29(1): 79, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38783169

ABSTRACT

BACKGROUND: Postoperative cognitive dysfunction (POCD) is a common complication after anesthesia/surgery, especially among elderly patients, and poses a significant threat to their postoperative quality of life and overall well-being. While it is widely accepted that elderly patients may experience POCD following anesthesia/surgery, the exact mechanism behind this phenomenon remains unclear. Several studies have indicated that the interaction between silent mating type information regulation 2 homologue 1 (SIRT1) and brain-derived neurotrophic factor (BDNF) is crucial in controlling cognitive function and is strongly linked to neurodegenerative disorders. Hence, this research aims to explore how SIRT1/BDNF impacts cognitive decline caused by anesthesia/surgery in aged mice. METHODS: Open field test (OFT) was used to determine whether anesthesia/surgery affected the motor ability of mice, while the postoperative cognitive function of 18 months old mice was evaluated with Novel object recognition test (NORT), Object location test (OLT) and Fear condition test (FC). The expressions of SIRT1 and other molecules were analyzed by western blot and immunofluorescence staining. The hippocampal synaptic plasticity was detected by Golgi staining and Long-term potentiation (LTP). The effects of SIRT1 and BDNF overexpression as well as chemogenetic activation of glutamatergic neurons in hippocampal CA1 region of 18 months old vesicular glutamate transporter 1 (VGLUT1) mice on POCD were further investigated. RESULTS: The research results revealed that older mice exhibited cognitive impairment following intramedullary fixation of tibial fracture. Additionally, a notable decrease in the expression of SIRT1/BDNF and neuronal excitability in hippocampal CA1 glutamatergic neurons was observed. By increasing levels of SIRT1/BDNF or enhancing glutamatergic neuron excitability in the CA1 region, it was possible to effectively mitigate synaptic plasticity impairment and ameliorate postoperative cognitive dysfunction. CONCLUSIONS: The decline in SIRT1/BDNF levels leading to changes in synaptic plasticity and neuronal excitability in older mice could be a significant factor contributing to cognitive impairment after anesthesia/surgery.


Subject(s)
Brain-Derived Neurotrophic Factor , CA1 Region, Hippocampal , Down-Regulation , Neuronal Plasticity , Neurons , Postoperative Cognitive Complications , Sirtuin 1 , Animals , Sirtuin 1/metabolism , Sirtuin 1/genetics , Brain-Derived Neurotrophic Factor/metabolism , Brain-Derived Neurotrophic Factor/genetics , Mice , Neurons/metabolism , Postoperative Cognitive Complications/metabolism , Postoperative Cognitive Complications/etiology , CA1 Region, Hippocampal/metabolism , Male , Mice, Inbred C57BL , Long-Term Potentiation , Glutamic Acid/metabolism , Cognitive Dysfunction/etiology , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/physiopathology
8.
Neuropharmacology ; 253: 109982, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38701943

ABSTRACT

Perioperative neurocognitive disorders (PND) are cognitive dysfunctions that usually occur in elderly patients after anesthesia and surgery. Microglial overactivation is a key underlying mechanism. Interleukin-33 (IL-33) is a member of the IL-1 family that orchestrates microglial function. In the present study, we explored how IL-33, which regulates microglia, contributes to cognitive improvement in a male mouse model of PND. An exploratory laparotomy was performed to establish a PND model. The expression levels of IL-33 and its receptor ST2 were evaluated using Western blot. IL-33/ST2 secretion, microglial density, morphology, phagocytosis of synapse, and proliferation, and dystrophic microglia were assessed using immunofluorescence. Synaptic plasticity was measured using Golgi staining and long-term potentiation. The Morris water maze and open field test were used to evaluate cognitive function and anxiety. Hippocampal expression of IL-33 and ST2 were elevated on postoperative day 3. We confirmed that IL-33 was secreted by astrocytes and neurons, whereas ST2 mainly colocalized with microglia. IL-33 treatment induced microgliosis after anesthesia and surgery. These microglia had larger soma sizes and shorter and fragmented branches. Compared to the Surgery group, IL-33 treatment reduced the synaptic phagocytosis of microglia and increased microglial proliferation and dystrophic microglia. IL-33 treatment also reversed the impaired synaptic plasticity and cognitive function caused by anesthesia and surgery. In conclusion, these results indicate that IL-33 plays a key role in regulating microglial state and synaptic phagocytosis in a PND mouse model. IL-33 treatment has a therapeutic potential for improving cognitive dysfunction in PND.


Subject(s)
Interleukin-33 , Mice, Inbred C57BL , Microglia , Animals , Microglia/drug effects , Microglia/metabolism , Interleukin-33/metabolism , Male , Mice , Neuronal Plasticity/drug effects , Hippocampus/metabolism , Hippocampus/drug effects , Hippocampus/pathology , Interleukin-1 Receptor-Like 1 Protein/metabolism , Maze Learning/drug effects , Maze Learning/physiology , Postoperative Cognitive Complications/metabolism , Phagocytosis/drug effects , Astrocytes/metabolism , Astrocytes/drug effects , Neurocognitive Disorders/metabolism , Neurocognitive Disorders/drug therapy , Disease Models, Animal , Neurons/drug effects , Neurons/metabolism
9.
Brain Res ; 1837: 148957, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38663469

ABSTRACT

The aim of this study was to examine the effects of ML365, a two-pore potassium channel (K2P) inhibitor, on postoperative cognitive impairment (POCD). A mouse model of POCD was constructed by subjecting aged C57BL/6 mice to exploratory laparotomy. Changes in cognitive function were assessed using the Morris water maze test. Western blotting and qPCR were used to detect hippocampal NLRP3, Caspase-1 and IL-1ß expression levels on days 3 and 7 post-surgery. Apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) expression level was also assessed by western blotting. Pathological changes and nerve damage in the hippocampal CA1 and CA3 regions were detected by H&E staining, while the concentration of malondialdehyde (MDA) in the plasma was measured. We found that pretreatment with ML365 (administered intraperitoneally at a dose of 10 mg/kg) 30 min prior to exploratory laparotomy effectively ameliorated POCD in mice. ML365 pretreatment also reduced NLRP3, Caspase-1, ASC and IL-1ß expression levels in the hippocampus, improved POCD-induced pathological changes in the hippocampal CA1 and CA3 areas of aged mice, and decreased levels of plasma MDA and oxidative stress. Together, our findings indicate that ML365 can alleviate POCD in mice by inhibiting NLRP3 inflammasome activation in the hippocampus.


Subject(s)
Hippocampus , Inflammasomes , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein , Postoperative Cognitive Complications , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Hippocampus/metabolism , Hippocampus/drug effects , Inflammasomes/metabolism , Inflammasomes/drug effects , Postoperative Cognitive Complications/metabolism , Mice , Male , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/drug therapy , Interleukin-1beta/metabolism , Disease Models, Animal , Aging/metabolism , Aging/drug effects , Caspase 1/metabolism , Furans , Indenes , Sulfonamides
10.
J Neuroinflammation ; 21(1): 104, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38649932

ABSTRACT

BACKGROUND: Postoperative cognitive dysfunction (POCD) is a common neurological complication of anesthesia and surgery in aging individuals. Neuroinflammation has been identified as a hallmark of POCD. However, safe and effective treatments of POCD are still lacking. Itaconate is an immunoregulatory metabolite derived from the tricarboxylic acid cycle that exerts anti-inflammatory effects by activating the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway. In this study, we investigated the effects and underlying mechanism of 4-octyl itaconate (OI), a cell-permeable itaconate derivative, on POCD in aged mice. METHODS: A POCD animal model was established by performing aseptic laparotomy in 18-month-old male C57BL/6 mice under isoflurane anesthesia while maintaining spontaneous ventilation. OI was intraperitoneally injected into the mice after surgery. Primary microglia and neurons were isolated and treated to lipopolysaccharide (LPS), isoflurane, and OI. Cognitive function, neuroinflammatory responses, as well as levels of gut microbiota and their metabolites were evaluated. To determine the mechanisms underlying the therapeutic effects of OI in POCD, ML385, an antagonist of Nrf2, was administered intraperitoneally. Cognitive function, neuroinflammatory responses, endogenous neurogenesis, neuronal apoptosis, and Nrf2/extracellular signal-related kinases (ERK) signaling pathway were evaluated. RESULTS: Our findings revealed that OI treatment significantly alleviated anesthesia/surgery-induced cognitive impairment, concomitant with reduced levels of the neuroinflammatory cytokines IL-1ß and IL-6, as well as suppressed activation of microglia and astrocytes in the hippocampus. Similarly, OI treatment inhibited the expression of IL-1ß and IL-6 in LPS and isoflurane-induced primary microglia in vitro. Intraperitoneal administration of OI led to alterations in the gut microbiota and promoted the production of microbiota-derived metabolites associated with neurogenesis. We further confirmed that OI promoted endogenous neurogenesis and inhibited neuronal apoptosis in the hippocampal dentate gyrus of aged mice. Mechanistically, we observed a decrease in Nrf2 expression in hippocampal neurons both in vitro and in vivo, which was reversed by OI treatment. We found that Nrf2 was required for OI treatment to inhibit neuroinflammation in POCD. The enhanced POCD recovery and promotion of neurogenesis triggered by OI exposure were, at least partially, mediated by the activation of the Nrf2/ERK signaling pathway. CONCLUSIONS: Our findings demonstrate that OI can attenuate anesthesia/surgery-induced cognitive impairment by stabilizing the gut microbiota and activating Nrf2 signaling to restrict neuroinflammation and promote neurogenesis. Boosting endogenous itaconate or supplementation with exogenous itaconate derivatives may represent novel strategies for the treatment of POCD.


Subject(s)
Gastrointestinal Microbiome , Mice, Inbred C57BL , NF-E2-Related Factor 2 , Neurogenesis , Neuroinflammatory Diseases , Postoperative Cognitive Complications , Succinates , Animals , NF-E2-Related Factor 2/metabolism , Male , Mice , Neurogenesis/drug effects , Gastrointestinal Microbiome/drug effects , Postoperative Cognitive Complications/metabolism , Neuroinflammatory Diseases/metabolism , Succinates/pharmacology , Succinates/therapeutic use , Brain/drug effects , Brain/metabolism , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/drug therapy , Anesthesia
11.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167137, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38527593

ABSTRACT

BACKGROUND: Postoperative Cognitive Dysfunction (POCD) has attracted increased attention, but its precise mechanism remains to be explored. This study aimed to figure out whether HDAC6 could regulate NLRP3-induced pyroptosis by modulating the functions of HSP70 and HSP90 in microglia to participate in postoperative cognitive dysfunction in aged mice. METHODS: Animal models of postoperative cognitive dysfunction in aged mice were established by splenectomy under sevoflurane anesthesia. Morris water maze was used to examine the cognitive function and motor ability. Sixteen-months-old C57BL/6 male mice were randomly divided into six groups: control group (C group), sham surgery group (SA group), splenectomy group (S group), splenectomy + HDAC6 inhibitor ACY-1215 group (ACY group), splenectomy + HDAC6 inhibitor ACY-1215 + HSP70 inhibitor Apoptozole group (AP group), splenectomy + solvent control group (SC group). The serum and hippocampus of mice were taken after mice were executed. The protein levels of HDAC6, HSP90, HSP70, NLRP3, GSDMD-N, cleaved-Caspase-1 (P20), IL-1ß were detected by western blotting. Serum IL-1ß, IL-6 and S100ß were measured using ELISA assay, and cell localization of HDAC6 was detected by immunofluorescence. In vitro experiments, BV2 cells were used to validate whether this mechanism worked in microglia. The protein levels of HDAC6, HSP90, HSP70, NLRP3, GSDMD-N, P20, IL-1ß were detected by western blotting and the content of IL-1ß in the supernatant was measured using ELISA assay. The degree of acetylation of HSP90, the interaction of HSP70, HSP90 and NLRP3 were analyzed by coimmunoprecipitation assay. RESULTS: Splenectomy under sevoflurane anesthesia in aged mice could prolong the escape latency, reduce the number of crossing platforms, increase the expression of HDAC6 and activate the NLRP3 inflammasome to induce pyroptosis in hippocampus microglia. Using ACY-1215 could reduce the activation of NLRP3 inflammasome, the pyroptosis of microglia and the degree of spatial memory impairment. Apoptozole could inhibit the binding of HSP70 to NLRP3, reduce the degradation of NLRP3 and reverse the protective effect of HDAC6 inhibitors. The results acquired in vitro experiments closely resembled those in vivo, LPS stimulation led to the pyroptosis of BV2 microglia cells and the release of IL-1ß due to the activation of the NLRP3 inflammasome, ACY-1215 showed the anti-inflammatory effect and Apoptozole exerted the opposite effect. CONCLUSIONS: Our findings suggest that hippocampal HDAC6 promotes POCD by regulating NLRP3-induced microglia pyroptosis via HSP90/HSP70 in aged mice.


Subject(s)
HSP70 Heat-Shock Proteins , HSP90 Heat-Shock Proteins , Hippocampus , Histone Deacetylase 6 , Mice, Inbred C57BL , Microglia , NLR Family, Pyrin Domain-Containing 3 Protein , Pyroptosis , Animals , Pyroptosis/drug effects , Histone Deacetylase 6/metabolism , Histone Deacetylase 6/antagonists & inhibitors , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Microglia/metabolism , Microglia/pathology , Microglia/drug effects , Mice , Male , HSP90 Heat-Shock Proteins/metabolism , Hippocampus/metabolism , Hippocampus/pathology , HSP70 Heat-Shock Proteins/metabolism , Postoperative Cognitive Complications/metabolism , Postoperative Cognitive Complications/pathology , Hydroxamic Acids/pharmacology , Aging/metabolism , Aging/pathology , Disease Models, Animal
12.
Inflamm Res ; 73(4): 641-654, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38411634

ABSTRACT

BACKGROUND: Neuroinflammation is crucial in the development of postoperative cognitive dysfunction (POCD), and microglial activation is an active participant in this process. SS-31, a mitochondrion-targeted antioxidant, is widely regarded as a potential drug for neurodegenerative diseases and inflammatory diseases. In this study, we sought to explore whether SS-31 plays a neuroprotective role and the underlying mechanism. METHODS: Internal fixation of tibial fracture was performed in 18-month-old mice to induce surgery-associated neurocognitive dysfunction. LPS was administrated to BV2 cells to induce neuroinflammation. Neurobehavioral deficits, hippocampal injury, protein expression, mitophagy level and cell state were evaluated after treatment with SS-31, PHB2 siRNA and an STING agonist. RESULTS: Our study revealed that SS-31 interacted with PHB2 to activate mitophagy and improve neural damage in surgically aged mice, which was attributed to the reduced cGAS-STING pathway and M1 microglial polarization by decreased release of mitochondrial DNA (mtDNA) but not nuclear DNA (nDNA). In vitro, knockdown of PHB2 and an STING agonist abolished the protective effect of SS-31. CONCLUSIONS: SS-31 conferred neuroprotection against POCD by promoting PHB2-mediated mitophagy activation to inhibit mtDNA release, which in turn suppressed the cGAS-STING pathway and M1 microglial polarization.


Subject(s)
DNA, Mitochondrial , Mitophagy , Postoperative Cognitive Complications , Animals , Humans , Infant , Mice , DNA, Mitochondrial/drug effects , DNA, Mitochondrial/genetics , Mitochondria , Mitophagy/drug effects , Neuroinflammatory Diseases , Nucleotidyltransferases/drug effects , Nucleotidyltransferases/metabolism , Postoperative Cognitive Complications/drug therapy , Postoperative Cognitive Complications/metabolism , Membrane Proteins/drug effects , Membrane Proteins/metabolism
13.
CNS Neurosci Ther ; 30(2): e14373, 2024 02.
Article in English | MEDLINE | ID: mdl-37501354

ABSTRACT

BACKGROUND: Elderly patients often exhibit postoperative cognitive dysfunction (POCD), a postsurgical decline in memory and executive function. Oxidative stress and neuroinflammation, both pathological characteristics of the aged brain, contribute to this decline. This study posits that electroacupuncture (EA) stimulation, an effective antioxidant and anti-inflammatory modality, may enhance telomerase reverse transcriptase (TERT) function, the catalytic subunit of telomerase known for its protective properties against cellular senescence and oxidative damage, to alleviate POCD in aged mice. METHODS: The animal POCD model was created by subjecting aged mice to abdominal surgery, followed by EA pretreatment at the Baihui acupoint (GV20). Postoperative cognitive function was gauged using the Morris water maze (MWM) test. Hippocampal TERT mRNA levels and telomerase activity were determined through qPCR and a Telomerase PCR ELISA kit, respectively. Oxidative stress was assessed through superoxide dismutase (SOD), reactive oxygen species (ROS), and malondialdehyde (MDA) levels. Iba-1 immunostaining determined the quantity of hippocampal microglia. Additionally, western blotting assessed TERT, autophagy markers, and proinflammatory cytokines at the protein level. RESULTS: Abdominal surgery in aged mice significantly decreased telomerase activity and TERT mRNA and protein levels, but increased oxidative stress and neuroinflammation and decreased autophagy in the hippocampus. EA-pretreated mice demonstrated improved postoperative cognitive performance, enhanced telomerase activity, increased TERT protein expression, improved TERT mitochondrial localization, and reduced oxidative damage, autophagy dysfunction, and neuroinflammation. The neuroprotective benefits of EA pretreatment were diminished following TERT knockdown. CONCLUSIONS: Our findings underscore the significance of TERT function preservation in alleviating surgery-induced oxidative stress and neuroinflammation in aged mice. A novel neuroprotective mechanism of EA stimulation is highlighted, whereby modulation of TERT and telomerase activity reduces oxidative damage and neuroinflammation. Consequently, maintaining TERT function via EA treatment could serve as an effective strategy for managing POCD in elderly patients.


Subject(s)
Cognitive Dysfunction , Electroacupuncture , Postoperative Cognitive Complications , Telomerase , Animals , Mice , Cognitive Dysfunction/etiology , Cognitive Dysfunction/therapy , Cognitive Dysfunction/metabolism , Hippocampus/metabolism , Neuroinflammatory Diseases , Oxidative Stress/physiology , Postoperative Cognitive Complications/metabolism , RNA, Messenger/metabolism
14.
Biochim Biophys Acta Mol Cell Res ; 1871(2): 119630, 2024 02.
Article in English | MEDLINE | ID: mdl-37967793

ABSTRACT

Akkermansia muciniphila (AKK) bacteria improve the functions of theere intestinal and blood-brain barriers (BBB) via their extracellular vesicles (AmEvs). However, their role in postoperative cognitive dysfunction (POCD) and its underlying mechanisms remain unclear. To investigate, we used C57BL/6 J mice divided into five groups: Sham, POCD, POCD+Akk, POCD+Evs, and POCD+Evs + PLX5622. POCD was induced through intestinal ischemia-reperfusion (I/R). The mice's cognitive function was assessed using behavioral tests, and possible mechanisms were explored by examining gut and BBB permeability, inflammation, and microglial function. Toll-like receptor (TLR) 2/4 pathway-related proteins were also investigated both in vitro and in vivo. PLX5622 chow was employed to eliminate microglial cells. Our findings revealed a negative correlation between AKK abundance and POCD symptoms. Supplementation with either AKK or AmEvs improved cognitive function, improved the performance of the intestinal barrier and BBB, and decreased inflammation and microglial activation in POCD mice compared to controls. Moreover, AmEvs treatment inhibited TLR2/4 signaling in the brains of POCD mice and LPS-treated microglial cells. In microglial-ablated POCD mice, however, AmEvs failed to protect BBB integrity. Overall, AmEvs is a potential therapeutic strategy for managing POCD by enhancing gut and BBB integrity and inhibiting microglial-mediated TLR2/4 signaling.


Subject(s)
Extracellular Vesicles , Organic Chemicals , Postoperative Cognitive Complications , Mice , Animals , Postoperative Cognitive Complications/metabolism , Toll-Like Receptor 2/genetics , Toll-Like Receptor 2/metabolism , Microglia/metabolism , Mice, Inbred C57BL , Verrucomicrobia/physiology , Inflammation/metabolism , Ischemia , Akkermansia
15.
Mol Neurobiol ; 61(4): 2459-2467, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37897635

ABSTRACT

The present work aimed to explore the role of long non-coding RNA (lncRNA)-AC020978 in postoperative cognitive disorder (POCD) and the underlying mechanism. The POCD mouse model was constructed through isoflurane anesthesia + abbreviated laparotomy. The AC020978 expression in brain tissue was silenced after lentivirus injection, then Morris water maze test was conducted to detect the cognitive disorder level, flow cytometry was performed to analyze M1 macrophage level, ELISA was carried out to measure inflammatory factor levels, H&E, Nissl and immunohistochemical staining was performed to detect the pathological changes in brain tissue, and Western blotting assay was adopted to detect protein expression. In addition, microglial cells were cultured in vitro, after lentivirus infection, the effect of AC020978 on the M1 polarization of microglial cells and glycolysis was observed. AC020978 overexpression promoted POCD progression and aggravated cognitive disorder in mice; in addition, the proportion of peripheral and central M1 cells increased, the inflammatory factor levels were upregulated, and microglial cells were activated. By contrast, AC020978 silencing led to cognitive disorder in mice and suppressed microglial cell activation and M1 polarization. In vitro experimental results indicated that AC020978 promoted the expression and phosphorylation of PKM2, which promoted inflammatory response through enhancing microglial cell glycolysis and M1 polarization. AC020978 interacts with PKM2 to promote the glycolysis and M1 polarization of microglial cells, thus regulating cognitive disorder and central inflammation in POCD.


Subject(s)
Postoperative Cognitive Complications , RNA, Long Noncoding , Mice , Animals , Microglia/metabolism , RNA, Long Noncoding/metabolism , Signal Transduction , Postoperative Cognitive Complications/metabolism , Metabolic Reprogramming
16.
Brain Behav Immun ; 116: 385-401, 2024 02.
Article in English | MEDLINE | ID: mdl-38145855

ABSTRACT

Post-operative cognitive dysfunction (POCD) is an abrupt decline in neurocognitive function arising shortly after surgery and persisting for weeks to months, increasing the risk of dementia diagnosis. Advanced age, obesity, and comorbidities linked to high-fat diet (HFD) consumption such as diabetes and hypertension have been identified as risk factors for POCD, although underlying mechanisms remain unclear. We have previously shown that surgery alone, or 3-days of HFD can each evoke sufficient neuroinflammation to cause memory deficits in aged, but not young rats. The aim of the present study was to determine if HFD consumption before surgery would potentiate and prolong the subsequent neuroinflammatory response and memory deficits, and if so, to determine the extent to which these effects depend on activation of the innate immune receptor TLR4, which both insults are known to stimulate. Young-adult (3mo) & aged (24mo) male F344xBN F1 rats were fed standard chow or HFD for 3-days immediately before sham surgery or laparotomy. In aged rats, the combination of HFD and surgery caused persistent deficits in contextual memory and cued-fear memory, though it was determined that HFD alone was sufficient to cause the long-lasting cued-fear memory deficits. In young adult rats, HFD + surgery caused only cued-fear memory deficits. Elevated proinflammatory gene expression in the hippocampus of both young and aged rats that received HFD + surgery persisted for at least 3-weeks after surgery. In a separate experiment, rats were administered the TLR4-specific antagonist, LPS-RS, immediately before HFD onset, which ameliorated the HFD + surgery-associated neuroinflammation and memory deficits. Similarly, dietary DHA supplementation for 4 weeks prior to HFD onset blunted the neuroinflammatory response to surgery and prevented development of persistent memory deficits. These results suggest that HFD 1) increases risk of persistent POCD-associated memory impairments following surgery in male rats in 2) a TLR4-dependent manner, which 3) can be targeted by DHA supplementation to mitigate development of persistent POCD.


Subject(s)
Cognitive Dysfunction , Postoperative Cognitive Complications , Rats , Male , Animals , Toll-Like Receptor 4/metabolism , Diet, High-Fat/adverse effects , Neuroinflammatory Diseases , Memory Disorders/metabolism , Hippocampus/metabolism , Postoperative Cognitive Complications/metabolism , Dietary Supplements , Cognitive Dysfunction/metabolism
17.
Aging (Albany NY) ; 15(24): 14666-14676, 2023 12 04.
Article in English | MEDLINE | ID: mdl-38103264

ABSTRACT

Post-operative cognitive dysfunction (POCD) is a common complication after surgery due to the usage of anesthetics, such as Sevoflurane, which severely impacts the life quality of patients. Currently, the pathogenesis of Sevoflurane-induced POCD has not been fully elucidated but is reportedly involved with oxidative stress (OS) injury and aggravated inflammation. Phoenixin-20 (PNX-20) is a PNX peptide consisting of 20 amino acids with promising inhibitory effects on OS and inflammation. Herein, we proposed to explore the potential protective function of PNX-20 on Sevoflurane inhalation-induced POCD in rats. Sprague-Dawley (SD) rats were treated with 100 ng/g PNX-20 for 7 days with or without pre-inhalation with 2.2% Sevoflurane. Markedly increased escape latency and decreased time in the target quadrant in the Morris water maze (MWM) test, and aggravated pathological changes and apoptosis in the hippocampus tissue were observed in Sevoflurane-treated rats, which were markedly attenuated by PNX-20. Furthermore, the aggravated inflammation and OS in the hippocampus observed in Sevoflurane-treated rats were notably abolished by PNX-20. Moreover, the brain-derived neurotrophic factor (BDNF), protein kinase A (PKA), and phospho-cAMP response element binding protein/cAMP response element binding protein (p-CREB/CREB) levels were markedly decreased in Sevoflurane-treated rats, which were memorably increased by PNX-20. Our results indicated that PNX-20 ameliorated Sevoflurane inhalation-induced POCD in rats via the activation of PKA/CREB signaling, which might supply a new treatment approach for POCD.


Subject(s)
Cognitive Dysfunction , Postoperative Cognitive Complications , Animals , Humans , Rats , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/etiology , Cyclic AMP Response Element-Binding Protein/drug effects , Cyclic AMP Response Element-Binding Protein/metabolism , Hippocampus/metabolism , Inflammation/metabolism , Postoperative Cognitive Complications/drug therapy , Postoperative Cognitive Complications/metabolism , Rats, Sprague-Dawley , Sevoflurane/adverse effects , Sevoflurane/pharmacology , AMP-Activated Protein Kinases/drug effects , AMP-Activated Protein Kinases/metabolism , Cyclic AMP-Dependent Protein Kinase Catalytic Subunits/drug effects , Cyclic AMP-Dependent Protein Kinase Catalytic Subunits/metabolism
18.
Cell Commun Signal ; 21(1): 356, 2023 12 15.
Article in English | MEDLINE | ID: mdl-38102610

ABSTRACT

BACKGROUND: Synaptosomal-associated protein 25 (SNAP25) exerts protective effects against postoperative cognitive dysfunction (POCD) by promoting PTEN-induced kinase 1 (PINK1)/Parkin-mediated mitophagy and repressing caspase-3/gasdermin E (GSDME)-mediated pyroptosis. However, the regulatory mechanisms of SNAP25 protein remain unclear. METHODS: We employed recombinant adeno-associated virus 9 (AAV9)-hSyn to knockdown tumor necrosis factor α-induced protein 1 (TNFAIP1) or SNAP25 and investigate the role of TNFAIP1 in POCD. Cognitive performance, hippocampal injury, mitophagy, and pyroptosis were assessed. Co-immunoprecipitation (co-IP) and ubiquitination assays were conducted to elucidate the mechanisms by which TNFAIP1 stabilizes SNAP25. RESULTS: Our results demonstrated that the ubiquitin ligase TNFAIP1 was upregulated in the hippocampus of mice following isoflurane (Iso) anesthesia and laparotomy. The N-terminal region (residues 1-96) of TNFAIP1 formed a conjugate with SNAP25, leading to lysine (K) 48-linked polyubiquitination of SNAP25 at K69. Silencing TNFAIP1 enhanced SH-SY5Y cell viability and conferred antioxidant, pro-mitophagy, and anti-pyroptosis properties in response to Iso and lipopolysaccharide (LPS) challenges. Conversely, TNFAIP1 overexpression reduced HT22 cell viability, increased reactive oxygen species (ROS) accumulation, impaired PINK1/Parkin-dependent mitophagy, and induced caspase-3/GSDME-dependent pyroptosis by suppressing SNAP25 expression. Neuron-specific knockdown of TNFAIP1 ameliorated POCD, restored mitophagy, and reduced pyroptosis, which was reversed by SNAP25 depletion. CONCLUSIONS: In summary, our findings demonstrated that inhibiting TNFAIP1-mediated degradation of SNAP25 might be a promising therapeutic approach for mitigating postoperative cognitive decline. Video Abstract.


Subject(s)
Neuroblastoma , Postoperative Cognitive Complications , Humans , Mice , Animals , Postoperative Cognitive Complications/metabolism , Postoperative Cognitive Complications/pathology , Synaptosomal-Associated Protein 25/metabolism , Caspase 3/metabolism , Protein Kinases/metabolism , Tumor Necrosis Factor-alpha/pharmacology , Mitochondria/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitination , Neurons/metabolism , Adaptor Proteins, Signal Transducing/metabolism
19.
Aging (Albany NY) ; 15(20): 11227-11243, 2023 10 19.
Article in English | MEDLINE | ID: mdl-37857016

ABSTRACT

Effective preventive measures against postoperative cognitive dysfunction in older adults are urgently needed. In this study, we investigated the effect of electroacupuncture (EA) on anesthesia and surgery-induced cognitive decline in aged rats by RNA-seq analysis, behavioral testing, Golgi-Cox staining, dendritic spine analysis, immunofluorescence assay and western blot analysis. EA ameliorated anesthesia and surgery induced-cognitive decline. RNA-seq analysis identified numerous differentially-expressed genes, including 353 upregulated genes and 563 downregulated genes, after pretreatment with EA in aged rats with postoperative cognitive dysfunction. To examine the role of CREB in EA, we injected adeno-associated virus (AAV) into the CA1 region of the hippocampus bilaterally into the aged rats to downregulate the transcription factor. EA improved synaptic plasticity, structurally and functionally, by activating the MAPK/ERK/CREB signaling pathway in aged rats. Together, our findings suggest that EA protects against anesthesia and surgery-induced cognitive decline in aged rats by activating the MAPK/ERK/CREB signaling pathway and enhancing hippocampal synaptic plasticity.


Subject(s)
Cognitive Dysfunction , Electroacupuncture , Postoperative Cognitive Complications , Rats , Animals , CA1 Region, Hippocampal/metabolism , Rats, Sprague-Dawley , Postoperative Cognitive Complications/metabolism , Hippocampus/metabolism , Cognitive Dysfunction/prevention & control , Cognitive Dysfunction/metabolism
20.
Inflamm Res ; 72(12): 2127-2144, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37902837

ABSTRACT

BACKGROUND: Postoperative cognitive dysfunction (POCD) is a neurological complication occurring after anesthesia and surgery. Neuroinflammation plays a critical role in the pathogenesis of POCD, and the activation of the cluster of differentiation 200 (CD200)/CD200R1 axis improves neurological recovery in various neurological disorders by modulating inflammation. The aim of this study was to investigate the impact and underlying mechanism of CD200/CD200R1 axis on POCD in aged mice. METHODS: The model of POCD was established in aged mice. To assess the learning and memory abilities of model mice, the Morris water maze test was implemented. CD200Fc (CD200 fusion protein), CD200R1 Ab (anti-CD200R1 antibody), and 740Y-P (a specific PI3K activator) were used to evaluate the effects of the CD200/CD200R1/PI3K/Akt/NF-κB signaling pathway on hippocampal microglial polarization, neuroinflammation, synaptic activity, and cognition in mice. RESULTS: It was observed that anesthesia/surgery induced cognitive decline in aged mice, increased the levels of tumor necrosis factor alpha (TNF-α), interleukin (IL)-6, IL-1 ß and decreased the levels of postsynaptic density protein 95 (PSD-95), synaptophysin (SYN) in the hippocampus. Moreover, CD200Fc and 740Y-P attenuated neuroinflammation and synaptic deficits and reversed cognitive impairment via the phosphatidylinositol 3-kinase (PI3K)/ protein kinase B (Akt)/nuclear factor-kappa B (NF-κB) signaling pathway, whereas CD200R1 Ab administration exerted the opposite effects. Our results further show that the CD200/CD200R1 axis modulates M1/M2 polarization in hippocampal microglia via the PI3K/Akt/NF-κB signaling pathway. CONCLUSIONS: Our findings indicate that the activation of the CD200/CD200R1 axis reduces neuroinflammation, synaptic deficits, and cognitive impairment in the hippocampus of aged mice by regulating microglial M1/M2 polarization via the PI3K/Akt/NF-κB signaling pathway.


Subject(s)
NF-kappa B , Postoperative Cognitive Complications , Animals , Mice , Interleukin-6/metabolism , Microglia/metabolism , Neuroinflammatory Diseases , NF-kappa B/metabolism , Phosphatidylinositol 3-Kinase , Phosphatidylinositol 3-Kinases/metabolism , Postoperative Cognitive Complications/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...