Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 703
Filter
1.
Nat Commun ; 15(1): 4173, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755204

ABSTRACT

Potassium channels of the Two-Pore Domain (K2P) subfamily, KCNK1-KCNK18, play crucial roles in controlling the electrical activity of many different cell types and represent attractive therapeutic targets. However, the identification of highly selective small molecule drugs against these channels has been challenging due to the high degree of structural and functional conservation that exists not only between K2P channels, but across the whole K+ channel superfamily. To address the issue of selectivity, here we generate camelid antibody fragments (nanobodies) against the TREK-2 (KCNK10) K2P K+ channel and identify selective binders including several that directly modulate channel activity. X-ray crystallography and CryoEM data of these nanobodies in complex with TREK-2 also reveal insights into their mechanisms of activation and inhibition via binding to the extracellular loops and Cap domain, as well as their suitability for immunodetection. These structures facilitate design of a biparatropic inhibitory nanobody with markedly improved sensitivity. Together, these results provide important insights into TREK channel gating and provide an alternative, more selective approach to modulation of K2P channel activity via their extracellular domains.


Subject(s)
Potassium Channels, Tandem Pore Domain , Single-Domain Antibodies , Potassium Channels, Tandem Pore Domain/metabolism , Single-Domain Antibodies/metabolism , Single-Domain Antibodies/immunology , Single-Domain Antibodies/chemistry , Humans , Crystallography, X-Ray , Animals , Cryoelectron Microscopy , HEK293 Cells , Models, Molecular
2.
Int J Mol Sci ; 25(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38732124

ABSTRACT

Oxytocin, a significant pleiotropic neuropeptide, regulates psychological stress adaptation and social communication, as well as peripheral actions, such as uterine contraction and milk ejection. Recently, a Japanese Kampo medicine called Kamikihito (KKT) has been reported to stimulate oxytocin neurons to induce oxytocin secretion. Two-pore-domain potassium channels (K2P) regulate the resting potential of excitable cells, and their inhibition results in accelerated depolarization that elicits neuronal and endocrine cell activation. We assessed the effects of KKT and 14 of its components on a specific K2P, the potassium channel subfamily K member 2 (TREK-1), which is predominantly expressed in oxytocin neurons in the central nervous system (CNS). KKT inhibited the activity of TREK-1 induced via the channel activator ML335. Six of the 14 components of KKT inhibited TREK-1 activity. Additionally, we identified that 22 of the 41 compounds in the six components exhibited TREK-1 inhibitory effects. In summary, several compounds included in KKT partially activated oxytocin neurons by inhibiting TREK-1. The pharmacological effects of KKT, including antistress effects, may be partially mediated through the oxytocin pathway.


Subject(s)
Neurons , Oxytocin , Potassium Channels, Tandem Pore Domain , Potassium Channels, Tandem Pore Domain/metabolism , Potassium Channels, Tandem Pore Domain/antagonists & inhibitors , Oxytocin/pharmacology , Oxytocin/metabolism , Neurons/metabolism , Neurons/drug effects , Animals , Humans , Medicine, Kampo , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Mice
3.
Aging (Albany NY) ; 16(9): 8086-8109, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38728245

ABSTRACT

BACKGROUND: Research has shown a connection between vasculogenic mimicry (VM) and cancer progression. However, the functions of genes related to VM in the emergence and progression of TNBC have not been completely elucidated. METHODS: A survival risk model was constructed by screening biomarkers using DESeq2 and WGCNA based on public TNBC transcriptome data. Furthermore, gene set enrichment analysis was performed, and tumor microenvironment and drug sensitivity were analyzed. The selected biomarkers were validated via quantitative PCR detection, immunohistochemical staining, and protein detection in breast cancer cell lines. Biomarkers related to the proliferation and migration of TNBC cells were validated via in vitro experiments. RESULTS: The findings revealed that 235 target genes were connected to the complement and coagulation cascade pathways. The risk score was constructed using KCND2, NRP1, and VSTM4. The prognosis model using the risk score and pathological T stage yielded good validation results. The clinical risk of TNBC was associated with the angiogenesis signaling pathway, and the low-risk group exhibited better sensitivity to immunotherapy. Quantitative PCR and immunohistochemistry indicated that the expression levels of KCND2 in TNBC tissues were higher than those in adjacent nontumor tissues. In the TNBC cell line, the protein expression of KCND2 was increased. Knockdown of KCND2 and VSTM4 inhibited the proliferation and migration of TNBC cells in vitro. CONCLUSIONS: In this study, three VM-related biomarkers were identified, including KCND2, NRP1, and VSTM4. These findings are likely to aid in deepening our understanding of the regulatory mechanism of VM in TNBC.


Subject(s)
Biomarkers, Tumor , Neovascularization, Pathologic , Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/metabolism , Female , Prognosis , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/metabolism , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Tumor Microenvironment/genetics , Cell Proliferation/genetics , Neuropilin-1/genetics , Neuropilin-1/metabolism , Cell Movement/genetics , Transcriptome , Potassium Channels, Tandem Pore Domain/genetics , Potassium Channels, Tandem Pore Domain/metabolism
4.
Nat Commun ; 15(1): 4628, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38821927

ABSTRACT

The two-pore domain potassium (K2P) channels TREK-1 and TREK-2 link neuronal excitability to a variety of stimuli including mechanical force, lipids, temperature and phosphorylation. This regulation involves the C-terminus as a polymodal stimulus sensor and the selectivity filter (SF) as channel gate. Using crystallographic up- and down-state structures of TREK-2 as a template for full atomistic molecular dynamics (MD) simulations, we reveal that the SF in down-state undergoes inactivation via conformational changes, while the up-state structure maintains a stable and conductive SF. This suggests an atomistic mechanism for the low channel activity previously assigned to the down state, but not evident from the crystal structure. Furthermore, experimentally by using (de-)phosphorylation mimics and chemically attaching lipid tethers to the proximal C-terminus (pCt), we confirm the hypothesis that moving the pCt towards the membrane induces the up-state. Based on MD simulations, we propose two gating pathways by which movement of the pCt controls the stability (i.e., conductivity) of the filter gate. Together, these findings provide atomistic insights into the SF gating mechanism and the physiological regulation of TREK channels by phosphorylation.


Subject(s)
Ion Channel Gating , Molecular Dynamics Simulation , Potassium Channels, Tandem Pore Domain , Potassium Channels, Tandem Pore Domain/metabolism , Potassium Channels, Tandem Pore Domain/chemistry , Potassium Channels, Tandem Pore Domain/genetics , Humans , Phosphorylation , Protein Domains , Cytosol/metabolism , Animals , HEK293 Cells , Crystallography, X-Ray
7.
Proc Natl Acad Sci U S A ; 121(17): e2320345121, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38630723

ABSTRACT

The TWIK-related acid-sensitive K+ channel 3 (TASK3) belongs to the two-pore domain (K2P) potassium channel family, which regulates cell excitability by mediating a constitutive "leak" potassium efflux in the nervous system. Extracellular acidification inhibits TASK3 channel, but the molecular mechanism by which channel inactivation is coupled to pH decrease remains unclear. Here, we report the cryo-electron microscopy structures of human TASK3 at neutral and acidic pH. Structural comparison revealed selectivity filter (SF) rearrangements upon acidification, characteristic of C-type inactivation, but with a unique structural basis. The extracellular mouth of the SF was prominently dilated and simultaneously blocked by a hydrophobic gate. His98 protonation shifted the conformational equilibrium between the conductive and C-type inactivated SF toward the latter by engaging a cation-π interaction with Trp78, consistent with molecular dynamics simulations and electrophysiological experiments. Our work illustrated how TASK3 is gated in response to extracellular pH change and implies how physiological stimuli might directly modulate the C-type gating of K2P channels.


Subject(s)
Potassium Channels, Tandem Pore Domain , Protons , Humans , Cryoelectron Microscopy , Molecular Dynamics Simulation , Potassium Channels, Tandem Pore Domain/metabolism
8.
Eur J Med Res ; 29(1): 257, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38689322

ABSTRACT

BACKGROUND: This study aimed to explore the expression, molecular mechanism and its biological function of potassium two pore domain channel subfamily K member 1 (KCNK1) in bladder cancer (BC). METHODS: We integrated large numbers of external samples (n = 1486) to assess KCNK1 mRNA expression levels and collected in-house samples (n = 245) for immunohistochemistry (IHC) experiments to validate at the KCNK1 protein level. Single-cell RNA sequencing (scRNA-seq) analysis was performed to further assess KCNK1 expression and cellular communication. The transcriptional regulatory mechanisms of KCNK1 expression were explored by ChIP-seq, ATAC-seq and ChIA-PET data. Highly expressed co-expressed genes (HECEGs) of KCNK1 were used to explore potential signalling pathways. Furthermore, the immunoassay, clinical significance and molecular docking of KCNK1 were calculated. RESULTS: KCNK1 mRNA was significantly overexpressed in BC (SMD = 0.58, 95% CI [0.05; 1.11]), validated at the protein level (p < 0.0001). Upregulated KCNK1 mRNA exhibited highly distinguishing ability between BC and control samples (AUC = 0.82 [0.78-0.85]). Further, scRNA-seq analysis revealed that KCNK1 expression was predominantly clustered in BC epithelial cells and tended to increase with cellular differentiation. BC epithelial cells were involved in cellular communication mainly through the MK signalling pathway. Secondly, the KCNK1 transcription start site (TSS) showed promoter-enhancer interactions in three-dimensional space, while being transcriptionally regulated by GRHL2 and FOXA1. Most of the KCNK1 HECEGs were enriched in cell cycle-related signalling pathways. KCNK1 was mainly involved in cellular metabolism-related pathways and regulated cell membrane potassium channel activity. KCNK1 expression was associated with the level of infiltration of various immune cells. Immunotherapy and chemotherapy (docetaxel, paclitaxel and vinblastine) were more effective in BC patients in the high KCNK1 expression group. KCNK1 expression correlated with age, pathology grade and pathologic_M in BC patients. CONCLUSIONS: KCNK1 was significantly overexpressed in BC. A complex and sophisticated three-dimensional spatial transcriptional regulatory network existed in the KCNK1 TSS and promoted the upregulated of KCNK1 expression. The high expression of KCNK1 might be involved in the cell cycle, cellular metabolism, and tumour microenvironment through the regulation of potassium channels, and ultimately contributed to the deterioration of BC.


Subject(s)
Gene Expression Regulation, Neoplastic , Potassium Channels, Tandem Pore Domain , Urinary Bladder Neoplasms , Humans , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Molecular Docking Simulation , Potassium Channels, Tandem Pore Domain/genetics , Potassium Channels, Tandem Pore Domain/metabolism , Signal Transduction , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/metabolism , Urinary Bladder Neoplasms/pathology
9.
Am J Physiol Renal Physiol ; 326(6): F957-F970, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38601986

ABSTRACT

Stretch-activated two-pore domain K+ (K2P) channels play important roles in many visceral organs, including the urinary bladder. The TWIK-related K+ channel TREK-1 is the predominantly expressed K2P channel in the urinary bladder of humans and rodents. Downregulation of TREK-1 channels was observed in the urinary bladder of patients with detrusor overactivity, suggesting their involvement in the pathogenesis of voiding dysfunction. This study aimed to characterize the long-term effects of TREK-1 on bladder function with global and smooth muscle-specific TREK-1 knockout (KO) mice. Bladder morphology, bladder smooth muscle (BSM) contractility, and voiding patterns were evaluated up to 12 mo of age. Both sexes were included in this study to probe the potential sex differences. Smooth muscle-specific TREK-1 KO mice were used to distinguish the effects of TREK-1 downregulation in BSM from the neural pathways involved in the control of bladder contraction and relaxation. TREK-1 KO mice developed enlarged urinary bladders (by 60.0% for males and by 45.1% for females at 6 mo; P < 0.001 compared with the age-matched control group) and had a significantly increased bladder capacity (by 137.7% at 12 mo; P < 0.0001) and compliance (by 73.4% at 12 mo; P < 0.0001). Bladder strips isolated from TREK-1 KO mice exhibited decreased contractility (peak force after KCl at 6 mo was 1.6 ± 0.7 N/g compared with 3.4 ± 2.0 N/g in the control group; P = 0.0005). The lack of TREK-1 channels exclusively in BSM did not replicate the bladder phenotype observed in TREK-1 KO mice, suggesting a strong neurogenic origin of TREK-1-related bladder dysfunction.NEW & NOTEWORTHY This study compared voiding function and bladder phenotypes in global and smooth muscle-specific TREK-1 KO mice. We found significant age-related changes in bladder contractility, suggesting that the lack of TREK-1 channel activity might contribute to age-related changes in bladder smooth muscle physiology.


Subject(s)
Hypertrophy , Mice, Knockout , Muscle Contraction , Muscle, Smooth , Potassium Channels, Tandem Pore Domain , Urinary Bladder , Animals , Potassium Channels, Tandem Pore Domain/genetics , Potassium Channels, Tandem Pore Domain/metabolism , Potassium Channels, Tandem Pore Domain/deficiency , Urinary Bladder/physiopathology , Urinary Bladder/metabolism , Urinary Bladder/pathology , Muscle, Smooth/metabolism , Muscle, Smooth/physiopathology , Muscle, Smooth/pathology , Male , Female , Aging/metabolism , Mice , Mice, Inbred C57BL , Age Factors , Urination
10.
Am J Physiol Cell Physiol ; 326(4): C1106-C1119, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38344766

ABSTRACT

Intrauterine infection during pregnancy can enhance uterine contractions. A two-pore K+ channel TREK1 is crucial for maintaining uterine quiescence and reducing contractility, with its properties regulated by pH changes in cell microenvironment. Meanwhile, the sodium hydrogen exchanger 1 (NHE1) plays a pivotal role in modulating cellular pH homeostasis, and its activation increases smooth muscle tension. By establishing an infected mouse model of Escherichia coli (E. coli) and lipopolysaccharide (LPS), we used Western blotting, real-time quantitative polymerase chain reaction, and immunofluorescence to detect changes of TREK1 and NHE1 expression in the myometrium, and isometric recording measured the uterus contraction. The NHE1 inhibitor cariporide was used to explore the effect of NHE1 on TREK1. Finally, cell contraction assay and siRNA transfection were performed to clarify the relationship between NHE1 and TREK1 in vitro. We found that the uterine contraction was notably enhanced in infected mice with E. coli and LPS administration. Meanwhile, TREK1 expression was reduced, whereas NHE1 expression was upregulated in infected mice. Cariporide alleviated the increased uterine contraction and promoted myometrium TREK1 expression in LPS-injected mice. Furthermore, suppression of NHE1 with siRNA transfection inhibited the contractility of uterine smooth muscle cells and activated the TREK1. Altogether, our findings indicate that infection increases the uterine contraction by downregulating myometrium TREK1 in mice, and the inhibition of TREK1 is attributed to the activation of NHE1.NEW & NOTEWORTHY Present work found that infection during pregnancy will increase myometrium contraction. Infection downregulated NHE1 and followed TREK1 expression and activation decrease in myometrium, resulting in increased myometrium contraction.


Subject(s)
Guanidines , Lipopolysaccharides , Myometrium , Potassium Channels, Tandem Pore Domain , Sodium-Hydrogen Exchanger 1 , Sulfones , Animals , Female , Mice , Pregnancy , Escherichia coli , Lipopolysaccharides/toxicity , Myometrium/metabolism , RNA, Small Interfering/metabolism , Uterine Contraction/physiology , Potassium Channels, Tandem Pore Domain/metabolism , Sodium-Hydrogen Exchanger 1/metabolism
11.
Invest Ophthalmol Vis Sci ; 65(1): 34, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38236186

ABSTRACT

Purpose: The purpose of this study was to elucidate the involvement of potassium two pore domain channel subfamily K member 5 (KCNK5)-mediated potassium efflux in the pathogenesis of dry eye and to unravel the underlying molecular mechanisms. Methods: To induce experimental dry eye in adult wild-type C57BL/6 mice, scopolamine was administered via subcutaneous injection, and the mice were subjected to desiccating stress. To create an in vitro model of dry eye, desiccation stress was applied to the human corneal epithelial cell line (HCE-T). Intracellular potassium concentration was quantified using inductively coupled plasma mass spectrometry. Cellular death was assessed through lactate dehydrogenase assays. Gene expression profiling was conducted through both RNA sequencing and quantitative real-time PCR. Protein analysis was carried out through Western blotting and immunofluorescence staining. Assessment of the corneal epithelial defect area was conducted through fluorescein sodium staining. Tear secretion was quantified using the phenol red cotton thread method. Results: Potassium efflux was observed to further facilitate corneal epithelial pyroptosis. KCNK5 exhibited upregulation in both in vivo and in vitro models of dry eye. The overexpression of KCNK5 was observed to induce potassium efflux and activate the NLR family pyrin domain containing 3 (NLRP3) inflammasome-mediated pyroptosis in vitro. Silencing KCNK5 effectively mitigated pyroptosis in dry eye. Additionally, the overexpression of KCNK5 results in the downregulation of TNF superfamily member 10 (TNFSF10) and subsequent impairment of autophagy. TNFSF10 supplementation could promote autophagy and mitigate pyroptosis in dry eye. Conclusions: The upregulation of KCNK5 mediates TNFSF10 to impair autophagy and induce pyroptosis in dry eye. Consequently, targeting KCNK5 may represent a novel and promising approach to therapeutic intervention in the management of dry eye.


Subject(s)
Dry Eye Syndromes , Potassium Channels, Tandem Pore Domain , TNF-Related Apoptosis-Inducing Ligand , Animals , Humans , Mice , Autophagy , Dry Eye Syndromes/metabolism , Epithelial Cells , Mice, Inbred C57BL , Potassium Channels, Tandem Pore Domain/metabolism , Pyroptosis , TNF-Related Apoptosis-Inducing Ligand/metabolism
12.
Am J Physiol Lung Cell Mol Physiol ; 326(3): L367-L376, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38252657

ABSTRACT

Because of the importance of potassium efflux in inflammasome activation, we investigated the role of the two-pore potassium (K2P) channel TREK-1 in macrophage inflammasome activity. Using primary alveolar macrophages (AMs) and bone marrow-derived macrophages (BMDMs) from wild-type (wt) and TREK-1-/- mice, we measured responses to inflammasome priming [using lipopolysaccharide (LPS)] and activation (LPS + ATP). We measured IL-1ß, caspase-1, and NLRP3 via ELISA and Western blot. A membrane-permeable potassium indicator was used to measure potassium efflux during ATP exposure, and a fluorescence-based assay was used to assess changes in membrane potential. Inflammasome activation induced by LPS + ATP increased IL-1ß secretion in wt AMs, whereas activation was significantly reduced in TREK-1-/- AMs. Priming of BMDMs using LPS was not affected by either genetic deficiency or pharmacological inhibition of TREK-1 with Spadin. Cleavage of caspase-1 following LPS + ATP treatment was significantly reduced in TREK-1-/- BMDMs. The intracellular potassium concentration in LPS-primed wt BMDMs was significantly lower compared with TREK-1-/- BMDMs or wt BMDMs treated with Spadin. Conversely, activation of TREK-1 with BL1249 caused a decrease in intracellular potassium in wt BMDMs. Treatment of LPS-primed BMDMs with ATP caused a rapid reduction in intracellular potassium levels, with the largest change observed in TREK-1-/- BMDMs. Intracellular K+ changes were associated with changes in the plasma membrane potential (Em), as evidenced by a more depolarized Em in TREK-1-/- BMDMs compared with wt, and Em hyperpolarization upon TREK-1 channel opening with BL1249. These results suggest that TREK-1 is an important regulator of NLRP3 inflammasome activation in macrophages.NEW & NOTEWORTHY Because of the importance of potassium efflux in inflammasome activation, we investigated the role of the two-pore potassium (K2P) channel TREK-1 in macrophage inflammasome activity. Using primary alveolar macrophages and bone marrow-derived macrophages from wild-type and TREK-1-/- mice, we measured responses to inflammasome priming (using LPS) and activation (LPS + ATP). Our results suggest that TREK-1 is an important regulator of NLRP3 inflammasome activation in macrophages.


Subject(s)
Inflammasomes , Potassium Channels, Tandem Pore Domain , Tetrahydronaphthalenes , Tetrazoles , Animals , Mice , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Potassium/metabolism , Lipopolysaccharides/pharmacology , Lipopolysaccharides/metabolism , Mice, Knockout , Potassium Channels, Tandem Pore Domain/genetics , Potassium Channels, Tandem Pore Domain/metabolism , Macrophages/metabolism , Caspase 1/metabolism , Adenosine Triphosphate/pharmacology , Adenosine Triphosphate/metabolism , Interleukin-1beta/metabolism
13.
Neurosci Lett ; 821: 137613, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38157928

ABSTRACT

Increased concentrations of lactate (15-30 mM) are associated with and found to be neuroprotective in various brain pathophysiology. In our earlier studies we showed that high levels of lactate can increase TREK1 channel activity and expression within 1 h. TREK1 channels are two pore domain leak potassium ion channels that are upregulated during cerebral ischemia, epilepsy and other brain pathologies. They play a prominent neuroprotective role against excitotoxicity. Although it has been previously shown that chronic application of lactate (6 h) causes increased gene transcription and protein expression, we observe clustering of TREK1 channels that is dependent on time of exposure (3-6 h) and concentration of lactate (15-30 mM). Using immunofluorescence techniques and image analysis, we show that the clustering of TREK1 channels is dependent on the actin cytoskeletal network of the astrocytes. Clustering of TREK1 channels can augment astrocytic functions during pathophysiological conditions and have significant implications in lactate mediated neuroprotection.


Subject(s)
Astrocytes , Hippocampus , Lactic Acid , Neuroprotective Agents , Potassium Channels, Tandem Pore Domain , Animals , Rats , Astrocytes/drug effects , Astrocytes/metabolism , Brain Ischemia/metabolism , Hippocampus/drug effects , Hippocampus/metabolism , Lactic Acid/pharmacology , Potassium Channels, Tandem Pore Domain/genetics , Potassium Channels, Tandem Pore Domain/metabolism , Neuroprotective Agents/pharmacology , Rats, Wistar
14.
J Mol Cell Cardiol ; 184: 26-36, 2023 11.
Article in English | MEDLINE | ID: mdl-37793594

ABSTRACT

RATIONALE: The neurokinin-III receptor was recently shown to regulate atrial cardiomyocyte excitability by inhibiting atrial background potassium currents. TASK-1 (hK2P3.1) two-pore-domain potassium channels, which are expressed atrial-specifically in the human heart, contribute significantly to atrial background potassium currents. As TASK-1 channels are regulated by a variety of intracellular signalling cascades, they represent a promising candidate for mediating the electrophysiological effects of the Gq-coupled neurokinin-III receptor. OBJECTIVE: To investigate whether TASK-1 channels mediate the neurokinin-III receptor activation induced effects on atrial electrophysiology. METHODS AND RESULTS: In Xenopus laevis oocytes, heterologously expressing neurokinin-III receptor and TASK-1, administration of the endogenous neurokinin-III receptor ligands substance P or neurokinin B resulted in a strong TASK-1 current inhibition. This could be reproduced by application of the high affinity neurokinin-III receptor agonist senktide. Moreover, preincubation with the neurokinin-III receptor antagonist osanetant blunted the effect of senktide. Mutagenesis studies employing TASK-1 channel constructs which lack either protein kinase C (PKC) phosphorylation sites or the domain which is regulating the diacyl glycerol (DAG) sensitivity domain of TASK-1 revealed a protein kinase C independent mechanism of TASK-1 current inhibition: upon neurokinin-III receptor activation TASK-1 channels are blocked in a DAG-dependent fashion. Finally, effects of senktide on atrial TASK-1 currents could be reproduced in patch-clamp measurements, performed on isolated human atrial cardiomyocytes. CONCLUSIONS: Heterologously expressed human TASK-1 channels are inhibited by neurokinin-III receptor activation in a DAG dependent fashion. Patch-clamp measurements, performed on human atrial cardiomyocytes suggest that the atrial-specific effects of neurokinin-III receptor activation on cardiac excitability are predominantly mediated via TASK-1 currents.


Subject(s)
Atrial Fibrillation , Potassium Channels, Tandem Pore Domain , Humans , Animals , Atrial Fibrillation/metabolism , Heart Atria/metabolism , Signal Transduction , Protein Kinase C/metabolism , Potassium/metabolism , Xenopus laevis/metabolism , Oocytes/metabolism , Potassium Channels, Tandem Pore Domain/genetics , Potassium Channels, Tandem Pore Domain/metabolism
15.
J Physiol ; 601(17): 3717-3737, 2023 09.
Article in English | MEDLINE | ID: mdl-37477289

ABSTRACT

Potassium channel subfamily K member 3 (KCNK3), encoded by the KCNK3 gene, is part of the two-pore domain potassium channel family, constitutively active at resting membrane potentials in excitable cells, including smooth muscle and cardiac cells. Several physiological and pharmacological mediators, such as intracellular signalling pathways, extracellular pH, hypoxia and anaesthetics, regulate KCNK3 channel function. Recent studies show that modulation of KCNK3 channel expression and function strongly influences pulmonary vascular cell and cardiomyocyte function. The altered activity of KCNK3 in pathological situations such as atrial fibrillation, pulmonary arterial hypertension and right ventricular dysfunction demonstrates the crucial role of KCNK3 in cardiovascular homeostasis. Furthermore, loss of function variants of KCNK3 have been identified in patients suffering from pulmonary arterial hypertension and atrial fibrillation. This review focuses on current knowledge of the role of the KCNK3 channel in pulmonary circulation and the heart, in healthy and pathological conditions.


Subject(s)
Atrial Fibrillation , Potassium Channels, Tandem Pore Domain , Pulmonary Arterial Hypertension , Humans , Pulmonary Circulation , Atrial Fibrillation/genetics , Atrial Fibrillation/metabolism , Membrane Potentials , Lung/metabolism , Potassium Channels, Tandem Pore Domain/metabolism
16.
Biomed Pharmacother ; 165: 115139, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37454597

ABSTRACT

TREK-1 (TWIK-related potassium channel-1) is a subunit of the two-pore domain potassium (K2p) channel and is widely expressed in the brain. TREK-1 knockout mice were shown to have antidepressant-like effects, providing evidence for the channel's potential as a therapeutic target. However, currently there is no good pharmacological inhibitor specifically targeting TREK-1 containing K2p channels that also displays similar antidepressant-like effects. Here, we sought to find selective and potent inhibitors for TREK-1 related dimers both in vitro and in vivo. We synthesized and evaluated 2-hydroxy-3-phenoxypropyl piperidine derivatives yielding a library from which many TREK-1 targeting candidates emerged. Among these, hydroxyl-phenyl- (2a), piperidino- (2g), and pyrrolidino- (2h) piperidinyl substituted compounds showed high potencies to TREK-1 homodimers with significant antidepressant-like effects in forced swim test and tail suspension test. Interestingly, these compounds were found to have high potencies to TWIK-1/TREK-1 heterodimers. Contrastingly, difluoropiperidinyl-4-fluorophenoxy (3e) and 4-hydroxyphenyl-piperidinyl-4-fluorophenoxy (3j) compounds had high potencies to TREK-1 homodimer but lower potency to TWIK-1/TREK-1 heterodimers without significant antidepressant-like effects. We observed positive correlation between inhibition potency to TWIK-1/TREK-1 and immobility time, and no correlation between inhibition potency to TREK-1 homodimer and immobility time. This was consistent with molecular docking simulations of selected compounds to TREK-1 homodimeric and TWIK-1/TREK-1 heterodimeric models. Existing antidepressant fluoxetine was also found to potently inhibit TWIK-1/TREK-1 heterodimers. Our study reveals novel potent TWIK-1/TREK-1 inhibitors 2a, 2g, and 2h as potential antidepressants and suggest that the TWIK-1/TREK-1 heterodimer could be a potential novel molecular therapeutic target for antidepressants.


Subject(s)
Potassium Channels, Tandem Pore Domain , Mice , Animals , Molecular Docking Simulation , Potassium Channels, Tandem Pore Domain/metabolism , Brain/metabolism , Antidepressive Agents/pharmacology , Mice, Knockout
17.
Cells ; 12(11)2023 05 29.
Article in English | MEDLINE | ID: mdl-37296621

ABSTRACT

K2P channels, also known as two-pore domain K+ channels, play a crucial role in maintaining the cell membrane potential and contributing to potassium homeostasis due to their leaky nature. The TREK, or tandem of pore domains in a weak inward rectifying K+ channel (TWIK)-related K+ channel, subfamily within the K2P family consists of mechanical channels regulated by various stimuli and binding proteins. Although TREK1 and TREK2 within the TREK subfamily share many similarities, ß-COP, which was previously known to bind to TREK1, exhibits a distinct binding pattern to other members of the TREK subfamily, including TREK2 and the TRAAK (TWIK-related acid-arachidonic activated K+ channel). In contrast to TREK1, ß-COP binds to the C-terminus of TREK2 and reduces its cell surface expression but does not bind to TRAAK. Furthermore, ß-COP cannot bind to TREK2 mutants with deletions or point mutations in the C-terminus and does not affect the surface expression of these TREK2 mutants. These results emphasize the unique role of ß-COP in regulating the surface expression of the TREK family.


Subject(s)
Potassium Channels, Tandem Pore Domain , Potassium Channels, Tandem Pore Domain/metabolism , Coatomer Protein/metabolism
18.
Front Biosci (Landmark Ed) ; 28(3): 51, 2023 03 15.
Article in English | MEDLINE | ID: mdl-37005754

ABSTRACT

BACKGROOUND: At low extracellular potassium ([K+]e) conditions, human cardiomyocytes can depolarize to -40 mV. This is closely related to hypokalemia-induced fatal cardiac arrhythmia. The underlying mechanism, however, is still not well understood. TWIK-1 channels are background K+ channels that are highly expressed in human cardiomyocytes. We previously reported that TWIK-1 channels changed ion selectivity and conducted leak Na+ currents at low [K+]e. Moreover, a specific threonine residue (Thr118) within the ion selectivity filter was responsible for this altered ion selectivity. METHODS: Patch clamp were used to investigate the effects of TWIK-1 channels on the membrane potentials of cardiomyocytes in response to low [K+]e. RESULTS: At 2.7 mM [K+]e and 1 mM [K+]e, both Chinese hamster ovary (CHO) cells and HL-1 cells ectopically expressed human TWIK-1 channels displayed inward leak Na+ currents and reconstitute depolarization of membrane potential. In contrast, cells ectopically expressed human TWIK-1-T118I mutant channels that remain high selectivity to K+ exhibited hyperpolarization of membrane potential. Furthermore, human iPSC-derived cardiomyocytes showed depolarization of membrane potential in response to 1 mM [K+]e, while the knockdown of TWIK-1 expression eliminated this phenomenon. CONCLUSIONS: These results demonstrate that leak Na+ currents conducted by TWIK-1 channels contribute to the depolarization of membrane potential induced by low [K+]e in human cardiomyocytes.


Subject(s)
Potassium Channels, Tandem Pore Domain , Cricetinae , Animals , Humans , CHO Cells , Potassium Channels, Tandem Pore Domain/genetics , Potassium Channels, Tandem Pore Domain/chemistry , Potassium Channels, Tandem Pore Domain/metabolism , Cricetulus , Myocytes, Cardiac/metabolism , Potassium/metabolism
19.
Int J Mol Sci ; 24(7)2023 Mar 27.
Article in English | MEDLINE | ID: mdl-37047271

ABSTRACT

Oligomeric ion channels are abundant in nature. However, the recombinant expression in cell culture-based systems remains tedious and challenging due to negative side effects, limiting the understanding of their role in health and disease. Accordingly, in this work, we demonstrate the cell-free synthesis (CFS) as an alternative platform to study the assembly of two-pore domain potassium channels (K2P) within endogenous endoplasmic reticulum-derived microsomes. Exploiting the open nature of CFS, we investigate the cotranslational translocation of TREK-2 into the microsomes and suggest a cotranslational assembly with typical single-channel behavior in planar lipid-bilayer electrophysiology. The heteromeric assembly of K2P channels is a contentious matter, accordingly we prove the successful assembly of TREK-2 with TWIK-1 using a biomolecular fluorescence complementation assay, Western blot analysis and autoradiography. The results demonstrate that TREK-2 homodimer assembly is the initial step, followed by heterodimer formation with the nascent TWIK-1, providing evidence of the intergroup heterodimerization of TREK-2 and TWIK-1 in eukaryotic CFS. Since K2P channels are involved in various pathophysiological conditions, including pain and nociception, CFS paves the way for in-depth functional studies and related pharmacological interventions. This study highlights the versatility of the eukaryotic CFS platform for investigating ion channel assembly in a native-like environment.


Subject(s)
Eukaryota , Potassium Channels, Tandem Pore Domain , Eukaryota/metabolism , Potassium Channels, Tandem Pore Domain/genetics , Potassium Channels, Tandem Pore Domain/metabolism , Cell-Free System/metabolism , Dimerization , Biological Assay
20.
J Biol Chem ; 299(6): 104737, 2023 06.
Article in English | MEDLINE | ID: mdl-37084812

ABSTRACT

TRESK (K2P18.1) possesses unique structural proportions within the K2P background potassium channel family. The previously described TRESK regulatory mechanisms are based on the long intracellular loop between the second and the third transmembrane segments (TMS). However, the functional significance of the exceptionally short intracellular C-terminal region (iCtr) following the fourth TMS has not yet been examined. In the present study, we investigated TRESK constructs modified at the iCtr by two-electrode voltage clamp and the newly developed epithelial sodium current ratio (ENaR) method in Xenopus oocytes. The ENaR method allowed the evaluation of channel activity by exclusively using electrophysiology and provided data that are otherwise not readily available under whole-cell conditions. TRESK homodimer was connected with two ENaC (epithelial Na+ channel) heterotrimers, and the Na+ current was measured as an internal reference, proportional to the number of channels in the plasma membrane. Modifications of TRESK iCtr resulted in diverse functional effects, indicating a complex contribution of this region to K+ channel activity. Mutations of positive residues in proximal iCtr locked TRESK in low activity, calcineurin-insensitive state, although this phosphatase binds to distant motifs in the loop region. Accordingly, mutations in proximal iCtr may prevent the transmission of modulation to the gating machinery. Replacing distal iCtr with a sequence designed to interact with the inner surface of the plasma membrane increased the activity of the channel to unprecedented levels, as indicated by ENaR and single channel measurements. In conclusion, the distal iCtr is a major positive determinant of TRESK function.


Subject(s)
Potassium Channels, Tandem Pore Domain , Cell Membrane , Epithelial Sodium Channels/genetics , Epithelial Sodium Channels/metabolism , Mutation , Oocytes/metabolism , Potassium Channels, Tandem Pore Domain/metabolism , Xenopus
SELECTION OF CITATIONS
SEARCH DETAIL
...