Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27.853
Filter
1.
Sci Rep ; 14(1): 15262, 2024 07 03.
Article in English | MEDLINE | ID: mdl-38961116

ABSTRACT

Infectious coryza (IC) is an acute upper respiratory disease of chicken caused by Avibacterium (A.) paragallinarum. This disease results in an increased culling rate in meat chicken and a marked decrease in egg production (10% to more than 40%) in laying and breeding hens. Vaccines were first used against IC and effectively controlled the disease. Nanotechnology provides an excellent way to develop a new generation of vaccines. NPs have been widely used in vaccine design as adjuvants and antigen delivery vehicles and as antibacterial agents; thus, they can be used as inactivators for bacterial culture. In this research, the antibacterial effects of several nanoparticles (NPs), such as silicon dioxide with chitosan (SiO2-CS), oleoyl-chitosan (O.CS), silicon dioxide (SiO2), and iron oxide (Fe3O4), on A. paragallinarum were studied. Additionally, different A. paragallinarum vaccines were made using the same nanomaterials at a concentration of 400 µg/ml to help control infectious coryza disease in chicken. A concentration of 400 µg/ml of all the NPs tested was the best concentration for the inactivation of A. paragallinarum. Additionally, this study showed that the infectious coryza vaccine adjuvanted with SiO2 NPs had the highest immune response, followed by the infectious coryza vaccine adjuvanted with Fe3O4 NPs, the infectious coryza vaccine adjuvanted with SiO2-CS NPs, and the infectious coryza vaccine adjuvanted with O.CS NPs in comparison with the infectious coryza vaccine adjuvanted with liquid paraffin (a commercial vaccine).


Subject(s)
Adjuvants, Immunologic , Chickens , Chitosan , Nanoparticles , Poultry Diseases , Animals , Chickens/immunology , Poultry Diseases/prevention & control , Poultry Diseases/immunology , Nanoparticles/chemistry , Chitosan/chemistry , Adjuvants, Immunologic/pharmacology , Bacterial Vaccines/immunology , Bacterial Vaccines/administration & dosage , Silicon Dioxide/chemistry , Adjuvants, Vaccine , Polymers/chemistry , Drug Carriers/chemistry , Pasteurellaceae/immunology
2.
Sci Rep ; 14(1): 15347, 2024 07 03.
Article in English | MEDLINE | ID: mdl-38961138

ABSTRACT

The escalating incidence of foodborne salmonellosis poses a significant global threat to food safety and public health. As antibiotic resistance in Salmonella continues to rise, there is growing interest in bacteriophages as potential alternatives. In this study, we isolated, characterized, and evaluated the biocontrol efficacy of lytic phage L223 in chicken meat. Phage L223 demonstrated robust stability across a broad range of temperatures (20-70 °C) and pH levels (2-11) and exhibited a restricted host range targeting Salmonella spp., notably Salmonella Typhimurium and Salmonella Enteritidis. Characterization of L223 revealed a short latent period of 30 min and a substantial burst size of 515 PFU/cell. Genomic analysis classified L223 within the Caudoviricetes class, Guernseyvirinae subfamily and Jerseyvirus genus, with a dsDNA genome size of 44,321 bp and 47.9% GC content, featuring 72 coding sequences devoid of antimicrobial resistance, virulence factors, toxins, and tRNA genes. Application of L223 significantly (p < 0.005) reduced Salmonella Typhimurium ATCC 14,028 counts by 1.24, 2.17, and 1.55 log CFU/piece after 2, 4, and 6 h of incubation, respectively, in experimentally contaminated chicken breast samples. These findings highlight the potential of Salmonella phage L223 as a promising biocontrol agent for mitigating Salmonella contamination in food products, emphasizing its relevance for enhancing food safety protocols.


Subject(s)
Chickens , Genome, Viral , Salmonella Phages , Animals , Salmonella Phages/genetics , Salmonella Phages/isolation & purification , Salmonella Phages/physiology , Chickens/microbiology , Genomics/methods , Salmonella/virology , Salmonella/genetics , Poultry/microbiology , Salmonella typhimurium/virology , Salmonella typhimurium/genetics , Host Specificity , Food Microbiology , Phenotype , Poultry Diseases/microbiology , Poultry Diseases/prevention & control , Poultry Diseases/virology
3.
Vet Q ; 44(1): 1-20, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38961536

ABSTRACT

Early nutritional management approach greatly impacts broilers' performance and resistance against coccidiosis. The current study explored the impact of post-hatch feeding with a combination of glutamine (Glut) and different levels of omega-3 on broiler chickens' growth performance, muscle building, intestinal barrier, antioxidant ability and protection against avian coccidiosis. A total of six hundred Cobb 500 was divided into six groups: first group (fed basal diet and unchallenged (control) and challenged (negative control, NC) groups were fed a basal diet without additives, and the other groups were infected with Eimeria spp and supplemented with 1.5% Glut alone or with three different levels of omega-3 (0.25, 0.5 and 1%) during the starter period. Notable improvement in body weight gain was observed in the group which fed basal diet supplemented with glut and 1% omega 3 even after coccidia infection (increased by 25% compared challenged group) while feed conversion ratio was restored to control. Myogeneis was enhanced in the group supplemented with Glut and omega-3 (upregulation of myogenin, MyoD, mechanistic target of rapamycin kinase and insulin like growth factor-1 and downregulating of myostatin genes). Groups supplemented with Glut and higher levels of omega-3 highly expressed occluding, mucin-2, junctional Adhesion Molecule 2, b-defensin-1 and cathelicidins-2 genes. Group fed 1% Glut + omega-3 showed an increased total antioxidant capacity and glutathione peroxidase and super oxide dismutase enzymes activities with reduced levels of malondialdehyde, reactive oxygen species and H2O2. Post-infection, dietary Glut and 1% omega-3 increased intestinal interleukin-10 (IL) and secretory immunoglobulin-A and serum lysozyme, while decreased the elevated inflammatory mediators comprising interleukin IL-6, tumor necrosis factor-alpha, nitric oxide (NO) and inducible NO synthase. Fecal oocyst excretion and lesions score severity were lowered in the group fed 1% Glut and omega 3. Based on these findings, dietary Glut and omega-3 supplementation augmented restored overall broilers' performance after coccidial challenge.


Subject(s)
Animal Feed , Antioxidants , Chickens , Coccidiosis , Diet , Dietary Supplements , Eimeria , Fatty Acids, Omega-3 , Glutamine , Poultry Diseases , Animals , Coccidiosis/veterinary , Coccidiosis/prevention & control , Animal Feed/analysis , Glutamine/administration & dosage , Glutamine/pharmacology , Poultry Diseases/prevention & control , Poultry Diseases/parasitology , Antioxidants/metabolism , Eimeria/physiology , Fatty Acids, Omega-3/administration & dosage , Fatty Acids, Omega-3/pharmacology , Diet/veterinary , Intestines/drug effects , Intestines/parasitology , Animal Nutritional Physiological Phenomena
4.
Vet Med Sci ; 10(4): e1529, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38946179

ABSTRACT

BACKGROUND: Salmonellosis is one of the most common food-borne diseases in industrialised and developing countries. In recent year, an increase in antimicrobial resistance among different Salmonella serotypes has been observed. OBJECTIVE: A cross-sectional study was conducted to assess the prevalence and antimicrobial susceptibility of Salmonella isolated from local chicken eggs in four selected towns in Ethiopia. METHODS: A total of 115 eggs were examined to detect Salmonella by using standard microbiological methods. The susceptibilities of the isolates to nine antimicrobials were tested by the Kirby-Bauer disk diffusion method. RESULT: The study revealed that of the 115 eggs examined, 22 (19.1%) were positive for Salmonella of which 14 (12.2%) and 8 (7%) of the isolates were from shells and contents, respectively. The occurrence of Salmonella in egg shells and content and between different altitudes did not differ significantly (p > 0.05). Most isolates were resistant to more than three antimicrobials with a high resistance to kanamycin, ampicillin, nalidixic acid, cotrimoxazole, oxytetracycline and chloramphenicol. CONCLUSION: The results indicate the potential importance of local chicken eggs as source of multiple antimicrobial-resistant salmonellae and the need for proper cooking before consumption. Further studies are required to describe the epidemiology of Salmonella in various agroclimatic zones of Ethiopia.


Subject(s)
Anti-Bacterial Agents , Chickens , Poultry Diseases , Salmonella , Animals , Ethiopia/epidemiology , Salmonella/drug effects , Salmonella/isolation & purification , Prevalence , Cross-Sectional Studies , Anti-Bacterial Agents/pharmacology , Poultry Diseases/microbiology , Poultry Diseases/epidemiology , Eggs/microbiology , Drug Resistance, Bacterial , Salmonella Infections, Animal/epidemiology , Salmonella Infections, Animal/microbiology , Food Microbiology
5.
Acta Vet Scand ; 66(1): 27, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956671

ABSTRACT

BACKGROUND: Heterakis gallinarum (H. gallinarum) is a common poultry parasite that can be found in the ceca of many gallinaceous bird species, causing minor pathology and reduced weight gain. Most infections go unnoticed in commercial flocks due to the dependence on fecal egg counts, which are prone to false-negative diagnoses. Furthermore, there is a lack of research on gastrointestinal nematodes that use molecular identification methods, which could be essential for rapid diagnosis and developing efficient control approaches. As a result, the study aimed to look at the cause of mortality in layer chickens induced by H. gallinarum in Egyptian poultry farms using morphological, ultrastructural, and molecular characterization. Histopathological, immunohistochemical, and cell-mediated immune responses from damaged cecal tissues were also examined. RESULTS: Seventy bird samples from ten-layer flocks of different breeds (Native, white, and brown layers) suffering from diarrhea, decreased egg output, and emaciation were collected. Cecal samples were collected from affected and non-affected birds and were examined for parasitic diseases using light and a scanning electron microscope. The mitochondrial cytochrome oxidase 1 (COX1) gene was used to characterize H. gallinarum. Our results showed that the collected nematodal worms were identified as H. gallinarum (male and female), further confirmed by COX1 gene amplification and sequence alignment. Gene expression analysis of the inflammatory markers in infected tissues showed a significant up-regulation of IL-2, IFN-γ, TLR-4, and IL-1ß and a significant down-regulation of the anti-inflammatory IL-10. The mRNA level of the apoptotic cas-3 revealed apoptotic activity among the H. gallinarum samples compared to the control group. CONCLUSIONS: Our results implemented the use of molecular methods for the diagnosis of Heterakis, and this is the first report showing the tissue immune response following infection in layers: upregulation of IL-1ß, IFN-γ, Il-2, and TLR-4, while down-regulation of anti-inflammatory IL-10 in cecal tissue, Cas-3 apoptotic activity and Nuclear factor-κB (NF-κB)activity with immunophenotyping of T-cells in Heterakis infected tissue.


Subject(s)
Cecum , Chickens , Poultry Diseases , Typhlitis , Animals , Poultry Diseases/parasitology , Poultry Diseases/immunology , Poultry Diseases/pathology , Typhlitis/veterinary , Typhlitis/parasitology , Typhlitis/pathology , Cecum/parasitology , Cecum/pathology , Female , Immunity, Cellular , Ascaridida Infections/veterinary , Ascaridida Infections/parasitology , Ascaridoidea , Egypt
6.
BMC Microbiol ; 24(1): 248, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38971718

ABSTRACT

BACKGROUND: The usage of fluoroquinolones in Norwegian livestock production is very low, including in broiler production. Historically, quinolone-resistant Escherichia coli (QREC) isolated from Norwegian production animals rarely occur. However, with the introduction of a selective screening method for QREC in the Norwegian monitoring programme for antimicrobial resistance in the veterinary sector in 2014; 89.5% of broiler caecal samples and 70.7% of broiler meat samples were positive. This triggered the concern if there could be possible links between broiler and human reservoirs of QREC. We are addressing this by characterizing genomes of QREC from humans (healthy carriers and patients) and broiler isolates (meat and caecum). RESULTS: The most frequent mechanism for quinolone resistance in both broiler and human E. coli isolates were mutations in the chromosomally located gyrA and parC genes, although plasmid mediated quinolone resistance (PMQR) was also identified. There was some relatedness of the isolates within human and broiler groups, but little between these two groups. Further, some overlap was seen for isolates with the same sequence type isolated from broiler and humans, but overall, the SNP distance was high. CONCLUSION: Based on data from this study, QREC from broiler makes a limited contribution to the incidence of QREC in humans in Norway.


Subject(s)
Anti-Bacterial Agents , Chickens , Drug Resistance, Bacterial , Escherichia coli Infections , Escherichia coli , Quinolones , Animals , Chickens/microbiology , Escherichia coli/genetics , Escherichia coli/drug effects , Escherichia coli/isolation & purification , Humans , Norway , Escherichia coli Infections/veterinary , Escherichia coli Infections/microbiology , Drug Resistance, Bacterial/genetics , Quinolones/pharmacology , Anti-Bacterial Agents/pharmacology , Genomics , Plasmids/genetics , Poultry Diseases/microbiology , Microbial Sensitivity Tests , Genome, Bacterial/genetics , DNA Gyrase/genetics , DNA Topoisomerase IV/genetics , Meat/microbiology , Mutation , Escherichia coli Proteins/genetics , Cecum/microbiology
7.
J Gen Virol ; 105(7)2024 Jul.
Article in English | MEDLINE | ID: mdl-38980150

ABSTRACT

Between 2013 and 2017, the A/Anhui/1/13-lineage (H7N9) low-pathogenicity avian influenza virus (LPAIV) was epizootic in chickens in China, causing mild disease, with 616 fatal human cases. Despite poultry vaccination, H7N9 has not been eradicated. Previously, we demonstrated increased pathogenesis in turkeys infected with H7N9, correlating with the emergence of the L217Q (L226Q H3 numbering) polymorphism in the haemagglutinin (HA) protein. A Q217-containing virus also arose and is now dominant in China following vaccination. We compared infection and transmission of this Q217-containing 'turkey-adapted' (ty-ad) isolate alongside the H7N9 (L217) wild-type (wt) virus in different poultry species and investigated the zoonotic potential in the ferret model. Both wt and ty-ad viruses demonstrated similar shedding and transmission in turkeys and chickens. However, the ty-ad virus was significantly more pathogenic than the wt virus in turkeys but not in chickens, causing 100 and 33% mortality in turkeys respectively. Expanded tissue tropism was seen for the ty-ad virus in turkeys but not in chickens, yet the viral cell receptor distribution was broadly similar in the visceral organs of both species. The ty-ad virus required exogenous trypsin for in vitro replication yet had increased replication in primary avian cells. Replication was comparable in mammalian cells, and the ty-ad virus replicated successfully in ferrets. The L217Q polymorphism also affected antigenicity. Therefore, H7N9 infection in turkeys can generate novel variants with increased risk through altered pathogenicity and potential HA antigenic escape. These findings emphasize the requirement for enhanced surveillance and understanding of A/Anhui/1/13-lineage viruses and their risk to different species.


Subject(s)
Chickens , Ferrets , Influenza A Virus, H7N9 Subtype , Influenza in Birds , Turkeys , Animals , Turkeys/virology , Influenza in Birds/virology , Influenza in Birds/transmission , Influenza A Virus, H7N9 Subtype/genetics , Influenza A Virus, H7N9 Subtype/pathogenicity , Chickens/virology , Virulence , China/epidemiology , Poultry Diseases/virology , Poultry Diseases/transmission , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Humans , Virus Shedding , Virus Replication , Zoonoses/virology , Influenza, Human/virology , Influenza, Human/transmission
8.
Res Vet Sci ; 176: 105341, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38963992

ABSTRACT

Recently, an increased number of reports have described pathogens of animal origin that cause a variety of infections and a rise in their transmission to humans. Streptococcus gallolyticus, a member of the Streptococcus bovis/Streptococcus equinus complex (SBSEC), is one of these pathogens and infects a wide range of hosts from mammals to poultry and has a broad functionality ranging from pathogenicity to food fermentation. As S. gallolyticus causes complications including bacteremia, infective endocarditis, and colorectal malignancy in humans, it is important to investigate its occurrence in various hosts, including geese, to prevent potential zoonotic transmissions. This study aimed to investigate the presence of S. gallolyticus in the droppings of clinically healthy and diarrheic geese, which were raised intensively and semi-intensively, by the in vitro culture method, characterize the isolates recovered by PCR and sequence-based molecular methods and determine their antibiotic susceptibility by the disk diffusion and gradient test methods. For this purpose, 150 samples of fresh goose droppings were used. Culture positivity for S. gallolyticus was determined as 8% (12/150). PCR analysis identified 54.55% (n = 6) of the isolates as S. gallolyticus subsp. gallolyticus and 45.45% (n = 5) as S. gallolyticus subsp. pasteurianus. Following the 16S rRNA sequence and ERIC-PCR analyses, S. gallolyticus subspecies exhibited identical cluster and band profiles that could be easily distinguished from each other and were clonally identified. High rates of susceptibility to florfenicol, penicillin, rifampicin, and vancomycin were detected among the isolates, regardless of the subspecies diversity. Both subspecies showed high levels of resistance to bacitracin, clindamycin, doxycycline, tetracycline, trimethoprim-sulfamethoxazole, and erythromycin and multiple MDR profiles, indicating their potential to become superbugs. This first report from Türkiye demonstrates the occurrence of the S. gallolyticus subspecies in geese. In view of the recent increase of geese production and the consumption of goose meat in Türkiye, the occurrence of S. gallolyticus in geese should not be ignored to prevent zoonotic transmission.


Subject(s)
Disease Reservoirs , Geese , Poultry Diseases , Streptococcal Infections , Streptococcus gallolyticus , Animals , Geese/microbiology , Streptococcus gallolyticus/genetics , Streptococcal Infections/veterinary , Streptococcal Infections/microbiology , Streptococcal Infections/transmission , Poultry Diseases/microbiology , Poultry Diseases/transmission , Disease Reservoirs/microbiology , Disease Reservoirs/veterinary , Colonic Neoplasms/microbiology , Colonic Neoplasms/veterinary , Humans , Feces/microbiology , Anti-Bacterial Agents/pharmacology
9.
Res Vet Sci ; 176: 105349, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38968647

ABSTRACT

Fowl adenovirus serotype 4 (FAdV-4) is the main pathogen of the acute infectious disease hepatitis-hydropericardium syndrome (HHS). Previous studies have focused on the mechanisms of FAdV-4 caused liver injury, while studies revealing potential mechanisms of inflammatory injury in FAdV-4-infected chicken cardiac cells remain scare. Here we found that FAdV-4 successfully infected chicken embryonic cardiac fibroblasts (CECF) cells in vitro and significantly upregulated production of inflammatory cytokines including IL-1ß, IL-6, IL-8, and TNF-α, suggesting induction of a strong inflammatory response. Mechanistically, FAdV-4 infection increased expression of phosphorylated Akt in a time-dependent manner, while phosphorylation of Akt and production of pro-inflammatory cytokines IL-1ß, IL-6, IL-8, and TNF-α were greatly reduced in FAdV-4-infected CECF cells after treatment with LY294002, a potent inhibitor of PI3K, indicating that the inflammatory response induced by FAdV-4 infection is mediated by the PI3K/Akt signaling pathway. Furthermore, FAdV-4 infection increased expression of phosphorylated IκBα, a recognized indicator of NF-κB activation, and treatment with the BAY11-7082, a selective IκBα phosphorylation and NF-κB inhibitor, significantly reduced IκBα phosphorylation and inflammatory cytokines (IL-1ß, IL-6, IL-8, and TNF-α) production in FAdV-4-infected CECF cells, suggesting a critical role of IκBα/NF-κB signaling in FAdV-4-induced inflammatory responses in CECF cells. Taken together, our results suggest that FAdV-4 infection induces inflammatory responses through activation of PI3K/Akt and IκBα/NF-κB signaling pathways in CECF cells. These results reveal potential mechanisms of inflammatory damage in chicken cardiac cells caused by FAdV-4 infection, which sheds new insight into clarification of the pathogenic mechanism of FAdV-4 infection and development of new strategies for HHS prevention and control.


Subject(s)
Adenoviridae Infections , Fibroblasts , NF-kappa B , Phosphatidylinositol 3-Kinases , Poultry Diseases , Proto-Oncogene Proteins c-akt , Signal Transduction , Animals , Fibroblasts/virology , Chick Embryo , NF-kappa B/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Adenoviridae Infections/veterinary , Adenoviridae Infections/virology , Adenoviridae Infections/immunology , Poultry Diseases/virology , Inflammation , Aviadenovirus/physiology , Cytokines/metabolism , Chickens , Serogroup , NF-KappaB Inhibitor alpha/metabolism
10.
Res Vet Sci ; 176: 105343, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38970869

ABSTRACT

Cholestasis is a hepatic disease reported in humans, dogs, and chickens and is characterized by various signs. Bile duct ligation (BDL) is a standard model for research in cholestasis in male rats and mice. However, the timing and degree of structural changes in BDL-subjected liver differ in the two animal species. This study focused on chickens as a choice model for cholestasis. Specifically, we aimed to evaluate the features of BDL in hens and compare them with those in rats and mice. Eighteen hens, 19 female ICR mice, and 18 female SD rats were randomly divided into the sham-operated and BDL groups. At 2, 4, and 6 weeks after BDL, and 4 weeks after the sham operation, liver and blood samples were collected and analyzed histologically and biochemically. Histologically, bile duct proliferation in BDL-subjected livers was first observed in the chickens and then the rats and mice, whereas CD44-positive small hepatocytes were observed only in chickens in the BDL group. Biochemically, the mRNA expression of the hepatocyte growth factor was higher in BDL-subjected chickens, while Interleukin 6 expression was higher in the BDL-subjected rats and mice than in animals in the sham group. In addition, farnesoid X receptor mRNA expression was lower in the BDL-subjected chickens than in the sham chickens. The BDL group had significantly higher total bile acid blood concentration than the sham group. In conclusion, the signs of hepatopathy caused by BDL differ among animal species. Furthermore, we propose that compared to BDL-subjected mice and rats, BDL-subjected chickens are a novel cholestasis animal model that demonstrates severe hepatopathy and liver restructuring.


Subject(s)
Bile Ducts , Chickens , Cholestasis , Liver , Mice, Inbred ICR , Rats, Sprague-Dawley , Animals , Cholestasis/veterinary , Cholestasis/pathology , Female , Ligation , Bile Ducts/pathology , Bile Ducts/surgery , Rats , Liver/pathology , Mice , Species Specificity , Disease Models, Animal , Poultry Diseases/pathology
11.
Antonie Van Leeuwenhoek ; 117(1): 102, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39012584

ABSTRACT

This study represents the first analysis of the bacterial community in chickens affected by swollen head syndrome, utilizing 16S rRNA gene sequencing. Samples were obtained from clinical laying chickens and were examined for the presence of Avibacterium paragallinarum (APG) and Ornithobacterium rhinotracheale (ORT) using conventional polymerase chain reaction (PCR). From the samples, five APG-positive (APG) and APG-negative (N-APG) samples were chosen, along with five specific pathogen-free chickens, for 16S rRNA gene sequencing. Results showed that APG and ORT were widely detected in the chicken samples with swollen head syndrome (SHS, 9/10), while APG was detected in all five specific pathogen-free (SPF) samples. In contrast, conventional PCR sensitivity was found to be inadequate for diagnosis, with only 35.7% (5/14) and 11.1% (1/9) sensitivity for APG and ORT, respectively, based on 16S rRNA gene sequencing data. Furthermore, 16S rRNA gene sequencing was able to quantify the bacteria in the samples, revealing that the relative abundance of APG in the APG group ranged from 2.7 to 81.3%, while the relative abundance of APG in the N-APG group ranged from 0.1 to 21.0%. Notably, a low level of APG was also detected in all 5 SPF samples. The study also identified a significant number of animal and human common bacterial pathogens, including but not limited to Gallibacterium anatis, Riemerella columbina, Enterococcus cecorum, Mycoplasma synoviae, Helicobacter hepaticus, and Staphylococcus lentus. In conclusion, 16S rRNA gene sequencing is a valuable tool for bacterial pathogen diagnosis and the discovery of novel bacterial pathogens, while conventional PCR is not reliable for diagnosis.


Subject(s)
Chickens , Polymerase Chain Reaction , Poultry Diseases , RNA, Ribosomal, 16S , RNA, Ribosomal, 16S/genetics , Animals , Chickens/microbiology , Polymerase Chain Reaction/methods , Poultry Diseases/microbiology , Poultry Diseases/diagnosis , Bacteria/genetics , Bacteria/classification , Bacteria/isolation & purification , DNA, Bacterial/genetics , Sequence Analysis, DNA , Phylogeny
12.
Sci Rep ; 14(1): 16021, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38992055

ABSTRACT

Environmental conditions profoundly impact the health, welfare, and productivity of laying hens in commercial poultry farming. We investigated the association between microclimate variations, production indices, and histopathological responses to accidental Newcastle disease virus (NDV) infection within a controlled closed-house system. The study was conducted over seven months in a laying hen facility in Cairo, Egypt. Microclimate measurements included temperature, relative humidity (RH%), air velocity (AV), and the temperature humidity index (THI) that were obtained from specific locations on the front and back sides of the facility. Productivity indices, including the egg production percentage (EPP), egg weight (EW), average daily feed intake, and feed conversion ratio, were assessed monthly. During an NDV outbreak, humoral immune responses, gross pathology, and histopathological changes were evaluated. The results demonstrated significant (p < 0.05) variations in EPP and EW between the front and back sides except in April and May. AV had a significant (p = 0.006) positive effect (Beta = 0.346) on EW on the front side. On the back side, AV had a significant (p = 0.001) positive effect (Beta = 0.474) on EW, while it negatively influenced (p = 0.027) EPP (Beta = - 0.281). However, temperature, RH%, and THI had no impact and could not serve as predictors for EPP or EW on either farm side. The humoral immune response to NDV was consistent across microclimates, highlighting the resilience of hens. Histopathological examination revealed characteristic NDV-associated lesions, with no significant differences between the microclimates. This study underscores the significance of optimizing microclimate conditions to enhance laying performance by providing tailored environmental management strategies based on seasonal variations, ensuring consistent airflow, particularly near cooling pads and exhaust fans, and reinforcing the importance of biosecurity measures under field challenges with continuous monitoring and adjustment.


Subject(s)
Chickens , Newcastle Disease , Newcastle disease virus , Poultry Diseases , Animals , Newcastle Disease/virology , Chickens/virology , Female , Newcastle disease virus/physiology , Poultry Diseases/virology , Egypt , Microclimate , Temperature
13.
Appl Microbiol Biotechnol ; 108(1): 414, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38985204

ABSTRACT

Airborne animal viral pathogens can rapidly spread and become a global threat, resulting in substantial socioeconomic and health consequences. To prevent and control potential epidemic outbreaks, accurate, fast, and affordable point-of-care (POC) tests are essential. As a proof-of-concept, we have developed a molecular system based on the loop-mediated isothermal amplification (LAMP) technique for avian metapneumovirus (aMPV) detection, an airborne communicable agent mainly infecting turkeys and chickens. For this purpose, a colorimetric system was obtained by coupling the LAMP technique with specific DNA-functionalized AuNPs (gold nanoparticles). The system was validated using 50 different samples (pharyngeal swabs and tracheal tissue) collected from aMPV-infected and non-infected chickens and turkeys. Viral detection can be achieved in about 60 min with the naked eye, with 100% specificity and 87.88% sensitivity for aMPV. In summary, this novel molecular detection system allows suitable virus testing in the field, with accuracy and limit of detection (LOD) values highly close to qRT-PCR-based diagnosis. Furthermore, this system can be easily scalable to a platform for the detection of other viruses, addressing the current gap in the availability of POC tests for viral detection in poultry farming. KEY POINTS: •aMPV diagnosis using RT-LAMP is achieved with high sensitivity and specificity. •Fifty field samples have been visualized using DNA-nanoprobe validation. •The developed system is a reliable, fast, and cost-effective option for POCT.


Subject(s)
Chickens , Gold , Metapneumovirus , Molecular Diagnostic Techniques , Nucleic Acid Amplification Techniques , Paramyxoviridae Infections , Poultry Diseases , Sensitivity and Specificity , Metapneumovirus/genetics , Metapneumovirus/isolation & purification , Animals , Nucleic Acid Amplification Techniques/methods , Nucleic Acid Amplification Techniques/economics , Chickens/virology , Molecular Diagnostic Techniques/methods , Molecular Diagnostic Techniques/economics , Paramyxoviridae Infections/diagnosis , Paramyxoviridae Infections/veterinary , Paramyxoviridae Infections/virology , Poultry Diseases/virology , Poultry Diseases/diagnosis , Gold/chemistry , Turkeys , Metal Nanoparticles/chemistry , Limit of Detection , Colorimetry/methods , DNA, Viral/genetics
14.
Appl Microbiol Biotechnol ; 108(1): 412, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38985354

ABSTRACT

The filamentous bacteriophage M13KO7 (M13) is the most used in phage display (PD) technology and, like other phages, has been applied in several areas of medicine, agriculture, and in the food industry. One of the advantages is that they can modulate the immune response in the presence of pathogenic microorganisms, such as bacteria and viruses. This study evaluated the use of phage M13 in the chicken embryos model. We inoculated 13-day-old chicken embryos with Salmonella Pullorum (SP) and then evaluated survival for the presence of phage M13 or E. coli ER2738 (ECR) infected with M13. We found that the ECR bacterium inhibits SP multiplication in 0.32 (M13-infected ECR) or 0.44 log UFC/mL (M13-uninfected ECR) and that the ECR-free phage M13 from the PD library can be used in chicken embryo models. This work provides the use of the chicken embryo as a model to study systemic infection and can be employed as an analysis tool for various peptides that M13 can express from PD selection. KEY POINTS: • SP-infected chicken embryo can be a helpful model of systemic infection for different tests. • Phage M13 does not lead to embryonic mortality or cause serious injury to embryos. • Phage M13 from the PD library can be used in chicken embryo model tests.


Subject(s)
Bacteriophage M13 , Escherichia coli , Animals , Chick Embryo , Escherichia coli/virology , Escherichia coli/genetics , Bacteriophage M13/genetics , Cell Surface Display Techniques/methods , Salmonella , Chickens , Poultry Diseases/virology , Poultry Diseases/microbiology
15.
Arch Virol ; 169(7): 155, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38951272

ABSTRACT

Given the high prevalence of avian leukosis virus subgroup K (ALV-K) in chickens in China, the positive rate of ALV-K in local chickens in Henan province was investigated, and the genetic region encoding the glycoprotein gp85 of isolates from positive chickens was analyzed. The positive rate of ALV-K in local chickens in Henan was found to be 87.2% (41/47). Phylogenetic analysis of gp85 sequences revealed six clusters that differed in their host range regions (hr1 and hr2) and variable regions (vr1, vr2, and vr3). Evidence of recombination of hr1, hr2, vr1, vr2, and vr3 was observed between the different clusters. The isolate HN23LS02 appears to have obtained its hr1 and hr2 regions from separate lineages via recombination but without having a significant affect on the replication capacity of the virus.


Subject(s)
Avian Leukosis Virus , Avian Leukosis , Chickens , Host Specificity , Phylogeny , Poultry Diseases , Recombination, Genetic , Viral Envelope Proteins , Animals , Avian Leukosis Virus/genetics , Avian Leukosis Virus/classification , Avian Leukosis Virus/isolation & purification , Chickens/virology , Avian Leukosis/virology , Viral Envelope Proteins/genetics , Viral Envelope Proteins/metabolism , Poultry Diseases/virology , China
16.
Virulence ; 15(1): 2379371, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39014540

ABSTRACT

The economic losses caused by high pathogenicity (HP) avian influenza viruses (AIV) in the poultry industry worldwide are enormous. Although chickens and turkeys are closely related Galliformes, turkeys are thought to be a bridging host for the adaptation of AIV from wild birds to poultry because of their high susceptibility to AIV infections. HPAIV evolve from low pathogenicity (LP) AIV after circulation in poultry through mutations in different viral proteins, including the non-structural protein (NS1), a major interferon (IFN) antagonist of AIV. At present, it is largely unknown whether the virulence determinants of HPAIV are the same in turkeys and chickens. Previously, we showed that mutations in the NS1 of HPAIV H7N1 significantly reduced viral replication in chickens in vitro and in vivo. Here, we investigated the effect of NS1 on the replication and virulence of HPAIV H7N1 in turkeys after inoculation with recombinant H7N1 carrying a naturally truncated wild-type NS1 (with 224 amino-acid "aa" in length) or an extended NS1 with 230-aa similar to the LP H7N1 ancestor. There were no significant differences in multiple-cycle viral replication or in the efficiency of NS1 in blocking IFN induction in the cell culture. Similarly, all viruses were highly virulent in turkeys and replicated at similar levels in various organs and swabs collected from the inoculated turkeys. These results suggest that NS1 does not play a role in the virulence or replication of HPAIV H7N1 in turkeys and further indicate that the genetic determinants of HPAIV differ in these two closely related galliform species.


Subject(s)
Chickens , Influenza A Virus, H7N1 Subtype , Influenza in Birds , Turkeys , Viral Nonstructural Proteins , Viral Tropism , Virus Replication , Animals , Turkeys/virology , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism , Influenza in Birds/virology , Influenza A Virus, H7N1 Subtype/genetics , Influenza A Virus, H7N1 Subtype/pathogenicity , Chickens/virology , Virulence , Poultry Diseases/virology
17.
BMC Vet Res ; 20(1): 314, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39010064

ABSTRACT

Eimeria spp. are the pathogen that causes coccidiosis, a significant disease that affects intensively reared livestock, especially poultry. Anticoccidial feed additives, chemicals, and ionophores have routinely been employed to reduce Eimeria infections in broiler production. Therefore, the shift to antibiotic-free and organic farming necessitates novel coccidiosis preventive strategies. The present study evaluated the effects of potential feed additives, liver free and chitosan, against Eimeria tenella infection in White Leghorn broiler female chickens. One hundred sixty-five 1-day-old White Leghorn broiler female chicks were divided into 11 groups (15 female chicks per group), including the positive control group (G1), the negative control group (G2), a chitosan-treated group (G3), a chitosan-treated-infected group (G4), the liver free-treated group (G5), the liver free-treated-infected group (G6), the liver free-and-chitosan-treated group (G7), the liver free-and-chitosan-infected group (G8), the therapeutic liver free-and-chitosan-treated-infected group (G9), the sulfaquinoxaline-treated group (G10), and the sulfaquinoxaline-treated-infected group (G11). Chitosan was fed to the chicks in G3 and G4 as a preventative measure at a dose of 250 mg/kg. The G5 and G6 groups received 1.5 mg/kg of Liverfree. The G7 and G8 groups received chitosan and Liverfree. The G10 and G11 groups were administered 2 g/L of sulfaquinoxaline. From the moment the chicks arrived at Foshan University (one-day-old chicks) until the completion of the experiment, all medications were given to them as a preventative measure. G8 did; however, receive chitosan and liver free as therapeutic supplements at 7 dpi. The current study showed that the combination of liver free and chitosan can achieve better prophylactic and therapeutic effects than either alone. In E. tenella challenged chickens, G8 and G9 chickens showed reduced oocyst shedding and lesion score, improved growth performance (body weight, body weight gain, feed intake, feed conversion ratio, and mortality rate), and cecal histology. The current study demonstrates that combining liver free and chitosan has superior preventive and therapeutic benefits than either alone, and they could also be used as alternative anticoccidial agents.


Subject(s)
Animal Feed , Chickens , Chitosan , Coccidiosis , Coccidiostats , Eimeria tenella , Liver , Poultry Diseases , Animals , Chitosan/pharmacology , Chitosan/therapeutic use , Coccidiosis/veterinary , Coccidiosis/drug therapy , Coccidiosis/parasitology , Coccidiosis/prevention & control , Eimeria tenella/drug effects , Poultry Diseases/drug therapy , Poultry Diseases/parasitology , Poultry Diseases/prevention & control , Female , Coccidiostats/therapeutic use , Coccidiostats/pharmacology , Liver/drug effects , Liver/parasitology
18.
PLoS One ; 19(7): e0307100, 2024.
Article in English | MEDLINE | ID: mdl-39012858

ABSTRACT

The outbreak of clade 2.3.4.4b H5 highly pathogenic avian influenza (HPAI) in North America that started in 2021 has increased interest in applying vaccination as a strategy to help control and prevent the disease in poultry. Two commercially available vaccines based on the recombinant herpes virus of turkeys (rHVT) vector were tested against a recent North American clade 2.3.4.4b H5 HPAI virus isolate: A/turkey/Indiana/22-003707-003/2022 H5N1 in specific pathogen free white leghorn (WL) chickens and commercial broiler chickens. One rHVT-H5 vaccine encodes a hemagglutinin (HA) gene designed by the computationally optimized broadly reactive antigen method (COBRA-HVT vaccine). The other encodes an HA gene of a clade 2.2 virus (2.2-HVT vaccine). There was 100% survival of both chicken types COBRA-HVT vaccinated groups and in the 2.2-HVT vaccinated groups there was 94.8% and 90% survival of the WL and broilers respectively. Compared to the 2.2-HVT vaccinated groups, WL in the COBRA-HVT vaccinated group shed significantly lower mean viral titers by the cloacal route and broilers shed significantly lower titers by the oropharyngeal route than broilers. Virus titers detected in oral and cloacal swabs were otherwise similar among both vaccine groups and chicken types. To assess antibody-based tests to identify birds that have been infected after vaccination (DIVA-VI), sera collected after the challenge were tested with enzyme-linked lectin assay-neuraminidase inhibition (ELLA-NI) for N1 neuraminidase antibody detection and by commercial ELISA for detection of antibodies to the NP protein. As early as 7 days post challenge (DPC) 100% of the chickens were positive by ELLA-NI. ELISA was less sensitive with a maximum of 75% positive at 10DPC in broilers vaccinated with 2.2-HVT. Both vaccines provided protection from challenge to both types of chickens and ELLA-NI was sensitive at identifying antibodies to the challenge virus therefore should be evaluated further for DIVA-VI.


Subject(s)
Chickens , Influenza A Virus, H5N1 Subtype , Influenza Vaccines , Influenza in Birds , Animals , Chickens/virology , Chickens/immunology , Influenza in Birds/prevention & control , Influenza in Birds/virology , Influenza in Birds/immunology , Influenza A Virus, H5N1 Subtype/immunology , Influenza A Virus, H5N1 Subtype/genetics , Influenza Vaccines/immunology , Influenza Vaccines/administration & dosage , Vaccines, Synthetic/immunology , Vaccines, Synthetic/administration & dosage , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Antibodies, Viral/immunology , Antibodies, Viral/blood , North America , Vaccination , Poultry Diseases/prevention & control , Poultry Diseases/virology , Poultry Diseases/immunology , Herpesvirus 1, Meleagrid/immunology , Herpesvirus 1, Meleagrid/genetics
19.
FASEB J ; 38(13): e23763, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38954404

ABSTRACT

Riemerella anatipestifer is a pathogenic bacterium that causes duck serositis and meningitis, leading to significant harm to the duck industry. To escape from the host immune system, the meningitis-causing bacteria must survive and multiply in the bloodstream, relying on specific virulence factors such as capsules. Therefore, it is essential to study the genes involved in capsule biosynthesis in R. anatipestifer. In this study, we successfully constructed gene deletion mutants Δ3820 and Δ3830, targeting the GE296_RS03820 and GE296_RS03830 genes, respectively, using the RA-LZ01 strain as the parental strain. The growth kinetics analysis revealed that these two genes contribute to bacterial growth. Transmission and scanning electron microscopy (TEM and SEM) and silver staining showed that Δ3820 and Δ3830 produced the altered capsules and compounds of capsular polysaccharides (CPSs). Serum resistance test showed the mutants also exhibited reduced C3b deposition and decreased resistance serum killing. In vivo, Δ3820 and Δ3830 exhibited markedly declining capacity to cross the blood-brain barrier, compared to RA-LZ01. These findings indicate that the GE296_RS03820 and GE296_RS03830 genes are involved in CPSs biosynthesis and play a key role in the pathogenicity of R. anatipestifer. Furthermore, Δ3820 and Δ3830 mutants presented a tendency toward higher survival rates from RA-LZ01 challenge in vivo. Additionally, sera from ducklings immunized with the mutants showed cross-immunoreactivity with different serotypes of R. anatipestifer, including 1, 2, 7 and 10. Western blot and SDS-PAGE assays revealed that the altered CPSs of Δ3820 and Δ3830 resulted in the exposure of some conserved proteins playing the key role in the cross-immunoreactivity. Our study clearly demonstrated that the GE296_RS03820 and GE296_RS03830 genes are involved in CPS biosynthesis in R. anatipestifer and the capsule is a target for attenuation in vaccine development.


Subject(s)
Bacterial Capsules , Ducks , Flavobacteriaceae Infections , Riemerella , Riemerella/genetics , Riemerella/pathogenicity , Riemerella/metabolism , Animals , Ducks/microbiology , Bacterial Capsules/genetics , Bacterial Capsules/metabolism , Flavobacteriaceae Infections/microbiology , Flavobacteriaceae Infections/veterinary , Poultry Diseases/microbiology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Polysaccharides, Bacterial/biosynthesis , Virulence Factors/genetics , Gene Deletion
20.
Turkiye Parazitol Derg ; 48(2): 117-119, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38958466

ABSTRACT

This case report was prepared to provide information about Menacanthus pallidulus (Neumann, 1912), which was detected for the first time on a domestic chicken in Hatay province of Türkiye. Louse specimens collected from a chicken by a student were brought to Hatay Mustafa Kemal University Faculty of Veterinary Medicine, Department of Parasitology, and sent to Selçuk University Faculty of Veterinary Medicine, Department of Parasitology, for identification of species and microscopic examination revealed the presence of Menacanthus pallidulus (Neumann, 1912). Thus, with this study, the presence of M. pallidulus on domestic chickens was recorded for the first time in Türkiye.


Subject(s)
Amblycera , Chickens , Lice Infestations , Poultry Diseases , Animals , Chickens/parasitology , Lice Infestations/veterinary , Lice Infestations/parasitology , Turkey , Poultry Diseases/parasitology , Amblycera/classification , Amblycera/anatomy & histology , Male , Female
SELECTION OF CITATIONS
SEARCH DETAIL
...