Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.711
Filter
1.
BMC Vet Res ; 20(1): 203, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755641

ABSTRACT

BACKGROUND: Avian influenza virus (AIV) not only causes huge economic losses to the poultry industry, but also threatens human health. Reverse transcription recombinase-aided amplification (RT-RAA) is a novel isothermal nucleic acid amplification technology. This study aimed to improve the detection efficiency of H5, H7, and H9 subtypes of AIV and detect the disease in time. This study established RT-RAA-LFD and real-time fluorescence RT-RAA (RF-RT-RAA) detection methods, which combined RT-RAA with lateral flow dipstick (LFD) and exo probe respectively, while primers and probes were designed based on the reaction principle of RT-RAA. RESULTS: The results showed that RT-RAA-LFD could specifically amplify H5, H7, and H9 subtypes of AIV at 37 °C, 18 min, 39 °C, 20 min, and 38 °C, 18 min, respectively. The sensitivity of all three subtypes for RT-RAA-LFD was 102 copies/µL, which was 10 ∼100 times higher than that of reverse transcription polymerase chain reaction (RT-PCR) agarose electrophoresis method. RF-RT-RAA could specifically amplify H5, H7, and H9 subtypes of AIV at 40 °C, 20 min, 38 °C, 16 min, and 39 °C, 17 min, respectively. The sensitivity of all three subtypes for RF-RT-RAA was 101 copies/µL, which was consistent with the results of real-time fluorescence quantification RT-PCR, and 100 ∼1000 times higher than that of RT-PCR-agarose electrophoresis method. The total coincidence rate of the two methods and RT-PCR-agarose electrophoresis in the detection of clinical samples was higher than 95%. CONCLUSIONS: RT-RAA-LFD and RF-RT-RAA were successfully established in this experiment, with quick response, simple operation, strong specificity, high sensitivity, good repeatability, and stability. They are suitable for the early and rapid diagnosis of Avian influenza and they have positive significance for the prevention, control of the disease, and public health safety.


Subject(s)
Chickens , Influenza A virus , Influenza in Birds , Nucleic Acid Amplification Techniques , Recombinases , Reverse Transcription , Animals , Influenza in Birds/virology , Influenza in Birds/diagnosis , Nucleic Acid Amplification Techniques/veterinary , Nucleic Acid Amplification Techniques/methods , Influenza A virus/genetics , Influenza A virus/classification , Influenza A virus/isolation & purification , Recombinases/metabolism , Sensitivity and Specificity , Poultry Diseases/virology , Poultry Diseases/diagnosis
2.
Viruses ; 16(5)2024 05 10.
Article in English | MEDLINE | ID: mdl-38793634

ABSTRACT

Avian influenza viruses (AIVs) of the H5 subtype rank among the most serious pathogens, leading to significant economic losses in the global poultry industry and posing risks to human health. Therefore, rapid and accurate virus detection is crucial for the prevention and control of H5 AIVs. In this study, we established a novel detection method for H5 viruses by utilizing the precision of CRISPR/Cas12a and the efficiency of RT-RPA technologies. This assay facilitates the direct visualization of detection results through blue light and lateral flow strips, accurately identifying H5 viruses with high specificity and without cross-reactivity against other AIV subtypes, NDV, IBV, and IBDV. With detection thresholds of 1.9 copies/µL (blue light) and 1.9 × 103 copies/µL (lateral flow strips), our method not only competes with but also slightly surpasses RT-qPCR, demonstrating an 80.70% positive detection rate across 81 clinical samples. The RT-RPA/CRISPR-based detection method is characterized by high sensitivity, specificity, and independence from specialized equipment. The immediate field applicability of the RT-RPA/CRISPR approach underscores its importance as an effective tool for the early detection and management of outbreaks caused by the H5 subtype of AIVs.


Subject(s)
CRISPR-Cas Systems , Influenza in Birds , Sensitivity and Specificity , Animals , Influenza in Birds/virology , Influenza in Birds/diagnosis , Influenza A Virus, H5N1 Subtype/genetics , Influenza A Virus, H5N1 Subtype/isolation & purification , Influenza A Virus, H5N1 Subtype/classification , Influenza A virus/genetics , Influenza A virus/isolation & purification , Influenza A virus/classification , Poultry/virology , Poultry Diseases/virology , Poultry Diseases/diagnosis , Chickens/virology , Birds/virology
3.
Viruses ; 16(5)2024 05 11.
Article in English | MEDLINE | ID: mdl-38793646

ABSTRACT

(1) Goose astrovirus (GAstV) is a novel emerging pathogen that causes significant economic losses in waterfowl farming. A convenient, sensitive, and specific detection method for GAstV in field samples is important in order to effectively control GAstV. Droplet digital polymerase chain reaction (ddPCR) is a novel, sensitive, good-precision, and absolute quantitation PCR technology which does not require calibration curves. (2) In this study, we developed a ddPCR system for the sensitive and accurate quantification of GAstV using the conserved region of the ORF2 gene. (3) The detection limit of ddPCR was 10 copies/µL, ~28 times greater sensitivity than quantitative real-time PCR (qPCR). The specificity of the test was determined by the failure of amplification of other avian viruses. Both ddPCR and qPCR tests showed good repeatability and linearity, and the established ddPCR method had high sensitivity and good specificity to GAstV. Clinical sample test results showed that the positive rate of ddPCR (88.89%) was higher than that of qPCR (58.33%). (4) As a result, our results suggest that the newly developed ddPCR method might offer improved analytical sensitivity and specificity in its GAstV measurements. The ddPCR could be widely applied in clinical tests for GAstV infections.


Subject(s)
Astroviridae Infections , Avastrovirus , Geese , Sensitivity and Specificity , Animals , Astroviridae Infections/veterinary , Astroviridae Infections/diagnosis , Astroviridae Infections/virology , Geese/virology , Avastrovirus/genetics , Avastrovirus/isolation & purification , Poultry Diseases/virology , Poultry Diseases/diagnosis , Real-Time Polymerase Chain Reaction/methods , Polymerase Chain Reaction/methods , Reproducibility of Results , Astroviridae/genetics , Astroviridae/isolation & purification , Limit of Detection
4.
Avian Dis ; 68(1): 33-37, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38687105

ABSTRACT

The aim of this study was to develop a multiplex PCR assay capable of rapidly differentiating two major Avipoxvirus (APV) species, Fowlpox virus (FWPV) and Pigeonpox virus (PGPV), which cause disease in bird species. Despite the importance of a rapid differentiation assay, no such assay exists that can differentiate the APV species without sequencing. To achieve this, species-specific target DNA fragments were selected from the fpv122 gene of FWPV and the HM89_gp120 gene of PGPV, which are unique to each genome. Nine samples collected from unvaccinated chickens, pigeons, and a turkey with typical pox lesions were genetically identified as FWPV and PGPV. The designed primers and target DNA fragments were validated using in silico analyses with the nucleotide Basic Local Alignment Search Tool. The multiplex PCR assay consisted of species-specific primers and previously described PanAPV primers (genus-specific) and was able to differentiate FWPV and PGPV, consistent with the phylogenetic outputs. This study represents the first successful differentiation of FWPV and PGPV genomes using a conventional multiplex PCR test. This assay has the potential to facilitate the rapid diagnosis and control of APV infections.


Desarrollo de un ensayo de PCR múltiple para la diferenciación rápida de los virus de la viruela aviar y la viruela de paloma. El objetivo de este estudio fue desarrollar un ensayo de PCR múltiple capaz de diferenciar rápidamente dos especies principales de Avipoxvirus (APV) (viruela del pollo), el Fowlpox virus (FWPV) y el Pigeonpox virus (PGPV), (viruela de la gallina), que causan enfermedades en especies de aves. A pesar de la importancia de un ensayo de diferenciación rápida, no existe ningún ensayo que pueda diferenciar las especies de APV sin secuenciación. Para lograr esto, se seleccionaron fragmentos blanco de ADN específicos de especie del gene fpv122 de FWPV y el gene HM89_gp120 de Pigeonpox virus, que son únicos para cada genoma. Nueve muestras recolectadas de pollos, palomas y un pavo que no fueron vacunados con lesiones típicas de la viruela se identificaron genéticamente como FWPV y PGPV. Los iniciadores diseñados y los fragmentos de ADN blanco se validaron mediante análisis in silico mediante la herramienta de búsqueda de alineación local básica de nucleótidos (BLAST). El ensayo de PCR múltiple consistió en iniciadores específicos de especie y cebadores PanAPV previamente descritos (específicos de género) y fue capaz de diferenciar entre Fowlpox virus y Pigeonpox virus, de acuerdo con los resultados filogenéticos. Este estudio representa la primera diferenciación exitosa de los genomas de Fowlpox virus y Pigeonpox virus utilizando una prueba de PCR múltiple convencional. Este ensayo tiene el potencial de facilitar el diagnóstico rápido y el control de las infecciones por Avipoxvirus.


Subject(s)
Avipoxvirus , Chickens , Columbidae , Fowlpox virus , Multiplex Polymerase Chain Reaction , Poultry Diseases , Poxviridae Infections , Animals , Multiplex Polymerase Chain Reaction/veterinary , Multiplex Polymerase Chain Reaction/methods , Fowlpox virus/genetics , Fowlpox virus/isolation & purification , Poxviridae Infections/veterinary , Poxviridae Infections/virology , Poxviridae Infections/diagnosis , Poultry Diseases/virology , Poultry Diseases/diagnosis , Avipoxvirus/genetics , Avipoxvirus/isolation & purification , Avipoxvirus/classification , Turkeys , Fowlpox/virology , Fowlpox/diagnosis , Species Specificity , Phylogeny , Bird Diseases/virology , Bird Diseases/diagnosis
5.
J Virol Methods ; 327: 114942, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38670532

ABSTRACT

H5, H7 and H9 are the major subtypes of avian influenza virus (AIV) that cause economic losses in the poultry industry and sporadic zoonotic infection. Early detection of AIV is essential for preventing disease spread. Therefore, molecular diagnosis and subtyping of AIV via real-time RT-PCR (rRT-PCR) is preferred over other classical diagnostic methods, such as egg inoculation, RT-PCR and HI test, due to its high sensitivity, specificity and convenience. The singleplex rRT-PCRs for the Matrix, H5 and H7 gene used for the national surveillance program in Korea have been developed in 2017; however, these methods were not designed for multiplexing, and does not reflect the sequences of currently circulating strains completely. In this study, the multiplex H5/7/9 rRT-PCR assay was developed with sets of primers and probe updated or newly designed to simultaneously detect the H5, H7 and H9 genes. Multiplex H5/7/9 rRT-PCR showed 100% specificity without cross-reactivity with other subtypes of AIVs and avian disease-causing viruses or bacteria, and the limit of detection was 1-10 EID50/0.1 ml (50% egg infectious dose). Artificial mixed infections with the three different subtypes could be detected accurately with high analytical sensitivity even under highly biased relative molecular ratios by balancing the reactivities of each subtype by modifying the concentration of the primers and probes. The multiplex H5/7/9 rRT-PCR assay developed in this study could be a useful tool for large-scale surveillance programs for viral detection as well as subtyping due to its high specificity, sensitivity and robustness in discriminating viruses in mixed infections, and this approach would greatly decrease the time, cost, effort and chance of cross-contamination compared to the conventional method of testing three subtypes by different singleplex rRT-PCR methods in parallel or in series.


Subject(s)
Chickens , Influenza A virus , Influenza in Birds , Multiplex Polymerase Chain Reaction , Real-Time Polymerase Chain Reaction , Sensitivity and Specificity , Influenza in Birds/virology , Influenza in Birds/diagnosis , Animals , Multiplex Polymerase Chain Reaction/methods , Influenza A virus/genetics , Influenza A virus/classification , Influenza A virus/isolation & purification , Real-Time Polymerase Chain Reaction/methods , Chickens/virology , Republic of Korea , Poultry Diseases/virology , Poultry Diseases/diagnosis , DNA Primers/genetics , Poultry/virology , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Birds/virology
6.
Poult Sci ; 103(6): 103680, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38564836

ABSTRACT

White Striping (WS), Wooden Breast (WB), and Spaghetti Meat (SM) are documented breast muscle myopathies (BMM) affecting broiler chickens' product quality, profitability and welfare. This study evaluated the efficacy of our newly developed deep learning-based automated image analysis tool for early detection of morphometric parameters related to BMM in broiler chickens. Male chicks were utilized, and muscle samples were collected on d 14 of rearing. Histological procedures, including microscopic scoring, blood vessel count, and collagen quantification, were conducted. A previous study demonstrated our automated image analysis as a reliable tool for evaluating myofiber size, conforming with manual histological measurements. A threshold for BMM detection was established by normalizing and consolidating myofiber diameter and area into a unified metric based on automated measurements, also termed as "relative myofiber size value." Results show that severe myopathy broilers consistently exhibited lower relative myofiber size values, effectively detecting myopathy severity. Our study, aimed as proof of concept, underscores the potential of our automated image analysis tool as an early detection method for BMM.


Subject(s)
Chickens , Image Processing, Computer-Assisted , Muscular Diseases , Pectoralis Muscles , Poultry Diseases , Animals , Muscular Diseases/veterinary , Muscular Diseases/pathology , Muscular Diseases/diagnosis , Poultry Diseases/pathology , Poultry Diseases/diagnosis , Male , Pectoralis Muscles/pathology , Image Processing, Computer-Assisted/methods , Deep Learning , Meat/analysis , Early Diagnosis
7.
Poult Sci ; 103(6): 103648, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38574460

ABSTRACT

Avian infectious bronchitis virus (IBV) still causes serious economic losses in the poultry industry. Currently, there are multiple prevalent genotypes and serotypes of IBVs. It is imperative to develop a new diagnosis method that is fast, sensitive, specific, simple, and broad-spectrum. A monoclonal hybridoma cell, N2D5, against the IBV N protein was obtained after fusion of myeloma SP2/0 cells with spleen cells isolated from the immunized Balb/c mice. The N2D5 monoclonal antibody (mAb) and the previously prepared mouse polyclonal antibody against the IBV N protein were used to target IBV as a colloidal gold-mAb conjugate and a captured antibody, respectively, in order to develop an immunochromatographic strip. The optimal pH and minimum antibody concentration in the reaction system for colloidal gold-mAb N2D5 conjugation were pH 6.5 and 30 µg/mL, respectively. Common avian pathogens were tested to evaluate the specificity of the strip and no cross-reaction was observed. The sensitivity of the strip for detecting IBV was 10-1.4522 EID50/mL. The strip showed a broad-spectrum cross-reactive capacity for detecting IBV antigens, including multiple IBV genotypes in China and all of the seven serotypes of IBV that are currently prevalent in southern China. Additionally, the result can be observed within 2 min without any equipment. The throat and cloacal swab samples of chickens that were artificially infected with three IBV strains were tested using the developed strip and the qPCR method; the strip test demonstrated a high consistency in detecting IBV via qPCR gene detection. In conclusion, the immunochromatographic strip that was established is rapid, sensitive, specific, simple, practical, and broad-spectrum; additionally, it has the potential to serve as an on-site rapid detection method of IBV and can facilitate the surveillance and control of the disease, especially in resource-limited areas.


Subject(s)
Antibodies, Monoclonal , Chickens , Coronavirus Infections , Gold Colloid , Infectious bronchitis virus , Mice, Inbred BALB C , Poultry Diseases , Infectious bronchitis virus/isolation & purification , Infectious bronchitis virus/immunology , Animals , Gold Colloid/chemistry , Poultry Diseases/diagnosis , Poultry Diseases/virology , Coronavirus Infections/veterinary , Coronavirus Infections/diagnosis , Coronavirus Infections/virology , Antibodies, Monoclonal/immunology , Chromatography, Affinity/veterinary , Chromatography, Affinity/methods , Mice , Sensitivity and Specificity , Reagent Strips
8.
Poult Sci ; 103(6): 103681, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38603932

ABSTRACT

Cellulitis is an important disease in commercial turkey farms associated with significant economic loss. Although the etiology of cellulitis is not fully elucidated, Clostridium septicum (C. septicum) is one of the main causes of this infectious disease. In this study, we report the development of a quantitative real-time PCR (qRT PCR) assay targeting the alpha-toxin gene (csa), which involves a prior 15-cyle PCR using a nested pair of primers to increase the detection sensitivity. Additionally, the TaqMan probe was employed to increase the target-specificity of the assay. The performance of our nested qRT-PCR assay was evaluated using Clostridium isolates from turkey farms, representing both septicum and non-septicum species, as well as sponge swab samples from turkey farms. Our step-by-step development of the assay showed that the csa gene is a suitable target for specific detection of C. septicum strains and that the inclusion of nested PCR step significantly increased the detection sensitivity of the final qRT PCR assay. The performance of the assay was also validated by a high correlation of the threshold cycle numbers of the qRT PCR assay with the relative abundance of C. septicum read counts in 16S rRNA gene microbiota profiles of the C. septicum-containing samples from turkey farms.


Subject(s)
Clostridium Infections , Clostridium septicum , Poultry Diseases , Real-Time Polymerase Chain Reaction , Turkeys , Real-Time Polymerase Chain Reaction/veterinary , Real-Time Polymerase Chain Reaction/methods , Animals , Turkeys/microbiology , Clostridium Infections/veterinary , Clostridium Infections/microbiology , Clostridium Infections/diagnosis , Clostridium septicum/isolation & purification , Clostridium septicum/genetics , Poultry Diseases/microbiology , Poultry Diseases/diagnosis , Sensitivity and Specificity , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/analysis
9.
Vet Parasitol ; 328: 110174, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38579608

ABSTRACT

Raillietina species and Ascaridia galli are two of the significant intestinal parasites that affect chickens in a free-range system production. They destroy the intestinal mucosa layer, leading to several clinical symptoms such as weight loss, a slowed growth rate, and economic value loss. Thus, the objective of this study was to develop an assay for simultaneously detecting Raillietina spp. (R. echinobothrida, R. tetragona, and R. cesticillus) and A. galli in a single reaction using duplex loop-mediated isothermal amplification (dLAMP) coupled with a lateral flow dipstick (LFD) assay. The analytical specificity of the dLAMP-LFD assay showed a high specific amplification of Raillietina spp. and A. galli without non-target amplification. Regarding the analytical sensitivity, this approach was capable of simultaneously detecting concentrations as low as 5 pg/µL of mixed-targets. To evaluate the efficiency of the dLAMP assay, 30 faecal samples of chickens were verified and compared through microscopic examination. The dLAMP-LFD assay and microscopic examination results showed kappa values of Raillietina spp. and A. galli with moderate (K= 0.615) to high (K= 1) agreements, respectively, while the McNemar's test indicated that the efficiency between assays was not significantly different. Therefore, the developed dLAMP-LFD assay can be used as an alternative screening method to the existing classical method for epidemiological investigation, epidemic control, and farm management, as well as for addressing poultry health problems.


Subject(s)
Ascaridia , Ascaridiasis , Chickens , Nucleic Acid Amplification Techniques , Poultry Diseases , Sensitivity and Specificity , Animals , Chickens/parasitology , Nucleic Acid Amplification Techniques/veterinary , Nucleic Acid Amplification Techniques/methods , Poultry Diseases/parasitology , Poultry Diseases/diagnosis , Ascaridia/isolation & purification , Ascaridia/genetics , Ascaridiasis/veterinary , Ascaridiasis/diagnosis , Ascaridiasis/parasitology , Feces/parasitology , Molecular Diagnostic Techniques/veterinary , Molecular Diagnostic Techniques/methods
10.
Poult Sci ; 103(5): 103611, 2024 May.
Article in English | MEDLINE | ID: mdl-38471226

ABSTRACT

The aim of this study was to develop an efficient and accurate platform for the detection of the newly identified goose megrivirus (GoMV). To achieve this goal, we developed a TaqMan real-time PCR technology for the rapid detection and identification of GoMV. Our data showed that the established TaqMan real-time PCR assay had high sensitivity, with the lowest detection limit of 67.3 copies/µL. No positive signal can be observed from other goose origin viruses (including AIV, GPV, GoCV, GHPyV, and GoAstV), with strong specificity. The coefficients of variation of repeated intragroup and intergroup tests were all less than 1.5%, with excellent repeatability. Clinical sample investigation data from domestic Minbei White geese firstly provided evidence that GoMV can be transmitted both horizontally and vertically. In conclusion, since the TaqMan real-time PCR method has high sensitivity, specificity, and reproducibility, it can be a useful candidate tool for GoMV epidemiological investigation.


Subject(s)
Geese , Poultry Diseases , Real-Time Polymerase Chain Reaction , Animals , Real-Time Polymerase Chain Reaction/veterinary , Real-Time Polymerase Chain Reaction/methods , Geese/virology , Poultry Diseases/virology , Poultry Diseases/diagnosis , Sensitivity and Specificity , RNA Virus Infections/veterinary , RNA Virus Infections/virology , RNA Virus Infections/diagnosis , Reproducibility of Results
11.
Avian Dis ; 67(4): 340-344, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38300655

ABSTRACT

Histomoniasis is a deadly disease of turkeys causing devastating economic losses to the poultry industry. In field outbreaks, a presumptive diagnosis is made based on gross pathology lesions and confirmed by histopathology. An early detection tool with quick turnaround time is needed to prevent the spread of histomoniasis. With this objective, two studies were conducted in turkeys. In Study 1, 40 poults were housed in two pens (20 poults/pen) and challenged at 14 days of age with Histomonas meleagridis by intracloacal route. Blood samples were collected 4 days postchallenge. Fifty-five percent (22/40) of the blood samples tested positive for H. meleagridis based on PCR using primers targeted against the 18S rRNA gene and confirmed by sequencing. In Study 2, 40 poults were housed in two groups and raised in floor pens. Groups 1 and 2 served as negative and challenge controls, respectively. At 14 days of age, the birds in Group 2 were challenged with H. meleagridis by intracloacal route. Blood samples were collected 2 days postchallenge. Five percent (1/20) of the blood samples tested positive for H. meleagridis, based on PCR and confirmed by sequencing. The results from both studies indicate that H. meleagridis DNA can be detected in the blood samples by PCR and confirmed by sequencing as early as 4 days postchallenge. This early detection method could be applied in field outbreaks to detect and confirm histomoniasis as early as possible.


Detección temprana de histomoniasis en muestras de sangre mediante PCR y secuenciación La histomoniasis es una enfermedad mortal de los pavos que causa pérdidas económicas devastadoras a la industria avícola. En los brotes de campo, se realiza un diagnóstico presuntivo basado en lesiones patológicas macroscópicas y se confirma mediante histopatología. Se necesita una herramienta de detección temprana con un tiempo de respuesta rápido para prevenir la propagación de la histomoniasis. Con este objetivo, se realizaron dos estudios en pavos. En el Estudio 1, se alojaron 40 pavipollos en dos corrales (20 pavipollos/corral) y se desafiaron a los 14 días de edad con Histomonas meleagridis por vía intracloacal. Se recolectaron muestras de sangre a los cuatro días después del desafío. El cincuenta y cinco por ciento (22/40) de las muestras de sangre resultaron positivas para H. meleagridis según el método de PCR utilizando iniciadores dirigidos contra el gene 18S rRNA y confirmado mediante secuenciación. En el Estudio 2, se alojaron 40 pavipollos en dos grupos y se criaron en corrales en piso. Los grupos 1 y 2 sirvieron como controles negativos y de desafío, respectivamente. A los 14 días de edad, las aves del Grupo 2 fueron expuestas a H. meleagridis por vía intracloacal. Se recolectaron muestras de sangre dos días después del desafío. El cinco por ciento (1/20) de las muestras de sangre dieron positivo para H. meleagridis, según el método de PCR y confirmado mediante secuenciación. Los resultados de ambos estudios indican que el ADN de H. meleagridis puede detectarse en las muestras de sangre mediante PCR y confirmarse mediante secuenciación tan pronto como cuatro días después de la exposición. Este método de detección temprana podría aplicarse en brotes de campo para detectar y confirmar la histomoniasis lo antes posible.


Subject(s)
Poultry Diseases , Protozoan Infections , Animals , Turkeys , Poultry Diseases/diagnosis , Disease Outbreaks , Polymerase Chain Reaction/veterinary
12.
Avian Dis ; 67(4): 345-348, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38300656

ABSTRACT

Developer ducks are ducks being reared for breeding. Like breeder candidate chickens, they are raised with appropriate light and feed programs. A commercial Pekin duck (Anas platyrhynchos domesticus) developer flock experienced an extraordinary, elevated mortality event at 6 wk of age. Weekly mortality rate that week was 162 ducklings out of a flock of 6420 (2.5%). Mortality jumped to 988 (15.4%) ducklings the next week. On first elevated mortality, six dead ducks from that flock were submitted for diagnostic investigation at Michigan State University Veterinary Diagnostic Laboratory. Myocarditis, pale striping or diffuse pallor of the epicardium, was grossly evident in five of the six submitted ducklings. All of the ducklings had hydropericardium, three had ascites, and three had congested meninges. Histology confirmed myocarditis with myocardial necrosis. Cerebrum and brainstem had lymphocytic vasculitis with rare neuronal necrosis in affected areas, as well as Purkinje cells in the cerebellum. West Nile virus was confirmed by PCR the day after submittal and by immunohistochemistry soon thereafter.


Reporte de caso- Infección por el virus del Nilo occidental en una parvada en desarrollo de patos Pekin (Anas platyrhynchos domesticus) reproductores. Los patos reproductores en desarrollo son patos que se crían para la reproducción. Al igual que los pollos candidatos para reproducción, se crían con programas de iluminación y alimentación adecuados. Una parvada comercial en desarrollo de pato Pekín (Anas platyrhynchos domesticus) experimentó un evento de mortalidad elevada y extraordinaria a las seis semanas de edad. La tasa de mortalidad semanal de esa semana fue de 162 patitos de una parvada de 6420 (2.5%). La mortalidad se elevó a 988 (15.4%) patitos la semana siguiente. En el primer aumento de mortalidad, seis patos muertos de esa bandada fueron enviados para una investigación de diagnóstico en el Laboratorio de Diagnóstico Veterinario de la Universidad Estatal de Michigan. La miocarditis, caracterizada por rayas pálidas o palidez difusa del epicardio, fue evidente en cinco de los seis patitos presentados. Todos los patitos mostraron hidropericardio, tres tenían ascitis y tres tenían meninges congestionadas. La histología confirmó miocarditis con necrosis miocárdica. El cerebro y el tronco del encéfalo tenían vasculitis linfocítica con rara necrosis neuronal en las áreas afectadas, así como de las células de Purkinje en el cerebelo. El virus del Nilo Occidental se confirmó mediante PCR el día después de la llegada al laboratorio y mediante inmunohistoquímica poco tiempo después.


Subject(s)
Myocarditis , Poultry Diseases , West Nile Fever , Animals , West Nile Fever/diagnosis , West Nile Fever/veterinary , Ducks , Myocarditis/veterinary , Chickens , Poultry Diseases/diagnosis , Necrosis/veterinary
13.
Acta Vet Hung ; 71(3-4): 137-141, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38090949

ABSTRACT

The darkling beetle, Alphitobius diaperinus, and the poultry red mite, Dermanysuss gallinae are among the most common pests of poultry farms. Both pests can be carriers and reservoirs of various pathogens including zoonotic ones like Salmonella. Salmonellosis is one of the most common foodborne diseases reported in the EU. We developed a semi-nested PCR method for the direct detection of Salmonella enterica. When testing the specificity of the novel PCR, we successfully detected various S. enterica strains, whereas Escherichia coli and Citrobacter strains gave negative results. The authenticity of the PCR products was confirmed by DNA sequencing. The sensitivity of the semi-nested PCR was tested on serial dilution of bacterial cultures and extracted DNA. We found our new method more sensitive than the previous PCRs. We also screened ectoparasite samples, collected from a poultry farm in Hungary, and three out of the eight samples were positive for S. Enteritidis. This novel PCR seems suitable for the detection of S. enterica strains in poultry ectoparasites without the need of sample pre-enrichment.


Subject(s)
Poultry Diseases , Salmonella enterica , Animals , Salmonella enterica/genetics , Poultry , Chickens , Polymerase Chain Reaction/veterinary , Hungary/epidemiology , Poultry Diseases/diagnosis , Poultry Diseases/microbiology
14.
J Virol Methods ; 324: 114857, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38029971

ABSTRACT

A multiplex polymerase chain reaction (PCR) method was developed to detect and distinguish goose parvovirus (GPV), waterfowl reovirus (WRV), and goose astrovirus (GAstV). Three pairs of primers were designed based on conserved regions in the genomic sequences of these enteric viruses and were used to specifically amplify targeted fragments of 493 bp from the viral protein 3 (VP3) gene of GPV, 300 bp from the sigma A-encoding gene of WRV, and 156 bp from the capsid protein-encoding gene of GAstV. The results showed that the primers can specifically amplify target fragments, without any cross-amplification with other viruses, indicating that the method had good specificity. A sensitivity test showed that the detection limit of the multiplex PCR method was 1 × 103 viral copies. A total of 102 field samples from Muscovy ducks with clinically suspected diseases were evaluated using the newly developed multiplex PCR method. The ratio of positive samples to total samples for GPV, WRV, and GAstV was 73.53% (75/102) for multiplex PCR and was 73.53% (75/102) for routine PCR. Seventy-five positive samples were detected by both methods, for a coincidence ratio of 100%. This multiplex PCR method can simultaneously detect GPV, WRV, and GAstV, which are associated with viral enteritis, thereby providing a specific, sensitive, efficient, and accurate new tool for clinical diagnosis and laboratory epidemiological investigations.


Subject(s)
Parvoviridae Infections , Parvovirus , Poultry Diseases , RNA Viruses , Reoviridae , Animals , Ducks , Multiplex Polymerase Chain Reaction/methods , Parvoviridae Infections/diagnosis , Parvoviridae Infections/veterinary , Poultry Diseases/diagnosis , Reoviridae/genetics , RNA Viruses/genetics , Antibodies, Viral , Geese , Parvovirus/genetics
15.
J Virol Methods ; 322: 114813, 2023 12.
Article in English | MEDLINE | ID: mdl-37722509

ABSTRACT

Newcastle disease (ND) caused by virulent avian paramyxovirus type I (APMV-1) is a WOAH and EU listed disease affecting poultry worldwide. ND exhibits different clinical manifestations that may either be neurological, respiratory and/or gastrointestinal, accompanied by high mortality. In contrast, mild or subclinical forms are generally caused by lentogenic APMV-1 and are not subject to notification. The rapid discrimination of virulent and avirulent viruses is paramount to limit the spread of virulent APMV-1. The appropriateness of molecular methods for APMV-1 pathotyping is often hampered by the high genetic variability of these viruses that affects sensitivity and inclusivity. This work presents a new array of real-time RT-PCR (RT-qPCR) assays that enable the identification of virulent and avirulent viruses in dual mode, i.e., through pathotype-specific probes and subsequent Sanger sequencing of the amplification product. Validation was performed according to the WOAH recommendations. Performance indicators on sensitivity, specificity, repeatability and reproducibility yielded favourable results. Reproducibility highlighted the need for assays optimization whenever major changes are made to the procedure. Overall, the new RT-qPCRs showed its ability to detect and pathotype all tested APMV-1 genotypes and its suitability for routine use in clinical samples.


Subject(s)
Avulavirus , Newcastle Disease , Poultry Diseases , Animals , Avulavirus/genetics , Reverse Transcriptase Polymerase Chain Reaction , Reproducibility of Results , Newcastle Disease/diagnosis , Newcastle disease virus/genetics , Poultry Diseases/diagnosis , Chickens
16.
Open Vet J ; 13(6): 732-741, 2023 06.
Article in English | MEDLINE | ID: mdl-37545700

ABSTRACT

Background: Infectious diseases of young and adult birds with respiratory syndrome are a significant deterrent to the development of industrial poultry farming due to decreased productivity and significant mortality. The only effective method of combating viral diseases is timely and targeted vaccination, which largely depends on laboratory diagnostic results. Aim: This article aims to study the real-time reverse transcription polymerase chain reaction, (RT-PCR) which has the prospect of more effective diagnosis of vaccine strains of chicken infectious bronchitis and Newcastle disease. Methods: The fastest and most accurate method for the differential diagnosis of pathogens in an associative viral infection is RT-PCR. The method proposed in the article for selecting primers for amplification made it possible to use this method for the simultaneous interspecies differential diagnosis of two or more viral agents, significantly accelerating their diagnosis. Results: The correlation of the nucleotide sequence obtained from sequencing to a specific virus strain is complicated by the lack of a single nomenclature mechanism for separating genetic groups. Conclusion: The results of this study will allow easy and fast typing of sequences into known and databased virus strains and avoid further confusion in the nomenclature of genetic groups in the future.


Subject(s)
Bronchitis , Communicable Diseases , Coronavirus Infections , Newcastle Disease , Poultry Diseases , Vaccines , Animals , Chickens , Newcastle Disease/diagnosis , Newcastle Disease/prevention & control , Reverse Transcriptase Polymerase Chain Reaction/veterinary , Poultry Diseases/diagnosis , Poultry Diseases/prevention & control , Coronavirus Infections/diagnosis , Coronavirus Infections/prevention & control , Coronavirus Infections/veterinary , Communicable Diseases/veterinary , Bronchitis/veterinary
17.
Avian Dis ; 67(2): 209-211, 2023 06.
Article in English | MEDLINE | ID: mdl-37556301

ABSTRACT

A cerebral tumor was identified in an adult female domestic chicken (Gallus domesticus). On gross examination, the cut surface of the cerebrum revealed a poorly circumscribed, pale tan soft mass within the thalamus and midbrain. On histologic examination, there was an unencapsulated, multilobulated neoplasm composed of spindle cells on a loose fibrovascular stroma. Neoplastic cells had variably distinct cell borders, abundant fibrillar eosinophilic cytoplasm, oval nuclei with finely stippled chromatin, and 1-2 distinct nucleoli. There was moderate anisocytosis and anisokaryosis with <1 mitoses per 2.37 mm2. The morphologic features of the neoplastic cells were consistent with an astrocytic neoplasm. PCR was performed on formalin-fixed paraffin-embedded sections of brain tissue, which was negative for subgroup A avian leukosis virus. Based on these findings, the tumor was diagnosed as a presumed spontaneous astrocytoma.


Reporte de caso - Presunto astrocitoma espontáneo en un pollo doméstico de traspatio. Se identificó un tumor cerebral en una gallina doméstica adulta (Gallus domesticus). En el examen macroscópico, la superficie de corte del cerebro reveló una masa blanda de color canela pálido mal delimitada dentro del tálamo y el mesencéfalo. En el examen histológico, había una neoplasia multilobulada no encapsulada compuesta de células fusiformes sobre un estroma fibrovascular laxo. Las células neoplásicas tenían bordes celulares diferenciados de forma variable, abundante citoplasma eosinofílico fibrilar, núcleos ovalados con cromatina finamente punteada y 1 o 2 nucléolos distintos. Había anisocitosis moderada y anisocariosis con <1 mitosis por 2.37 mm2. Las características morfológicas de las células neoplásicas eran compatibles con una neoplasia astrocítica. Se realizó una PCR en secciones de tejido cerebral incluidas en parafina y fijadas con formalina, que resultó negativa para el virus de la leucosis aviar del subgrupo A. Con base en estos hallazgos, el tumor se diagnosticó como un presunto astrocitoma espontáneo.


Subject(s)
Astrocytoma , Poultry Diseases , Female , Animals , Chickens , Poultry Diseases/diagnosis , Astrocytoma/diagnosis , Astrocytoma/veterinary , Astrocytoma/pathology
18.
J Virol Methods ; 319: 114760, 2023 09.
Article in English | MEDLINE | ID: mdl-37290574

ABSTRACT

To detect the antibody against fowl adenovirus serotype 4 (FAdV-4) in clinical practice, the latex agglutination test (LAT) was developed by using the Fiber-2 protein of FAdV-4 as an antigen bound to sensitized latex microspheres. The concentration, time, and temperature of sensitization latex microspheres by the Fiber-2 protein were studied and optimized; the specificity, sensitivity, and repeatability of LAT were tested; and the method developed in the study was applied. The results showed that the optimum sensitization concentration of Fiber-2 protein was 0.8 mg/mL, the time was 120 min, and the temperature was 37 â„ƒ. Except for antiserum against FAdV-4 and FAdV-10, LAT developed in the study could not agglutinate antisera against FAdV-1, FAdV-2, FAdV-3, FAdV-4, FAdV-5, FAdV-6, FAdV-8a, FAdV-8b, FAdV-11, Newcastle disease virus, infectious bronchitis virus, egg drop syndrome virus and Clostridium perfringens. Compared with the commercial FAdV-4 ELISA Kit, the titers in 21 clinical samples were low when tested by the developed LAT method, but there was no significant difference. The coefficients of variation among different batches and the same batch of latex-sensitized particles were between 0 % and 13.3 % and 0-8.7 %, respectively. The critical value of immune protective antibody against FAdV-4 was 25, and the titers in 40.9 % of clinical samples were higher than the immune critical point. The results showed that the Fiber-2-based LAT developed in the study has the characteristics of high specificity, sensitivity and repeatability, has the advantages of free equipment, long shelf life, and fast and easy operation, and is an effective and convenient method for serological diagnosis of FAdV-4 infection and evaluating the efficacy of vaccines.


Subject(s)
Adenoviridae Infections , Aviadenovirus , Poultry Diseases , Animals , Serogroup , Adenoviridae Infections/diagnosis , Adenoviridae Infections/veterinary , Latex Fixation Tests , Antibodies, Viral , Chickens , Adenoviridae , Poultry Diseases/diagnosis
19.
J Vet Med Sci ; 85(8): 809-812, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37316287

ABSTRACT

Salmonella often causes subclinical infection in chickens, but antibody tests can find infected individuals and control the spread of infection. In this study, the S. Typhimurium-specific outer membrane, ß-barrel assembly machinery protein A (BamA), was overexpressed in Escherichia coli and purified as a coating antigen to develop a BamA-based enzyme-linked immuno sorbent assay for detecting Salmonella infection. The presence of anti-BamA IgG was detected in the sera of infected BALB/c mice, but not in that of heat-killed Salmonella-vaccinated mice. The assay was validated using White Leghorn chickens and showed similar results. The detection of BamA antibodies in the sera can differentiate infected chickens from vaccinated chickens. This assay will be useful for monitoring Salmonella infection in chickens and possibly in other animals.


Subject(s)
Poultry Diseases , Animals , Mice , Chickens , Salmonella , Bacterial Outer Membrane Proteins , Escherichia coli/genetics , Escherichia coli/metabolism , Enzyme-Linked Immunosorbent Assay/veterinary , Poultry Diseases/diagnosis
20.
Poult Sci ; 102(8): 102790, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37302331

ABSTRACT

This study was conducted to develop an antigen-capture ELISA that detects an immunodominant antigen of Eimeria, 3-1E which is present in all Eimeria species, using a set of 3-1E-specific mouse monoclonal antibodies (mAbs). Highly sensitive 3-1E-specific antigen-capture ELISA was established using compatible mAb pairs (#318 and #320) selected from 6 mAbs (#312, #317, #318, #319, #320, and #323) with high binding activity against recombinant 3-1E protein. These anti-3-1E mAbs specifically recognized E. tenella sporozoites and a higher level of 3-1E was detected in the lysate of sporozoites than in sporocysts. Immunofluorescence assay (IFA) using 2 mAbs (#318 and #320) showed specific staining around the membrane of E. tenella sporozoites. In order to measure the changes in the 3-1E level during in coccidiosis, serum, feces, jejunal, and cecal contents were individually collected daily for 7-days postinfection (dpi) with E. maxima and E. tenella. The new ELISA was sensitive and specific for 3-1E detection in all samples collected daily from E. maxima- and E. tenella-infected chickens for a week, and the detection sensitivity ranges were 2 to 5 ng/mL and 1 to 5 ng/mL in serum, 4 to 25 ng/mL and 4 to 30 ng/mL in feces, 1 to 3 ng/mL and 1 to 10 ng/mL in cecal contents, and 3 to 65 ng/mL and 4 to 22 ng/mL in jejunal contents. Following coccidiosis, the overall 3-1E levels started to increase from 4 dpi, and the highest production was shown on 5 dpi. Among the samples collected from Eimeria-infected chickens, the highest detection level was found in the jejunal contents of E. maxima-infected chickens. Furthermore, the level of IFN-γ in serum was significantly (P < 0.05) increased from 3 dpi and peaked on 5 dpi post E. maxima infection. Post E. tenella infection, the level of IFN-γ in serum gradually (P < 0.05) increased from 2 to 5 dpi and plateaued at 7 dpi. The level of TNF-α in serum was rapidly (P < 0.05) increased from 4 dpi and those levels were kept until 7 dpi post both Eimeria infections (E. maxima and E. tenella). More importantly, the daily changes in the 3-1E levels in different samples from E. maxima- and E. tenella-infected chickens were effectively monitored with this new antigen-capture ELISA. Therefore, this new immunoassay is a sensitive diagnostic tool to monitor coccidiosis in a large field population in the commercial poultry farms before clinical symptoms develop using serum, feces, and gut samples during the entire period of infection cycle starting from 1 d after infection.


Subject(s)
Coccidiosis , Eimeria tenella , Eimeria , Poultry Diseases , Mice , Animals , Poultry , Antibodies, Monoclonal , Chickens , Coccidiosis/diagnosis , Coccidiosis/veterinary , Recombinant Proteins , Poultry Diseases/diagnosis
SELECTION OF CITATIONS
SEARCH DETAIL
...