Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.012
Filter
1.
Sci Rep ; 14(1): 11352, 2024 05 18.
Article in English | MEDLINE | ID: mdl-38762506

ABSTRACT

The biological control of gastrointestinal (GI) parasites using predatory fungi has been recently proposed as an accurate and sustainable approach in birds. The current study aimed to assess for the first time the efficacy of using the native ovicidal fungus Mucor circinelloides (FMV-FR1) in reducing coccidia parasitism in peacocks. For this purpose, an in vivo trial was designed in the resident peacock collection (n = 58 birds) of the São Jorge Castle, at Lisbon, Portugal. These animals presented an initial severe infection by coccidia of the genus Eimeria (20106 ± 8034 oocysts per gram of feces, OPG), and thus received commercial feed enriched with a M. circinelloides suspension (1.01 × 108 spores/kg feed), thrice-weekly. Fresh feces were collected every 15 days to calculate the coccidia shedding, using the Mini-FLOTAC technique. The same bird flock served simultaneously as control (t0 days) and test groups (t15-t90 days). The average Eimeria sp. shedding in peacocks decreased up to 92% following fungal administrations, with significant reduction efficacies of 78% (p = 0.004) and 92% (p = 0.012) after 45 and 60 days, respectively. Results from this study suggest that the administration of M. circinelloides spores to birds is an accurate solution to reduce their coccidia parasitism.


Subject(s)
Coccidiosis , Feces , Mucor , Animals , Coccidiosis/veterinary , Coccidiosis/parasitology , Feces/parasitology , Feces/microbiology , Eimeria , Coccidia , Poultry Diseases/parasitology , Poultry Diseases/microbiology , Poultry Diseases/prevention & control
2.
Vet Med Sci ; 10(4): e1469, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38814576

ABSTRACT

BACKGROUND: Eimeria is a protozoan parasite that affects poultry, particularly chickens, causing a disease known as coccidiosis. This disease imposes substantial significant economic challenges to the poultry sector. OBJECTIVES: The current study aimed to estimate the global prevalence and associated risk factors of Eimeria in domestic chickens. METHODS: Multiple databases (Scopus, PubMed, ProQuest, Web of Science and Google Scholar) were searched for articles published until June 2023. The pooled prevalence was estimated using a random-effects model with a 95% confidence interval. The statistical analysis was conducted using meta packages in R version (3.6.1). RESULTS: In total, 41 articles fulfilled the eligibility criteria. The global pooled prevalence was 44.3% (36.9%-51.8%) with Eimeria tenella (38.7%, 30.1%-47.7%) as the most prevalent species. The highest pooled prevalence was related to the Western Pacific Region (80.5%, 72.6%-87.3%) and urban areas (44.4%, 36.5%-52.6%). Moreover, areas with humid subtropical climates represent the highest overall prevalence (75.8%, 46.6%-95.9%). CONCLUSION: The necessity for robust and innovative strategies for preventing and managing this disease cannot be overstated. Addressing Eimeria impact is crucial not only for safeguarding poultry health but also for sustaining the economic viability of the poultry industry.


Subject(s)
Chickens , Coccidiosis , Eimeria , Poultry Diseases , Animals , Coccidiosis/veterinary , Coccidiosis/epidemiology , Coccidiosis/parasitology , Eimeria/physiology , Eimeria/isolation & purification , Poultry Diseases/epidemiology , Poultry Diseases/parasitology , Prevalence , Risk Factors
3.
PLoS One ; 19(5): e0304179, 2024.
Article in English | MEDLINE | ID: mdl-38820542

ABSTRACT

This study investigates the molecular prevalence and phylogenetic characteristics of two prominent blood-borne pathogens, Toxoplasma gondii (T. gondii) and Plasmodium spp., in common quails (Coturnix coturnix) sampled from both wild (N = 236) and farmed (N = 197) populations across four districts (Layyah, Dera Ghazi Khan, Lahore, and Multan) in Punjab, Pakistan, during the hunting seasons from 2021 to 2023. Additionally, the impact of these pathogens on the complete blood count (CBC) of the hosts is examined. Out of 433 quails tested, 25 (5.8%) exhibited amplification of the internal transcribed spacer (ITS-1) gene for T. gondii, while 15 (3.5%) showed amplification of the Cytochrome b gene for Plasmodium spp. A risk factor analysis indicated that the prevalence of both pathogens was not confined to specific sampling sites or bird sexes (P > 0.05). District-wise analysis highlighted that hens were more susceptible to both T. gondii and Plasmodium spp. infections than cocks. Wild quails exhibited a higher susceptibility to T. gondii compared to farmed birds. Significant CBC variations were recorded in infected birds as compared to uninfected ones. BLAST analysis of generated sequences has confirmed the identity of recovered PCR amplicons as T. gondii and Plasmodium relictum. Phylogenetic analysis revealed that Pakistani isolates clustered with those reported from various countries globally. This study provides the first documentation of T. gondii and Plasmodium sp. infections in Pakistani quails, underscoring the need for detailed investigations across different regions to enhance our understanding of infection rates and the zoonotic potential of these parasites.


Subject(s)
Phylogeny , Plasmodium , Toxoplasma , Toxoplasmosis, Animal , Animals , Pakistan/epidemiology , Toxoplasma/genetics , Plasmodium/genetics , Plasmodium/isolation & purification , Plasmodium/classification , Prevalence , Toxoplasmosis, Animal/epidemiology , Toxoplasmosis, Animal/parasitology , Coturnix/parasitology , Female , Malaria, Avian/epidemiology , Malaria, Avian/parasitology , Male , Poultry Diseases/parasitology , Poultry Diseases/epidemiology
4.
Poult Sci ; 103(6): 103716, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38703453

ABSTRACT

Coccidiosis, a protozoan disease that substantially impacts poultry production, is characterized by an intracellular parasite. The study utilized 48 one-day-old Horro chickens, randomly divided into the infected (I) and control (C) groups. The challenge group of chickens were administered Eimeria maxima oocysts via oral gavage at 21-days-old, and each chicken received 2 mL containing 7×104 sporulated oocysts. The total RNAs of chicken jejunum and cecum tissues were isolated from three samples, each from I and C groups. Our study aimed to understand the host immune-parasite interactions and compare immune response mRNA profiles in chicken jejunum and cecum tissues at 4 and 7 days postinfection with Eimeria maxima. The results showed that 823 up- and 737 down-regulated differentially expressed mRNAs (DEmRNAs) in jejunum at 4 d infection and control (J4I vs. J4C), and 710 up- and 368 down-regulated DEmRNAs in jejunum at 7 days infection and control (J7I vs. J7C) were identified. In addition, DEmRNAs in cecum tissue, 1424 up- and 1930 down-regulated genes in cecum at 4 days infection and control (C4I vs. C4C), and 77 up- and 191 down-regulated genes in cecum at 7 days infection and control (C7I vs. C7C) were detected. The crucial DEmRNAs, including SLC7A5, IL1R2, GLDC, ITGB6, ADAMTS4, IL1RAP, TNFRSF11B, IMPG2, WNT9A, and FOXF1, played pivotal roles in the immune response during Eimeria maxima infection of chicken jejunum. In addition, the potential detection of FSTL3, RBP7, CCL20, DPP4, PRKG2, TFPI2, and CDKN1A in the cecum during the host immune response against Eimeria maxima infection is particularly noteworthy. Furthermore, our functional enrichment analysis revealed the primary involvement of DEmRNAs in small molecule metabolic process, immune response function, inflammatory response, and toll-like receptor 10 signaling pathway in the jejunum at 4 and 7 days postinfection. Similarly, in the cecum, DEmRNAs at 4 and 7 days postinfection were enriched in processes related to oxidative stress response and immune responses. Our findings provide new insights and contribute significantly to the field of poultry production and parasitology.


Subject(s)
Cecum , Chickens , Coccidiosis , Eimeria , Jejunum , Poultry Diseases , RNA, Messenger , Animals , Eimeria/physiology , Coccidiosis/veterinary , Coccidiosis/parasitology , Coccidiosis/immunology , Cecum/parasitology , Cecum/metabolism , Poultry Diseases/parasitology , Poultry Diseases/genetics , Poultry Diseases/metabolism , Poultry Diseases/immunology , Jejunum/parasitology , Jejunum/metabolism , RNA, Messenger/metabolism , RNA, Messenger/genetics , Transcriptome , Random Allocation
5.
Parasite ; 31: 23, 2024.
Article in English | MEDLINE | ID: mdl-38759153

ABSTRACT

Eimeria tenella is an obligate intracellular parasite which causes great harm to the poultry breeding industry. Protein phosphorylation plays a vital role in host cell-E. tenella interactions. However, no comprehensive phosphoproteomic analyses of host cells at various phases of E. tenella infection have been published. In this study, quantitative phosphoproteomic analysis of chicken embryo DF-1 fibroblasts that were uninfected (UI) or infected with E. tenella for 6 h (PI6, the early invasion phase) or 36 h (PI36, the trophozoite development phase) was conducted. A total of 10,122 phosphopeptides matched to 3,398 host cell phosphoproteins were identified and 13,437 phosphorylation sites were identified. Of these, 491, 1,253, and 275 differentially expressed phosphorylated proteins were identified in the PI6/UI, PI36/UI, and PI36/PI6 comparisons, respectively. KEGG pathway enrichment analysis showed that E. tenella modulated host cell processes through phosphorylation, including focal adhesion, regulation of the actin cytoskeleton, and FoxO signaling to support its early invasion phase, and modulating adherens junctions and the ErbB signaling pathway to favor its trophozoite development. These results enrich the data on the interaction between E. tenella and host cells and facilitate a better understanding of the molecular mechanisms underlying host-parasite relationships.


Title: Analyse phosphoprotéomique quantitative de cellules DF-1 de poulet infectées par Eimeria tenella, par spectrométrie de masse avec marqueur de masse en tandem (TMT) et surveillance des réactions parallèles (PRM). Abstract: Eimeria tenella est un parasite intracellulaire obligatoire qui cause de graves dommages à l'industrie de l'élevage de volailles. La phosphorylation des protéines joue un rôle essentiel dans les interactions entre la cellule hôte et E. tenella. Cependant, aucune analyse phosphoprotéomique complète des cellules hôtes à différentes phases de l'infection par E. tenella n'a été publiée. Dans cette étude, une analyse phosphoprotéomique quantitative de fibroblastes DF-1 d'embryon de poulet non infectés (NI) ou infectés par E. tenella pendant 6 h (PI6, la phase d'invasion précoce) ou 36 h (PI36, la phase de développement des trophozoïtes) a été réalisée. Un total de 10 122 phosphopeptides correspondant à 3 398 phosphoprotéines de cellules hôtes ont été identifiés et 13 437 sites de phosphorylation ont été identifiés. Parmi celles-ci, 491, 1 253 et 275 protéines différentiellement phosphorylées exprimées ont été identifiées respectivement dans les comparaisons PI6/NI, PI36/NI et PI36/PI6. L'analyse d'enrichissement de la voie KEGG a montré qu'E. tenella modulait les processus de la cellule hôte par phosphorylation, y compris l'adhésion focale, la régulation du cytosquelette d'actine et la signalisation FoxO, pour aider sa phase d'invasion précoce, et la modulation des jonctions adhérentes et de la voie de signalisation ErbB pour favoriser le développement de son trophozoïte. Ces résultats enrichissent les données sur l'interaction entre E. tenella et les cellules hôtes et facilitent une meilleure compréhension des mécanismes moléculaires sous-jacents aux relations hôtes­parasites.


Subject(s)
Chickens , Eimeria tenella , Fibroblasts , Phosphoproteins , Proteomics , Tandem Mass Spectrometry , Animals , Eimeria tenella/physiology , Chickens/parasitology , Proteomics/methods , Phosphoproteins/analysis , Phosphoproteins/metabolism , Phosphorylation , Fibroblasts/parasitology , Cell Line , Poultry Diseases/parasitology , Host-Parasite Interactions , Coccidiosis/parasitology , Coccidiosis/veterinary , Chick Embryo , Signal Transduction
6.
Parasit Vectors ; 17(1): 221, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38745229

ABSTRACT

BACKGROUND: The chicken body louse is an obligate ectoparasite of domestic chickens. Chicken body lice feed on feathers, and infestation with this louse is linked to decreases in egg production, hen weight, and feed conversion efficiency. However, it is unknown how chicken body lice impact egg-laying chickens in cage-free environments. Welfare and behavior metrics were collected from flocks of egg-laying chickens either infested with chicken body lice or left uninfested. METHODS: In two trials, two flocks of cage-free commercial egg-laying chickens were infested with chicken body lice or maintained as uninfested controls. At three timepoints, behavior and welfare of all chickens was measured. On-animal sensors were used to quantify pecking, preening, and dustbathing behavior. Other animal-based welfare metrics included recording comb wounds and skin lesions. RESULTS: Birds infested with chicken body lice exhibited significantly more preening behaviors than uninfested birds, even at low louse levels. Moderate or severe skin lesions were detected on birds that were moderately infested with chicken body lice while skin lesions were never detected on uninfested birds. CONCLUSIONS: The welfare of chickens was impacted by the chicken body louse, a chewing louse that primarily feather feeds. Evidence of skin lesions on infested birds suggests that lice may cause more damage to birds than previously thought, and further evaluation of louse economic damage is necessary.


Subject(s)
Animal Welfare , Chickens , Housing, Animal , Poultry Diseases , Animals , Chickens/parasitology , Poultry Diseases/parasitology , Female , Behavior, Animal , Amblycera/physiology , Feathers/parasitology , Lice Infestations/veterinary , Lice Infestations/parasitology
7.
Parasit Vectors ; 17(1): 208, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38720313

ABSTRACT

BACKGROUND: Triatoma infestans, Triatoma brasiliensis, Triatoma pseudomaculata and Rhodnius prolixus are vectors of Trypanosoma cruzi, the etiological agent of Chagas disease. Chickens serve as an important blood food source for triatomines. This study aimed to assess the insecticidal activity of fluralaner (Exzolt®) administered to chickens against triatomines (R. prolixus, T. infestans, T. brasiliensis and T. pseudomaculata). METHODS: Twelve non-breed chickens (Gallus gallus domesticus) were randomized based on weight into three groups: negative control (n = 4); a single dose of 0.5 mg/kg fluralaner (Exzolt®) (n = 4); two doses of 0.5 mg/kg fluralaner (Exzolt®) (n = 4). Nymphs of 3rd, 4th and 5th instars of R. prolixus, T. infestans, T. brasiliensis and T. pseudomaculata (all n = 10) were allowed to feed on chickens before treatment, and at intervals of 1, 7, 14, 21, 28, 35 and 56 days after treatment, with insect mortality determined. RESULTS: Treatment with two doses of fluralaner showed higher insecticidal efficacy against R. prolixus, T. infestans and T. brasiliensis compared to the single-dose treatment. Similar insecticidal efficacy was observed for T. pseudomaculata for one and two doses of fluralaner. Insecticidal activity of fluralaner (Exzolt®) against triatomine bugs was noted up to 21 and 28 days after treatment with one and two doses of fluralaner, respectively. CONCLUSIONS: The results demonstrate that treatment of chickens with fluralaner (Exzolt®) induces insecticidal activity against triatomines for up to 28 days post-treatment, suggesting its potential use as a control strategy for Chagas disease in endemic areas.


Subject(s)
Chickens , Insecticides , Isoxazoles , Animals , Chickens/parasitology , Isoxazoles/pharmacology , Isoxazoles/administration & dosage , Insecticides/pharmacology , Insecticides/administration & dosage , Insect Vectors/drug effects , Chagas Disease/transmission , Chagas Disease/drug therapy , Chagas Disease/veterinary , Triatominae , Nymph/drug effects , Poultry Diseases/parasitology , Poultry Diseases/prevention & control , Triatoma/drug effects
8.
Vet Parasitol Reg Stud Reports ; 51: 101035, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38772641

ABSTRACT

The current investigation was carried out during the period from July 2022 to March 2023, aiming to investigate the prevalence of gastrointestinal helminths in domestic birds collected from traditional markets in Guilan province. One hundred forty-eight domestic birds, including chickens (Gallus gallus domesticus), domestic ducks (Anas platyrhynchos domesticus), greylag geese (Anser anser), and domestic turkeys (Meleagris gallopavo domesticus) were examined. Totally, 42.56% of the investigated birds were positive for helminthic parasites. Morphological analysis revealed varying infection rates among birds: Echinostoma revolutum (5.40%), Hypoderaeum conoideum (2.02%), Cloacotaenia megalops (0.67%), Hymenolepididae family (4.05%), Ascaridia galli (16.89%), and Heterakis gallinarum (4.72%). The investigation involved molecular analysis of the 18S and ITS1 + 5.8S + ITS2 rRNA gene regions. The findings indicated that the 18S region of nematode isolates exhibited a similarity of 92 to 100% with sequences in the GenBank, whereas trematode and cestode isolates showed a gene similarity ranging from 88 to 99%. The ITS regions of nematode, trematode, and cestode isolates exhibited genetic similarities ranging from 87 to 100%, 73-99%, and 75-99%, respectively. Furthermore, phylogenetic analysis confirmed the categorization of the identified species within the Ascaridiidae, Heterakidae, Hymenolepididae, and Echinostomatidae families, indicating their close affinity with previously documented species. Implementing precise control measures such as consistent monitoring, adequate sanitation protocols, and administering anthelmintic treatments is crucial for effectively managing parasitic infections in free-range and backyard poultry farms. Additionally, conducting further surveys is advisable to assess the impact of these parasites on the health and productivity of poultry in the investigated area.


Subject(s)
Helminthiasis, Animal , Animals , Helminthiasis, Animal/parasitology , Helminthiasis, Animal/epidemiology , Iran/epidemiology , One Health , Helminths/isolation & purification , Helminths/genetics , Helminths/classification , Prevalence , Poultry Diseases/parasitology , Poultry Diseases/epidemiology , Phylogeny , Bird Diseases/parasitology , Bird Diseases/epidemiology , Ducks/parasitology
9.
Sci Rep ; 14(1): 10702, 2024 05 10.
Article in English | MEDLINE | ID: mdl-38729976

ABSTRACT

Coccidiosis, an intestinal disease caused by Eimeria parasites, is responsible for major losses in the poultry industry by impacting chicken health. The gut microbiota is associated with health factors, such as nutrient exchange and immune system modulation, requiring understanding on the effects of Eimeria infection on the gut microbiota. This study aimed to determine the effects of Eimeria acervulina infection on the luminal and mucosal microbiota of the cecum (CeL and CeM) and ileum (IlL and IlM) at multiple time points (days 3, 5, 7, 10, and 14) post-infection. E. acervulina infection decreased evenness in CeL microbiota at day 10, increased richness in CeM microbiota at day 3 before decreasing richness at day 14, and decreased richness in IlL microbiota from day 3 to 10. CeL, CeM, and IlL microbiota differed between infected and control birds based on beta diversity at varying time points. Infection reduced relative abundance of bacterial taxa and some predicted metabolic pathways known for short-chain fatty acid production in CeL, CeM, and IlL microbiota, but further understanding of metabolic function is required. Despite E. acervulina primarily targeting the duodenum, our findings demonstrate the infection can impact bacterial diversity and abundance in the cecal and ileal microbiota.


Subject(s)
Cecum , Chickens , Coccidiosis , Eimeria , Gastrointestinal Microbiome , Ileum , Poultry Diseases , Animals , Chickens/microbiology , Chickens/parasitology , Cecum/microbiology , Cecum/parasitology , Eimeria/physiology , Ileum/microbiology , Ileum/parasitology , Coccidiosis/veterinary , Coccidiosis/parasitology , Poultry Diseases/microbiology , Poultry Diseases/parasitology , Intestinal Mucosa/microbiology , Intestinal Mucosa/parasitology
10.
BMC Vet Res ; 20(1): 171, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702696

ABSTRACT

BACKGROUND: Coccidiosis is one of the most frequently reported diseases in chickens, causing a significant economic impact on the poultry industry. However, there have been no previous studies evaluating the prevalence of this disease in broiler farms in Guangdong province. Therefore, this study aims to conduct an epidemiological investigation into the occurrence of Eimeria species and associated risk factors in intensive management conditions across four regions in Guangdong province, China. A total of 394 fecal samples were collected from 89 broiler farms in Guangdong province. The prevalence of Eimeria species infection was determined using PCR, and the occurrence of Clostridium perfringens type A was assessed using quantitative real-time PCR. RESULTS: The results showed an overall prevalence of 98.88% (88/89) at the farm level and 87.06% (343/394) at the flock level. All seven Eimeria species were identified, with E. acervulina (72.53%; 64/89), E. tenella (68.54%; 61/89), and E. mitis (66.29%; 59/89) at the farm level, and E. acervulina (36.55%; 144/394), E. mitis (35.28%; 139/394), and E. tenella (34.01%; 134/394) at the flock level. The predominant species combination observed was a co-infection of all seven Eimeria species (6.74%; 6/89), followed by a combination of E. acervulina, E. tenella, E. mitis, E. necatrix, E. brunetti, and E. maxima (5.62%, 5/89). A combination of E. acervulina, E. tenella, E. mitis, E. necatrix, E. brunetti, and E. praecox (4.49%; 4/89) was also observed at the farm level. Furthermore, the study identified several potential risk factors associated with the prevalence of Eimeria species, including farm location, chicken age, drinking water source, control strategy, and the presence of C. perfringens type A were identified as potential risk factors associated with prevalence of Eimeria species. Univariate and multivariate analyses revealed a significant association between E. necatrix infection and both grower chickens (OR = 10.86; 95% CI: 1.92-61.36; p < 0.05) and adult chickens (OR = 24.97; 95% CI: 4.29-145.15; p < 0.001) compared to starter chickens at the farm level. Additionally, farms that used groundwater (OR = 0.27; 95% CI: 0.08-0.94; p < 0.05) were less likely to have E. maxima compared to those that used running water. At the flock level, the prevalence of E. tenella was significantly higher in the Pearl River Delta (OR = 2.48; 95% CI: 1.0-6.15; p = 0.05) compared to eastern Guangdong. Interestingly, flocks with indigenous birds were less likely to have E. brunetti (OR = 0.48; 95% CI: 0.26-0.89; p < 0.05) compared to flocks with indigenous crossbred birds. Furthermore, flocks that used anticoccidial drugs (OR = 0.09; 95% CI: 0.03-0.31; p < 0.001) or a combination of vaccines and anticoccidial drugs (OR = 0.06; 95% CI: 0.01-0.25; p < 0.001) were less likely to be positive for E. tenella compared to flocks that only used vaccines. Finally, flocks with C. perfringens type A infection were significantly more likely to have E. necatrix (OR = 3.26; 95% CI: 1.96-5.43; p < 0.001), E. tenella (OR = 2.14; 95% CI: 1.36-3.36; p < 0.001), E. brunetti (OR = 2.48; 95% CI: 1.45-4.23; p < 0.001), and E. acervulina (OR = 2.62; 95% CI: 1.69-4.06; p < 0.001) compared to flocks without C. perfringens type A. CONCLUSIONS: This study conducted an investigation on the prevalence, distribution, and risk factors associated with Eimeria species infection in broiler chickens in Guangdong. The farm-level prevalence of Eimeria species was higher than the previous prevalence figures for other areas and countries. E. brunetti was identified at higher prevalence in Guangdong than previously survived prevalence in different regions in China. Farm location, chicken age, drinking water source, control strategy, and the presence of C. perfringens type A were considered as potential risk factors associated with prevalence of Eimeria species. It is imperative to underscore the necessity for further surveys to delve deeper into the occurrence of Eimeria species under intensive management conditions for different flock purposes.


Subject(s)
Chickens , Coccidiosis , Eimeria , Poultry Diseases , Animals , Eimeria/isolation & purification , Eimeria/classification , Coccidiosis/epidemiology , Coccidiosis/veterinary , Coccidiosis/parasitology , China/epidemiology , Poultry Diseases/epidemiology , Poultry Diseases/parasitology , Poultry Diseases/microbiology , Prevalence , Risk Factors , Feces/parasitology , Feces/microbiology , Clostridium perfringens/isolation & purification
11.
Eur J Protistol ; 94: 126089, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38749182

ABSTRACT

Chicken coccidiosis causes disastrous losses to the poultry industry all over the world. Eimeria tenella is the most prevalent of these disease-causing species. Our former RNA-seq indicated that E. tenella ankyrin repeat-containing protein (EtANK) was expressed differently between drug-sensitive (DS) and drug-resistant strains. In this study, we cloned EtANK and analyzed its translational and transcriptional levels using quantitative real-time PCR (qPCR) and western blotting. The data showed that EtANK was significantly upregulated in diclazuril-resistant (DZR) strain and maduramicin-resistant (MRR) strain compared with the drug-sensitive (DS) strain. In addition, the transcription levels in the DZR strains isolated from the field were higher than in the DS strain. The translation levels of EtANK were higher in unsporulated oocysts (UO) than in sporozoites (SZ), sporulated oocysts (SO), or second-generation merozoites (SM), and the protein levels in SM were significantly higher than in UO, SO, and SZ. The results of the indirect immunofluorescence localization showed that the protein was distributed mainly at the anterior region of SZ and on the surface and in the cytoplasm of SM. The fluorescence intensity increased further with its development in vitro. An anti-rEtANK polyclonal antibody inhibited the invasive ability of E. tenella in DF-1 cells. These results showed that EtANK may be related to host cell invasion, required for the parasite's growth in the host, and may be involved in the development of E. tenella resistance to some drugs.


Subject(s)
Ankyrin Repeat , Eimeria tenella , Protozoan Proteins , Triazines , Eimeria tenella/genetics , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Animals , Triazines/pharmacology , Chickens/parasitology , Coccidiostats/pharmacology , Nitriles/pharmacology , Drug Resistance/genetics , Coccidiosis/parasitology , Coccidiosis/veterinary , Poultry Diseases/parasitology , Benzamides/pharmacology , Lactones
12.
Vet Parasitol ; 328: 110174, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38579608

ABSTRACT

Raillietina species and Ascaridia galli are two of the significant intestinal parasites that affect chickens in a free-range system production. They destroy the intestinal mucosa layer, leading to several clinical symptoms such as weight loss, a slowed growth rate, and economic value loss. Thus, the objective of this study was to develop an assay for simultaneously detecting Raillietina spp. (R. echinobothrida, R. tetragona, and R. cesticillus) and A. galli in a single reaction using duplex loop-mediated isothermal amplification (dLAMP) coupled with a lateral flow dipstick (LFD) assay. The analytical specificity of the dLAMP-LFD assay showed a high specific amplification of Raillietina spp. and A. galli without non-target amplification. Regarding the analytical sensitivity, this approach was capable of simultaneously detecting concentrations as low as 5 pg/µL of mixed-targets. To evaluate the efficiency of the dLAMP assay, 30 faecal samples of chickens were verified and compared through microscopic examination. The dLAMP-LFD assay and microscopic examination results showed kappa values of Raillietina spp. and A. galli with moderate (K= 0.615) to high (K= 1) agreements, respectively, while the McNemar's test indicated that the efficiency between assays was not significantly different. Therefore, the developed dLAMP-LFD assay can be used as an alternative screening method to the existing classical method for epidemiological investigation, epidemic control, and farm management, as well as for addressing poultry health problems.


Subject(s)
Ascaridia , Ascaridiasis , Chickens , Nucleic Acid Amplification Techniques , Poultry Diseases , Sensitivity and Specificity , Animals , Chickens/parasitology , Nucleic Acid Amplification Techniques/veterinary , Nucleic Acid Amplification Techniques/methods , Poultry Diseases/parasitology , Poultry Diseases/diagnosis , Ascaridia/isolation & purification , Ascaridia/genetics , Ascaridiasis/veterinary , Ascaridiasis/diagnosis , Ascaridiasis/parasitology , Feces/parasitology , Molecular Diagnostic Techniques/veterinary , Molecular Diagnostic Techniques/methods
13.
Poult Sci ; 103(6): 103667, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38574462

ABSTRACT

A total of 576-day-old Ross 308 broilers chicks (male) were used to evaluate the effect of various levels of pistachio green hull aqueous extract (PHE) and Eimeria challenge on the growth performance, intestinal health and antioxidant capacity. During infection period (25-42 d), treatments included: 1) control + unchallenged (negative control, NC), 2) 200 ppm PHE + unchallenged, 3) 300 ppm PHE + unchallenged, 4) 400 ppm PHE + unchallenged, 5) control + challenged (positive control, PC), 6) 200 ppm PHE + challenged, 7) 300 ppm PHE + challenged and 8) 400 ppm PHE + challenged (with 6 replications for each treatment). The outcomes revealed that in the challenged birds, average body weight gain (ABW), daily weight gain (DWG), and feed conversion ratio (FCR) linearly improved with increasing the PHE levels (P < 0.05). Infected broilers had lower daily feed intake (DFI) compared to unchallenged birds (P < 0.05). Villus height (VH), villus height to crypt depth (VH: CD) ratio and villus surface area (VSA) reduced linearly (P < 0.05), while muscle layer thickness (MT) increased linearly in challenged birds (P < 0.05). The consumption of the PHE significantly reduced the excreta oocytes and duodenum and jejunum lesion scores in Eimeria-challenged broilers (P < 0.05). By increasing the PHE levels, total antioxidant capacity (TAC) and superoxide dismutase (SOD) levels increased (P < 0.05), while the Eimeria challenge reduced TAC, SOD, and glutathione peroxidase (GPx) levels (P <0.05). In general, the use of PHE in the broilers diet improved the antioxidant capacity, birds performance, but diminished the excreta oocytes and lesion scores with no negative effect on the intestinal morphology.


Subject(s)
Animal Feed , Antioxidants , Chickens , Coccidiosis , Diet , Eimeria , Pistacia , Plant Extracts , Poultry Diseases , Animals , Chickens/growth & development , Chickens/physiology , Coccidiosis/veterinary , Coccidiosis/parasitology , Coccidiosis/drug therapy , Eimeria/physiology , Eimeria/drug effects , Poultry Diseases/parasitology , Poultry Diseases/drug therapy , Antioxidants/metabolism , Antioxidants/administration & dosage , Plant Extracts/administration & dosage , Plant Extracts/pharmacology , Diet/veterinary , Male , Animal Feed/analysis , Pistacia/chemistry , Intestines/drug effects , Intestines/parasitology , Random Allocation , Dietary Supplements/analysis , Dose-Response Relationship, Drug
14.
Poult Sci ; 103(6): 103714, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38636202

ABSTRACT

We investigated the effects of supplementing low protein diets with methionine (Met) or threonine (Thr) during a mixed Eimeria (consisting of E. acervulina, E. maxima and E. tenella) challenge in broilers. All birds were fed the same starter diet (d1-9) and finisher diet (d28-35) which met Cobb 500 nutrient specifications. Birds were allocated to 1 of 4 dietary treatments from d9 to 28: a standard protein diet (19% CP); a low protein diet (16% CP); or the low protein diet supplemented with Met or Thr at 50% above recommendations. On d14, half of the birds were challenged, and half of the birds were unchallenged. From d14 to 28, feed intake was recorded daily and BW every 3 or 4 d. Oocyst excretion was measured daily from d18 to 27. On d21 and 28, 3 birds per pen were euthanized to assess nutrient digestibility, cytokine expression and intestinal histology. During the acute stage of the challenge, challenged birds reduced ADFI and ADG (P < 0.05). In the pre-patent and recovery stages, birds given the 16% CP diets increased ADFI (P < 0.05), meanwhile there were no differences in ADG in these stages (P > 0.05). Nutrient digestibility was reduced in challenged birds in the acute stage (P < 0.05) but tended to be greater than in unchallenged birds during the recovery stage. There was no significant effect of diet on oocyst excretion or intestinal histology (P > 0.05). Interactions were observed between diet and challenge on IL-10 and IL-21 expression in the cecal tonsils during the acute stage of the challenge (P < 0.05), due to reduced IL-10 expression in challenged Thr birds and greater IL-21 expression in challenged Met birds. Supplementation with Thr or Met had limited effects on the outcomes of a mixed Eimeria challenge but provides benefits to the host by enhancing their immune response.


Subject(s)
Animal Feed , Chickens , Coccidiosis , Diet, Protein-Restricted , Dietary Supplements , Eimeria , Methionine , Poultry Diseases , Threonine , Animals , Methionine/administration & dosage , Coccidiosis/veterinary , Coccidiosis/parasitology , Eimeria/physiology , Animal Feed/analysis , Threonine/administration & dosage , Poultry Diseases/parasitology , Dietary Supplements/analysis , Diet, Protein-Restricted/veterinary , Male , Diet/veterinary , Random Allocation
15.
Avian Dis ; 68(1): 56-64, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38687109

ABSTRACT

Intestinal health is one of the key factors required for the growth and production of turkeys. Histomoniasis (blackhead disease), caused by a protozoan parasite, Histomonas meleagridis, is a reemerging threat to the turkey industry. Increased incidences of histomoniasis have been reported in recent years due to withdrawal of antihistomonas treatments. H. meleagridis affects ceca and causes cecal inflammation and necrosis. H. meleagridis migrates from ceca to the liver and causes liver necrosis, resulting in high mortalities. Ironically, field outbreaks of histomoniasis are not always associated with high mortalities, while low mortalities have also been documented. There are several exacerbating factors associated with high mortality rates in histomoniasis outbreaks, with concurrent infection being one of them. Recurrent histomoniasis outbreaks in a newly constructed barn were documented, and concurrent infection of H. meleagridis and hemorrhagic enteritis virus was confirmed. Currently, neither commercial vaccines nor prophylactic or therapeutic solutions are available to combat histomoniasis. However, there are treatments, vaccines, and solutions to minimize or prevent concurrent infections in turkeys. In addition to implementing biosecurity measures, measures to prevent concurrent infections are critical steps that the turkey industry can follow to reduce mortality rates and minimize the production and economic losses associated with histomoniasis outbreaks.


Infección simultánea por Histomonas meleagridis y el virus de la enteritis hemorrágica en una parvada de pavos con antecedentes recurrentes de enfermedad de la cabeza negra. La salud intestinal es uno de los factores clave necesarios para el crecimiento y producción de los pavos. La histomoniasis (enfermedad de la cabeza negra), causada por un parásito protozoario, Histomonas meleagridis, es una amenaza reemergente para la industria del pavo. En los últimos años se ha informado de un aumento de la incidencia de histomoniasis debido al retiro de los tratamientos con antihistomonas. Histomonas meleagridis afecta los ciegos y causa inflamación y necrosis cecal. Histomonas meleagridis migra desde los ciegos al hígado y causa necrosis hepática, lo que resulta en una alta mortalidad. Irónicamente, los brotes de histomoniasis en el campo no siempre se asocian con una mortalidad elevada, aunque también se han documentado mortalidades bajas. Hay varios factores exacerbantes asociados con altas tasas de mortalidad en los brotes de histomoniasis, siendo la infección concurrente uno de ellos. Se documentaron brotes recurrentes de histomoniasis en un alojamiento avícola recién construido y se confirmó la infección concurrente de H. meleagridis y el virus de la enteritis hemorrágica. Actualmente no se dis-pone de vacunas comerciales ni soluciones profilácticas o terapéuticas para combatir la histomoniasis. Sin embargo, existen tratamientos, vacunas y soluciones para minimizar o prevenir infecciones concurrentes en los pavos. Además de implementar medidas de bioseguridad, las medidas para prevenir infecciones concurrentes son pasos críticos que la industria del pavo puede seguir para reducir las tasas de mortalidad y minimizar las pérdidas económicas y de producción asociadas con los brotes de histomoniasis.


Subject(s)
Poultry Diseases , Trichomonadida , Turkeys , Animals , Poultry Diseases/virology , Poultry Diseases/parasitology , Trichomonadida/isolation & purification , Protozoan Infections, Animal/parasitology , Protozoan Infections, Animal/epidemiology , Coinfection/veterinary , Coinfection/virology , Coinfection/parasitology , Disease Outbreaks/veterinary , Adenoviridae Infections/veterinary , Adenoviridae Infections/virology
16.
Int J Biol Macromol ; 269(Pt 1): 131807, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38670189

ABSTRACT

Coccidiosis is an important parasitic protozoan disease in poultry farming, causing huge economic losses in the global poultry industry every year. MicroRNAs (miRNAs) are a class of RNA macromolecules that play important roles in the immune response to pathogens. However, the expression profiles and functions of miRNAs during Eimeria tenella (E. tenella) infection in chickens remain mostly uncharacterized. In this study, high-throughput sequencing of cecal tissues of control (JC), resistant (JR), and susceptible (JS) chickens led to the identification of 35 differentially expressed miRNAs among the three groups. Functional enrichment analysis showed that the differentially expressed miRNAs were mainly associated with the TGF-beta, NF-kB, and Jak-STAT signaling pathways. Notably, gga-miR-2954 was found to be significantly upregulated after coccidial infection. Functional analysis showed that gga-miR-2954 inhibited the production of the inflammatory cytokines IL-6, IL-1ß, TNF-α, and IL-8 in sporozoite-stimulated DF-1 cells. Mechanistically, we found that gga-miR-2954 targeted the RORC gene and that RORC promoted the inflammatory response in sporozoite-stimulated DF-1 cells. In conclusion, our study was the first to identify differentially expressed miRNAs in chicken cecal tissue during E. tenella infection and found that gga-miR-2954 regulates the host immune response to coccidial infection in chickens by targeting the RORC gene.


Subject(s)
Chickens , Coccidiosis , Eimeria tenella , Gene Expression Profiling , MicroRNAs , Poultry Diseases , Animals , Cecum/parasitology , Cell Line , Coccidiosis/veterinary , Coccidiosis/immunology , Coccidiosis/genetics , Coccidiosis/parasitology , Cytokines/metabolism , Cytokines/genetics , Gene Expression Regulation , Inflammation/genetics , Inflammation/immunology , Inflammation/parasitology , MicroRNAs/genetics , Poultry Diseases/parasitology , Poultry Diseases/genetics , Poultry Diseases/immunology , Signal Transduction , Transcriptome , Male , Female
17.
J Anim Sci ; 1022024 Jan 03.
Article in English | MEDLINE | ID: mdl-38682892

ABSTRACT

This study was conducted to explore the effect of dietary supplementation of water-soluble extract of rosemary (WER) on growth performance and intestinal health of broilers infected with Eimeria tenella (E. tenella), and evaluate the anticoccidial activity of WER. 360 1-d-old Chinese indigenous male yellow-feathered broiler chickens were randomly allocated to six groups: blank control (BC) group and infected control (IC) group received a basal diet; positive control (PC) group, received a basal diet supplemented with 200 mg/kg diclazuril; WER100, WER200, and WER300 groups received a basal diet containing 100, 200, and 300 mg/kg WER, respectively. On day 21, all birds in the infected groups (IC, PC, WER100, WER200, and WER300) were orally gavaged with 1 mL phosphate-buffered saline (PBS) of 8 × 104 sporulated oocysts of E. tenella, and birds in the BC group were administrated an aliquot of PBS dilution. The results showed that dietary supplementation of 200 mg/kg WER increased the average daily gain of broilers compared to the IC group from days 22 to 29 (P < 0.001). The anticoccidial index values of 100, 200, and 300 mg/kg WER were 137.49, 157.41, and 144.22, respectively, which indicated that WER exhibited moderate anticoccidial activity. Compared to the IC group, the groups supplemented with WER (100, 200, and 300 mg/kg) significantly lowered fecal oocyst output (P < 0.001) and cecal coccidia oocysts, alleviated intestinal damage and maintained the integrity of intestinal epithelium. Dietary supplementation with WER significantly improved antioxidant capacity, elevated the levels of secretory immunoglobulin A, and diminished inflammation within the cecum, particularly at a dosage of 200 mg/kg. The results of this study indicated that dietary supplementation with 200 mg/kg WER could improve broiler growth performance and alleviate intestinal damage caused by coccidiosis.


Avian coccidiosis, a prevalent parasitic disease caused by Eimeria protozoa, leads to significant economic losses in the global poultry industry. Currently, the control of coccidiosis in chickens primarily relies on chemical and ionophore anticoccidials. However, the long-term use of these compounds has resulted in the development of drug-resistant strains, presenting a critical challenge. Additionally, the toxic and side effects of ionophore anticoccidials have become increasingly apparent. Thus, there is an urgent need to find economical and environmentally friendly measures to control coccidiosis in chickens. In this study, we established a model of Eimeria tenella infection in broilers to explore whether the water-soluble extract of rosemary (WER) could serve as an alternative method for controlling avian coccidiosis. Our results showed that dietary supplementation with WER (100, 200, and 300 mg/kg) had a beneficial anticoccidial effect, alleviating intestinal damage caused by coccidiosis by enhancing the intestinal antioxidant defense and activating the immune function of the infected broilers. Specifically, dietary supplementation with 200 mg/kg WER emerged as a promising strategy for controlling avian coccidiosis in the poultry industry.


Subject(s)
Animal Feed , Chickens , Coccidiosis , Diet , Dietary Supplements , Eimeria tenella , Plant Extracts , Poultry Diseases , Rosmarinus , Animals , Coccidiosis/veterinary , Coccidiosis/drug therapy , Coccidiosis/parasitology , Eimeria tenella/drug effects , Poultry Diseases/parasitology , Poultry Diseases/drug therapy , Poultry Diseases/prevention & control , Dietary Supplements/analysis , Male , Plant Extracts/pharmacology , Plant Extracts/administration & dosage , Plant Extracts/chemistry , Animal Feed/analysis , Diet/veterinary , Rosmarinus/chemistry , Intestines/drug effects , Intestines/parasitology , Coccidiostats/pharmacology , Coccidiostats/administration & dosage , Random Allocation
18.
Res Vet Sci ; 172: 105249, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38579633

ABSTRACT

The effect of salinomycin sodium alone and in combination with functional oils on performance and microbiota of broiler infected Eimeria were evaluated. 512 broilers were randomly assigned to 4 treatments (8 replicates, 16 birds/pen): a Control group (any additives); Ionophore group: salinomycin supplementation at 66 ppm (SS66); Ionophore +0.075% Functional oil (FO) group (SS66 + FO supplementation at 750 ppm); and Ionophore +0.10% FO group (SS66 + FO supplementation at 1000 ppm). At 14 days of age, birds were gavaged with 1 mL of a saline solution containing sporulated oocysts of E. tenella, E. acervulina and E. maxima. Performance indices were measured weekly. At 28 days, intestinal content was collected for microbiota analysis. Broilers of Control group presented the worst performance indices. Broilers of Ionophore + FO (0.075% and 0.10%) groups exhibited a higher BW at 28 days of age. The supplementation of Ionophore +0.075% FO resulted in a higher relative proportion of Firmicutes and a lower proportion of Actinobacteria in the ileum-jejunum. Lactobacillaceae was the dominant family in the jejunal, and ileal microbiotas of broilers fed diets supplemented with Ionophore, Ionophore +0.075% FO and Ionophore +0.10% FO. The supplementation of ionophore yielded higher numbers of Lactobacillaceae, Enterobactereaceae and Cloritridiaceae in the cecal. Ionophore associated with FO controlled the Lactobacillaceae, Enterobactereaceae and Cloritridiaceae families present in the cecum. Therefore, the combination of salinomycin with functional oil showed synergistic effect on performance and modulation of intestinal microbiota of broilers challenged with Eimeria.


Subject(s)
Animal Feed , Chickens , Coccidiosis , Diet , Dietary Supplements , Eimeria , Gastrointestinal Microbiome , Polyether Polyketides , Poultry Diseases , Pyrans , Animals , Chickens/growth & development , Pyrans/pharmacology , Pyrans/administration & dosage , Coccidiosis/veterinary , Coccidiosis/drug therapy , Coccidiosis/parasitology , Gastrointestinal Microbiome/drug effects , Eimeria/drug effects , Poultry Diseases/parasitology , Poultry Diseases/microbiology , Poultry Diseases/drug therapy , Animal Feed/analysis , Diet/veterinary , Random Allocation , Ionophores/pharmacology , Ionophores/administration & dosage , Coccidiostats/pharmacology , Coccidiostats/administration & dosage , Male
19.
Infect Genet Evol ; 120: 105584, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38521481

ABSTRACT

Management of Dermanyssus gallinae, a cosmopolitan hematophagous mite responsible for damage in layer poultry farming, is hampered by a lack of knowledge of its spatio-temporal population dynamics. Previous studies have shown that the circulation of this pest between farms is of strictly anthropogenic origin, that a mitochondrial haplogroup has been expanding on European farms since the beginning of the 21st century and that its local population growth may be particularly rapid. To refine our understanding of how D. gallinae spreads within and among farms, we characterized the genetic structure of mite populations at different spatial scales and sought to identify the main factors interrupting gene flow between poultry houses and between mitochondrial haplogroups. To this end, we selected and validated the first set of nuclear microsatellite markers for D. gallinae and sequenced a region of the CO1-encoding mitochondrial gene in a subsample of microsatellite-genotyped mites. We also tested certain conditions required for effective contamination of a poultry house through field experimentation, and conducted a survey of practices during poultry transfers. Our results confirm the role of poultry transport in the dissemination of mite populations, but the frequency of effective contamination after the introduction of contaminated material into poultry houses seems lower than expected. The high persistence of mites on farms, even during periods when poultry houses are empty and cleaned, and the very large number of nodes in the logistic network (large number of companies supplying pullets or transporting animals) undoubtedly explain the very high prevalence on farms. Substantial genetic diversity was measured in farm populations, probably as a result of the mite's known haplodiploid mode of sexual reproduction, coupled with the dense logistic network. The possibility of the occasional occurrence of asexual reproduction in this sexually reproducing mite was also revealed in our analyses, which could explain the extreme aggressiveness of its demographic dynamics under certain conditions.


Subject(s)
Microsatellite Repeats , Mite Infestations , Mites , Animals , Mites/genetics , Mite Infestations/veterinary , Mite Infestations/parasitology , Poultry Diseases/parasitology , Chickens/parasitology , Poultry/parasitology , Farms , Gene Flow , Haplotypes , Genetic Variation
20.
Poult Sci ; 103(6): 103660, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38552568

ABSTRACT

Coccidiosis caused by Eimeria spp. results in substantial economic losses in the poultry industry. The objective of this study was to investigate the effects of dietary supplementation with n-3 polyunsaturated fatty acids-enriched fish oil on growth performance, intestinal barrier integrity, and intestinal immune response of broilers challenged with Eimeria spp. A total of 576 fourteen-day-old broilers were randomly assigned in a completely randomized design with a 3 × 2 factorial arrangement, comprising 2 diets supplemented with either 5% fish oil or 5% soybean oil, and 3 Eimeria spp. infection levels: a nonchallenge control, a low dose of Eimeria challenge, and a high challenge dose. The results of the study revealed significant interactions between diet and Eimeria challenge to parameters of gut barrier integrity and feed intake. A significant interaction was observed in feed intake between 5 and 8 d postinfection (DPI), where the fish oil groups exhibited a higher amount of feed intake compared to the soybean oil diet groups after coccidiosis infection. The effects of the fish oil diet resulted in enhanced gut barrier integrity, as evidenced by a trend of decreased gastrointestinal leakage and a lower mean of small intestine lesion scores after Eimeria challenge. Additionally, significant interactions were noted between Eimeria spp. challenge and diet regarding jejunal crypt depth. The positive impact of the fish oil diet was particularly noticeable with the high Eimeria challenge dose. Overall, these findings underscore the relationship between the fish oil diet and Eimeria challenge on broiler chicken intestinal health. Dietary supplementation of fish oil has the potential to maintain small intestine barrier integrity with severe Eimeria infection conditions.


Subject(s)
Animal Feed , Chickens , Coccidiosis , Diet , Dietary Supplements , Eimeria , Fatty Acids, Omega-3 , Fish Oils , Poultry Diseases , Animals , Chickens/physiology , Coccidiosis/veterinary , Coccidiosis/parasitology , Coccidiosis/immunology , Fish Oils/administration & dosage , Fish Oils/pharmacology , Poultry Diseases/parasitology , Animal Feed/analysis , Eimeria/physiology , Diet/veterinary , Dietary Supplements/analysis , Fatty Acids, Omega-3/administration & dosage , Fatty Acids, Omega-3/pharmacology , Intestines/parasitology , Intestines/drug effects , Random Allocation , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...