Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 565
Filter
1.
Adv Exp Med Biol ; 1451: 21-33, 2024.
Article in English | MEDLINE | ID: mdl-38801569

ABSTRACT

In the last 4 years, the world has experienced two pandemics of bat-borne viruses. Firstly, in 2019 the SARS-CoV-2 pandemic started and has been causing millions of deaths around the world. In 2022, a Monkeypox pandemic rose in various countries of the world. Those pandemics have witnessed movements and initiatives from healthcare and research institutions to establish a worldwide understanding to battle any future pandemics and biological threats. One Health concept is a modern, comprehensive, unifying ways to improve humans, animals, and ecosystems' health. This concept shows how much they are intertwined and related to one another, whether it is an environmental, or a pathological relation. This review aims to describe Poxviridae and its impact on the One Health concept, by studying the underlying causes of how poxviruses can affect the health of animals, humans, and environments. Reviewing the effect of disease transmission between animal to human, human to human, and animal to animal with pox viruses as a third party to achieve a total understanding of infection and viral transmission. Thus, contributing to enhance detection, diagnosis, research, and treatments regarding the application of One Health.


Subject(s)
One Health , Poxviridae Infections , Poxviridae , Humans , Animals , Poxviridae Infections/virology , Poxviridae Infections/transmission , Poxviridae Infections/epidemiology , Poxviridae/physiology , Poxviridae/pathogenicity , Poxviridae/genetics , COVID-19/virology , COVID-19/transmission , COVID-19/epidemiology , Zoonoses/virology , Zoonoses/transmission , Zoonoses/epidemiology , SARS-CoV-2/pathogenicity , SARS-CoV-2/physiology , Pandemics , Viral Zoonoses/transmission , Viral Zoonoses/virology , Viral Zoonoses/epidemiology
2.
Adv Exp Med Biol ; 1451: 111-124, 2024.
Article in English | MEDLINE | ID: mdl-38801574

ABSTRACT

Poxviruses are large (200-450 nm) and enveloped viruses carrying double-stranded DNA genome with an epidermal cell-specific adaptation. The genus Orthopoxvirus within Poxviridae family constitutes several medically and veterinary important viruses including variola (smallpox), vaccinia, monkeypox virus (MPXV), and cowpox. The monkeypox disease (mpox) has recently emerged as a public health emergency caused by MPXV. An increasing number of human cases of MPXV have been documented in non-endemic nations without any known history of contact with animals brought in from endemic and enzootic regions, nor have they involved travel to an area where the virus was typically prevalent. Here, we review the MPXV replication, virus pathobiology, mechanism of viral infection transmission, virus evasion the host innate immunity and antiviral therapies against Mpox. Moreover, preventive measures including vaccination were discussed and concluded that cross-protection against MPXV may be possible using antibodies that are directed against an Orthopoxvirus. Despite the lack of a specialised antiviral medication, several compounds such as Cidofovir and Ribavirin warrant consideration against mpox.


Subject(s)
Monkeypox virus , Mpox (monkeypox) , Orthopoxvirus , Humans , Animals , Monkeypox virus/genetics , Monkeypox virus/pathogenicity , Monkeypox virus/immunology , Orthopoxvirus/genetics , Orthopoxvirus/immunology , Orthopoxvirus/classification , Mpox (monkeypox)/virology , Mpox (monkeypox)/transmission , Mpox (monkeypox)/epidemiology , Antiviral Agents/therapeutic use , Antiviral Agents/pharmacology , Virus Replication , Poxviridae Infections/virology , Poxviridae Infections/transmission , Poxviridae Infections/prevention & control , Poxviridae Infections/immunology
3.
Adv Exp Med Biol ; 1451: 205-217, 2024.
Article in English | MEDLINE | ID: mdl-38801580

ABSTRACT

The family Poxviridae is a large family of viruses with a ubiquitous distribution, subdivided into two subfamilies: Chordopoxvirinae (poxviruses of vertebrates) and Entomopoxvirinae (poxviruses of insects). Only three species from the first subfamily, Orthopoxvirus (OPV), Molluscipoxvirus and Parapoxvirus, can infect the human being. In the paediatric population, viruses belonging to the first two subfamilies have the greatest importance. Following the eradication of smallpox in 1980, vaccination of the general population was discontinued after careful consideration of the risks and benefits. However, nearly all children and most of the world's population had little to no protection against OPV. The aim of this chapter is to review the current evidence on the aetiology, clinical manifestations, diagnosis and management of Poxviridae infections in children.


Subject(s)
Poxviridae Infections , Poxviridae , Humans , Child , Poxviridae Infections/virology , Poxviridae Infections/epidemiology , Poxviridae Infections/diagnosis , Poxviridae/classification , Poxviridae/genetics , Poxviridae/pathogenicity , Child, Preschool , Infant , Animals
4.
Adv Exp Med Biol ; 1451: 183-204, 2024.
Article in English | MEDLINE | ID: mdl-38801579

ABSTRACT

Poxviridae family includes several viruses that infecting humans usually causes skin lesions only, but in some cases their clinical course is complicated by viral pneumonia (with or without bacterial superinfections). Historically variola virus has been the poxviridae most frequently associated with the development of pneumonia with many large outbreaks worldwide before its eradication in 1980. It is still considered a biological threat for its potential in biological warfare and bioterrorism. Smallpox pneumonia can be severe with the onset of acute respiratory distress syndrome (ARDS) and death. Vaccinia virus, used for vaccination against smallpox exceptionally, in immunocompromised patients, can induce generalized (with also lung involvement) severe disease after vaccination. MPXV virus occasionally can cause pneumonia particularly in immunocompromised patients. The pathophysiology of poxviridae pneumonia is still an area of active research; however, in animal models these viruses can cause both direct damage to the lower airways epithelium and a hyperinflammatory syndrome, like a cytokine storm. Multiple mechanisms of immune evasion have also been described. The treatment of poxviridae pneumonia is mainly based on careful supportive care. Despite the absence of randomized clinical trials in patients with poxviridae pneumonia there are antiviral drugs, such as tecovirimat, cidofovir and brincidofovir, FDA-approved for use in smallpox and also available under an expanded access protocol for treatment of MPXV. There are 2 (replication-deficient modified vaccinia Ankara and replication-competent vaccinia virus) smallpox vaccines FDA-approved with the first one also approved for prevention of MPXV in adults that are at high risk of infection.


Subject(s)
Antiviral Agents , Poxviridae Infections , Humans , Animals , Poxviridae Infections/drug therapy , Poxviridae Infections/virology , Poxviridae Infections/immunology , Antiviral Agents/therapeutic use , Pneumonia, Viral/virology , Pneumonia, Viral/drug therapy , Pneumonia, Viral/complications , Poxviridae/pathogenicity , Poxviridae/physiology , Poxviridae/genetics , Vaccinia virus/pathogenicity , Vaccinia virus/physiology , Smallpox/virology , Smallpox/prevention & control , Variola virus/pathogenicity , Variola virus/genetics
5.
Adv Exp Med Biol ; 1451: 239-252, 2024.
Article in English | MEDLINE | ID: mdl-38801582

ABSTRACT

Although WHO-led global efforts led to eradication of smallpox over four decades ago, other poxviruses, especially monkeypox, have re-emerged to occupy the ecological niche vacated by smallpox. Many of these viruses produce similar lesions thus mandating a prompt laboratory confirmation. There has been considerable evolution in the techniques available to diagnose these infections and differentiate between them. With the 2022 multi-country outbreak of monkeypox, significant efforts were made to apprise the laboratory diagnosis of the virus and numerous real-time-PCR-based assays were made commercially available. This chapter discusses the sample collection and biosafety aspects along with the repertoire of diagnostic modalities, both traditional and emerging, for poxviruses which a special focus on monkeypox. The advantages and disadvantages of each technique have been illustrated. We have also reflected upon the newer advances and the existing lacunae.


Subject(s)
Poxviridae Infections , Humans , Poxviridae Infections/diagnosis , Poxviridae Infections/virology , Poxviridae/genetics , Poxviridae/isolation & purification , Animals , Smallpox/diagnosis , Smallpox/virology , Smallpox/epidemiology , Real-Time Polymerase Chain Reaction/methods , Mpox (monkeypox)/diagnosis , Mpox (monkeypox)/virology , Mpox (monkeypox)/epidemiology
6.
Adv Exp Med Biol ; 1451: 399-412, 2024.
Article in English | MEDLINE | ID: mdl-38801593

ABSTRACT

Historically, biological agents have been used to target various populations. One of the earliest examples could be the catastrophic effect of smallpox in Australia in the eighteenth century (as alleged by some historians). Modern biological techniques can be used to both create or provide protection against various agents of biological warfare. Any microorganism (viruses, bacteria, and fungi) or its toxins can be used as biological agents. Minnesota Department of Health has listed Smallpox (variola major) as a category A bioterrorism agent, even though it has been eradicated in 1980 through an extensive vaccination campaign. Category A agents are considered the highest risk to public health. Laboratory-associated outbreaks of poxviruses could cause unprecedented occupational hazards. Only two WHO-approved BSL-4 facilities in the United States and Russia are allowed to perform research on the variola virus. So, poxviruses present themselves as a classical case of a dual-use dilemma, since research with them can be used for both beneficial and harmful purposes. Although the importance of ethics in scientific research requires no further elaboration, ethical norms assume greater significance during experimentation with poxviruses. In this chapter, we will update the readers on the sensitive nature of conducting research with poxviruses, and how these viruses can be a source of potential biological weapons. Finally, specified ethical guidelines are explored to ensure safe research practices in virology.


Subject(s)
Biological Warfare Agents , Biological Warfare , Humans , Biological Warfare Agents/ethics , Biological Warfare/ethics , Poxviridae/genetics , Bioterrorism/ethics , Bioterrorism/prevention & control , Animals , Smallpox/prevention & control , Smallpox/virology , Poxviridae Infections/virology , Poxviridae Infections/prevention & control , Biomedical Research/ethics
7.
Adv Exp Med Biol ; 1451: 337-354, 2024.
Article in English | MEDLINE | ID: mdl-38801589

ABSTRACT

Poxviruses target innate immunity mediators such as tumor necrosis factors, interleukins, interferons, complement, and chemokines. It also targets adaptive immunity such as CD4+ T cells, CD4+ T cells, and B cells. Emerging of the recent epidemic of monkeypox virus (MPXV), a zoonotic disease native to Central and Western Africa, besides the lack of permitted treatments for poxviruses infections, encouraged researchers to identify effective inhibitors to help in preventing and treating poxviruses infections. Natural bioactive components, particularly polyphenolics, are promising for creating powerful antioxidants, anti-inflammatory, immune-stimulating, and antiviral agents. As a result, they are potentially effective therapies for preventing and treating viral diseases, such as infections caused by poxviruses including the recent pandemic MPXV. Polyphenolics: rosmarinic acid, caffeic acid, resveratrol, quercitrin, myricitrin, gingerol, gallotannin, and propolis-benzofuran A, as well as isoquinoline alkaloids: galanthamine and thalimonine represent prospective antiviral agents against MPXV, they can inhibit MPXV and other poxviruses via targeting different viral elements including DNA Topoisomerase I (TOP1), Thymidine Kinase (TK), serine/threonine protein kinase (Ser/Thr kinase), and protein A48R. The bioactive extracts of different traditional plants including Guiera senegalensis, Larrea tridentata, Sarracenia purpurea, Kalanchoe pinnata (Lam.) Pers., Zingiber officinale Roscoe, Quercus infectoria, Rhus chinensis, Prunella vulgaris L., Salvia rosmarinus, and Origanum vulgare also can inhibit the growth of different poxviruses including MPXV, vaccinia virus (VACV), variola virus, buffalopox virus, fowlpox virus, and cowpox virus. There is an urgent need for additional molecular studies to identify and confirm the anti-poxviruses properties of various natural bioactive components, especially those that showed potent antiviral activity against other viruses.


Subject(s)
Antiviral Agents , Poxviridae Infections , Poxviridae , Humans , Poxviridae Infections/drug therapy , Poxviridae Infections/virology , Poxviridae Infections/immunology , Animals , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Antiviral Agents/chemistry , Poxviridae/drug effects , Immunomodulating Agents/pharmacology , Immunomodulating Agents/therapeutic use , Immunomodulating Agents/chemistry , Complementary Therapies/methods , Biological Products/pharmacology , Biological Products/therapeutic use , Biological Products/chemistry
8.
Adv Exp Med Biol ; 1451: 331-336, 2024.
Article in English | MEDLINE | ID: mdl-38801588

ABSTRACT

Poxviruses belong to the family of double-stranded DNA viruses, and it is pathogenic for humans and spread worldwide. These viruses cause infections and various diseases in human. So, it is required to develop new drugs for the treatment of smallpox or other poxvirus infections. Very few potential compounds for the treatment of poxvirus such as smallpox, chickenpox, and monkeypox have been reported. Most of the compounds has used as vaccines. Cidofovir is most commonly used as a vaccine for the treatment of poxviruses. There are no phytochemicals reported for the treatment of poxviruses. Very few phytochemicals are under investigation for the treatment of poxviruses.


Subject(s)
Antiviral Agents , Poxviridae , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Humans , Poxviridae/drug effects , Poxviridae/physiology , Poxviridae/genetics , Animals , Poxviridae Infections/drug therapy , Poxviridae Infections/virology , Phytochemicals/therapeutic use , Phytochemicals/pharmacology , Phytochemicals/chemistry
9.
Viruses ; 16(5)2024 05 03.
Article in English | MEDLINE | ID: mdl-38793608

ABSTRACT

In 2022, an unprecedented outbreak of mpox raged in several nations. Sequences from the 2022 outbreak reveal a higher nucleotide substitution if compared with the estimated rate for orthopoxviruses. Recently, intra-lesion SNVs (single nucleotide variants) have been described, and these have been suggested as possible sources of genetic variation. Until now, it has not been clear if the presence of several SNVs could represents the result of local mutagenesis or a possible co-infection. We investigated the significance of SNVs through whole-genome sequencing analysis of four unrelated mpox cases. In addition to the known mutations harboured by the circulating strains of virus (MPXV), 7 novel mutations were identified, including SNVs located in genes that are involved in immune evasion mechanisms and/or viral fitness, six of these appeared to be APOBEC3-driven. Interestingly, three patients exhibited the coexistence of mutated and wild-type alleles for five non-synonymous variants. In addition, two patients, apparently unrelated, showed an analogous pattern for two novel mutations, albeit with divergent frequencies. The coexistence of mixed viral populations, harbouring non-synonymous mutations in patients, supports the hypothesis of possible co-infection. Additional investigations of larger clinical cohorts are essential to validating intra-patient viral genome heterogeneity and determining the possibility of co-presence events of slightly divergent MPXV strains.


Subject(s)
Disease Outbreaks , Genome, Viral , Mutation , Whole Genome Sequencing , Humans , Italy/epidemiology , Male , Orthopoxvirus/genetics , Orthopoxvirus/classification , Poxviridae Infections/virology , Poxviridae Infections/epidemiology , Poxviridae Infections/veterinary , Female , Coinfection/virology , Coinfection/epidemiology , Phylogeny , Polymorphism, Single Nucleotide , Middle Aged , Genetic Variation
11.
Avian Dis ; 68(1): 33-37, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38687105

ABSTRACT

The aim of this study was to develop a multiplex PCR assay capable of rapidly differentiating two major Avipoxvirus (APV) species, Fowlpox virus (FWPV) and Pigeonpox virus (PGPV), which cause disease in bird species. Despite the importance of a rapid differentiation assay, no such assay exists that can differentiate the APV species without sequencing. To achieve this, species-specific target DNA fragments were selected from the fpv122 gene of FWPV and the HM89_gp120 gene of PGPV, which are unique to each genome. Nine samples collected from unvaccinated chickens, pigeons, and a turkey with typical pox lesions were genetically identified as FWPV and PGPV. The designed primers and target DNA fragments were validated using in silico analyses with the nucleotide Basic Local Alignment Search Tool. The multiplex PCR assay consisted of species-specific primers and previously described PanAPV primers (genus-specific) and was able to differentiate FWPV and PGPV, consistent with the phylogenetic outputs. This study represents the first successful differentiation of FWPV and PGPV genomes using a conventional multiplex PCR test. This assay has the potential to facilitate the rapid diagnosis and control of APV infections.


Desarrollo de un ensayo de PCR múltiple para la diferenciación rápida de los virus de la viruela aviar y la viruela de paloma. El objetivo de este estudio fue desarrollar un ensayo de PCR múltiple capaz de diferenciar rápidamente dos especies principales de Avipoxvirus (APV) (viruela del pollo), el Fowlpox virus (FWPV) y el Pigeonpox virus (PGPV), (viruela de la gallina), que causan enfermedades en especies de aves. A pesar de la importancia de un ensayo de diferenciación rápida, no existe ningún ensayo que pueda diferenciar las especies de APV sin secuenciación. Para lograr esto, se seleccionaron fragmentos blanco de ADN específicos de especie del gene fpv122 de FWPV y el gene HM89_gp120 de Pigeonpox virus, que son únicos para cada genoma. Nueve muestras recolectadas de pollos, palomas y un pavo que no fueron vacunados con lesiones típicas de la viruela se identificaron genéticamente como FWPV y PGPV. Los iniciadores diseñados y los fragmentos de ADN blanco se validaron mediante análisis in silico mediante la herramienta de búsqueda de alineación local básica de nucleótidos (BLAST). El ensayo de PCR múltiple consistió en iniciadores específicos de especie y cebadores PanAPV previamente descritos (específicos de género) y fue capaz de diferenciar entre Fowlpox virus y Pigeonpox virus, de acuerdo con los resultados filogenéticos. Este estudio representa la primera diferenciación exitosa de los genomas de Fowlpox virus y Pigeonpox virus utilizando una prueba de PCR múltiple convencional. Este ensayo tiene el potencial de facilitar el diagnóstico rápido y el control de las infecciones por Avipoxvirus.


Subject(s)
Avipoxvirus , Chickens , Columbidae , Fowlpox virus , Multiplex Polymerase Chain Reaction , Poultry Diseases , Poxviridae Infections , Animals , Multiplex Polymerase Chain Reaction/veterinary , Multiplex Polymerase Chain Reaction/methods , Fowlpox virus/genetics , Fowlpox virus/isolation & purification , Poxviridae Infections/veterinary , Poxviridae Infections/virology , Poxviridae Infections/diagnosis , Poultry Diseases/virology , Poultry Diseases/diagnosis , Avipoxvirus/genetics , Avipoxvirus/isolation & purification , Avipoxvirus/classification , Turkeys , Fowlpox/virology , Fowlpox/diagnosis , Species Specificity , Phylogeny , Bird Diseases/virology , Bird Diseases/diagnosis
12.
Nat Microbiol ; 9(5): 1231-1243, 2024 May.
Article in English | MEDLINE | ID: mdl-38649413

ABSTRACT

The 2022 mpox virus (MPXV) outbreak was sustained by human-to-human transmission; however, it is currently unclear which factors lead to sustained transmission of MPXV. Here we present Mastomys natalensis as a model for MPXV transmission after intraperitoneal, rectal, vaginal, aerosol and transdermal inoculation with an early 2022 human outbreak isolate (Clade IIb). Virus shedding and tissue replication were route dependent and occurred in the presence of self-resolving localized skin, lung, reproductive tract or rectal lesions. Mucosal inoculation via the rectal, vaginal and aerosol routes led to increased shedding, replication and a pro-inflammatory T cell profile compared with skin inoculation. Contact transmission was higher from rectally inoculated animals. This suggests that transmission might be sustained by increased susceptibility of the anal and genital mucosae for infection and subsequent virus release.


Subject(s)
Mucous Membrane , Poxviridae Infections , Virus Shedding , Animals , Female , Mucous Membrane/virology , Poxviridae Infections/transmission , Poxviridae Infections/virology , Poxviridae Infections/veterinary , Humans , Virus Replication , Disease Models, Animal , Rodentia/virology , Male , Rats , Vagina/virology , Disease Outbreaks
13.
Dis Aquat Organ ; 158: 55-64, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38661137

ABSTRACT

Cetacean poxvirus (CePV) is the causative agent of tattoo skin disease (TSD) in dolphins, porpoises and whales, a condition characterized by pinhole, ring-like lesions or generalized tattoo-like skin lesions. This study genetically characterized cetacean poxviruses from stranded animals along mainland Portugal. Samples from skin lesions compatible with TSD were obtained from 4 odontocete species (Delphinus delphis, Stenella coeruleoalba, Phocoena phocoena, and Tursiops truncatus) and analyzed using a conventional PCR assay targeting the DNA polymerase gene partially. Among the positive samples (n = 29, 65.9%), a larger DNA polymerase gene fragment was obtained, allowing a robust phylogenetic analysis. Nineteen samples (43.2%) were successfully amplified and sequenced using Sanger sequencing. By combining 11 of these sequences with those from public databases, a maximum likelihood phylogenetic tree was constructed, revealing high heterogeneity within the group. These findings contribute to a better understanding of the genetic diversity, epidemiology, phylogenetics, and evolution of CePV.


Subject(s)
Cetacea , Phylogeny , Poxviridae Infections , Poxviridae , Animals , Portugal/epidemiology , Poxviridae/genetics , Poxviridae/isolation & purification , Poxviridae/classification , Poxviridae Infections/veterinary , Poxviridae Infections/virology , Poxviridae Infections/epidemiology , Cetacea/virology
15.
J Fish Dis ; 47(6): e13934, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38421376

ABSTRACT

Carp oedema virus (CEV) has distinct molecularly identified genogroups of viral mutations, denoted as I, IIa, and IIb. Failure to propagate CEV in vitro limits studies towards understanding its interactions with host cells. Here, virus isolates belonging to genogroup I collected during natural outbreaks in the Czech Republic were employed for routine CEV cultivation in monolayers of carp-derived primary cells, common carp brain (CCB) cells, and epithelioma papulosum cyprinid (EPC) cells. Induction of cytopathic effects (CPEs) was observed and recorded in affected cells. Cell survival rate was evaluated under serial dilutions of the CEV inoculum. Virus cell entry was quantified and visualized by qPCR and transmission electron microscopy, respectively. Study findings indicate primary gills epithelia likely present the most suitable matrix for CEV growth in vitro. Cells of the head kidney and spleen facilitate virus entry with microscopically confirmed CPEs and the presence of cytoplasmic pleomorphic virus particles. Cells of the trunk kidney and gonads are unlikely to permit virus cell entry and CPEs development. Although CEV cultivation in cell lines was inconclusive, EPC cells were CEV permissible. Monolayers of carp-derived primary cells show promise for CEV cultivation that could enable elaborate study of mechanisms underlying cellular binding and responses.


Subject(s)
Carps , Fish Diseases , Poxviridae , Animals , Carps/virology , Poxviridae/physiology , Poxviridae/genetics , Fish Diseases/virology , Poxviridae Infections/veterinary , Poxviridae Infections/virology , Virus Cultivation/methods , Cell Line , Czech Republic , Cells, Cultured , Genotype
16.
Virol Sin ; 39(2): 177-193, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38272237

ABSTRACT

The persistent epidemic of human mpox, caused by mpox virus (MPXV), raises concerns about the future spread of MPXV and other poxviruses. MPXV is a typical zoonotic virus which can infect human and cause smallpox-like symptoms. MPXV belongs to the Poxviridae family, which has a relatively broad host range from arthropods to vertebrates. Cross-species transmission of poxviruses among different hosts has been frequently reported and resulted in numerous epidemics. Poxviruses have a complex linear double-strand DNA genome that encodes hundreds of proteins. Genes related to the host range of poxvirus are called host range genes (HRGs). This review briefly introduces the taxonomy, phylogeny and hosts of poxviruses, and then comprehensively summarizes the current knowledge about the cross-species transmission of poxviruses. In particular, the HRGs of poxvirus are described and their impacts on viral host range are discussed in depth. We hope that this review will provide a comprehensive perspective about the current progress of researches on cross-species transmission and HRG variation of poxviruses, serving as a valuable reference for academic studies and disease control in the future.


Subject(s)
Host Specificity , Phylogeny , Poxviridae Infections , Poxviridae , Animals , Humans , Poxviridae Infections/virology , Poxviridae Infections/transmission , Poxviridae/genetics , Poxviridae/classification , Poxviridae/physiology , Genome, Viral
17.
J Virol Methods ; 320: 114788, 2023 10.
Article in English | MEDLINE | ID: mdl-37517457

ABSTRACT

Sheeppox virus (SPPV), goatpox virus (GTPV) and lumpy skin disease virus (LSDV) belong to the genus Capripoxvirus (CaPV), and are important pathogens of sheep, goat and cattle, respectively. Rapid and reliable detection of CaPV is critical to prevent its spread and promote its eradication. This study aimed to develop the recombinase polymerase amplification (RPA) assays combined with real-time fluorescence (real-time RPA) and naked-eye visible lateral flow strip (LFS RPA) for rapid detection of CaPV. Both developed RPA assays worked well at 39 °C within 20 min. They were highly specific for the detection of GTPV, SPPV and LSDV, while no cross-reactivity was observed for other non-targeted pathogens and genomic DNA of goat, sheep and cattle. The limit of detection for real-time RPA and LFS RPA were 1.0 × 102 and 1.0 × 101 copies per reaction, respectively. In the artificially contaminated samples with GTPV, the detection results of RPA assays were consistent with those of real-time PCR. For 15 clinical samples, LSDV was detected by real-time RPA, LFS RPA and real-time PCR in 13, 15 and 15 samples, respectively. The developed RPA assays were specific, sensitive, and user-friendly for the rapid detection of CaPV, and could be a better alternative method applied in low-resources settings.


Subject(s)
Capripoxvirus , Nucleic Acid Amplification Techniques , Poxviridae Infections , Capripoxvirus/genetics , Capripoxvirus/isolation & purification , Recombinases , Nucleic Acid Amplification Techniques/methods , Viral Proteins/genetics , Poxviridae Infections/veterinary , Poxviridae Infections/virology , Animals , Cattle , Sheep , Goats , Sensitivity and Specificity
18.
J Virol ; 97(3): e0175822, 2023 03 30.
Article in English | MEDLINE | ID: mdl-36916936

ABSTRACT

Recent studies have begun to reveal the complex and multifunctional roles of N6-methyladenosine (m6A) modifications and their associated writer, reader, and eraser proteins in infection by diverse RNA and DNA viruses. However, little is known about their regulation and functions during infection by several viruses, including poxviruses. Here, we show that members of the YTH Domain Family (YTHDF), in particular YTHDF2, are downregulated as the prototypical poxvirus, vaccinia virus (VacV) enters later stages of replication in a variety of natural target cell types, but not in commonly used transformed cell lines wherein the control of YTHDF2 expression appears to be dysregulated. YTHDF proteins also decreased at late stages of infection by herpes simplex virus 1 (HSV-1) but not human cytomegalovirus, suggesting that YTHDF2 is downregulated in response to infections that induce host shutoff. In line with this idea, YTHDF2 was potently downregulated upon infection with a VacV mutant expressing catalytically inactive forms of the decapping enzymes, D9 and D10, which fails to degrade dsRNA and induces a protein kinase R response that itself inhibits protein synthesis. Overexpression and RNAi-mediated depletion approaches further demonstrate that YTHDF2 does not directly affect VacV replication. Instead, experimental downregulation of YTHDF2 or the related family member, YTHDF1, induces a potent increase in interferon-stimulated gene expression and establishes an antiviral state that suppresses infection by either VacV or HSV-1. Combined, our data suggest that YTHDF2 is destabilized in response to infection-induced host shutoff and serves to augment host antiviral responses. IMPORTANCE There is increasing recognition of the importance of N6-methyladenosine (m6A) modifications to both viral and host mRNAs and the complex roles this modification plays in determining the fate of infection by diverse RNA and DNA viruses. However, in many instances, the functional contributions and importance of specific m6A writer, reader, and eraser proteins remains unknown. Here, we show that natural target cells but not transformed cell lines downregulate the YTH Domain Family (YTHDF) of m6A reader proteins, in particular YTHDF2, in response to shutoff of protein synthesis upon infection with the large DNA viruses, vaccinia virus (VacV), or herpes simplex virus type 1. We further reveal that YTHDF2 downregulation also occurs as part of the host protein kinase R response to a VacV shutoff mutant and that this downregulation of YTHDF family members functions to enhance interferon-stimulated gene expression to create an antiviral state.


Subject(s)
Poxviridae , RNA-Binding Proteins , Vaccinia virus , Vaccinia , Humans , Gene Expression , Interferons/metabolism , Poxviridae/genetics , Protein Kinases/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Transcription Factors/metabolism , Vaccinia/virology , Vaccinia virus/metabolism , Virus Replication , Poxviridae Infections/virology , Host-Pathogen Interactions
19.
Internet resource in Portuguese | LIS -Health Information Locator | ID: lis-48795

ABSTRACT

Surgimento de casos em vários países da Europa e nos Estados Unidos deixam autoridades de saúde em alerta Publicado em: 20/05/2022


Subject(s)
Mpox (monkeypox)/prevention & control , Orthopoxvirus , Poxviridae Infections/virology
20.
Viruses ; 14(2)2022 02 14.
Article in English | MEDLINE | ID: mdl-35215981

ABSTRACT

Although variola virus (VARV) has been eradicated through widespread vaccination, other orthopoxviruses pathogenic for humans circulate in nature. Recently, new orthopoxviruses, including some able to infect humans, have been found and their complete genomes have been sequenced. Questions about the orthopoxvirus mutation rate and the emergence of new threats to humankind as a result of the evolution of circulating orthopoxviruses remain open. Based on contemporary data on ancient VARV DNA and DNA of new orthopoxvirus species, an analysis of the molecular evolution of orthopoxviruses was carried out and the timescale of their emergence was estimated. It was calculated that the orthopoxviruses of the Old and New Worlds separated approximately 40,000 years ago; the recently discovered Akhmeta virus and Alaskapox virus separated from other orthopoxviruses approximately 10,000-20,000 years ago; the rest of modern orthopoxvirus species originated from 1700 to 6000 years ago, with the exception of VARV, which emerged in approximately 300 AD. Later, there was a separation of genetic variants of some orthopoxvirus species, so the monkeypox virus West African subtype originated approximately 600 years ago, and the VARV minor alastrim subtype emerged approximately 300 years ago.


Subject(s)
Evolution, Molecular , Orthopoxvirus/genetics , Poxviridae Infections/veterinary , Animals , Databases, Genetic , Mutation Rate , Orthopoxvirus/classification , Phylogeny , Poxviridae Infections/virology
SELECTION OF CITATIONS
SEARCH DETAIL
...