Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Chromatogr A ; 1563: 47-61, 2018 Aug 17.
Article in English | MEDLINE | ID: mdl-29908699

ABSTRACT

Ligand-assisted displacement chromatography (LAD) has been developed for separating rare earth elements since the 1950's. Isotachic displacement trains, which are similar to those in conventional displacement chromatography, were reported previously. However, there has been no general theory delineating the conditions required to form constant-pattern displacement trains for non-ideal systems (or systems with significant mass transfer resistance). The constant-pattern state is critical for obtaining pure products with high yield and high productivity. Without theoretical guidance, all the previous studies found the constant-pattern state by experimental trial and error, which was time consuming and costly. In this study, an efficient rate model and simulations of LAD were developed and verified with experimental data for non-ideal systems. Verified simulations were used to understand the mechanisms of separations and the transition from the transient state to the constant-pattern state. The key dimensionless factors affecting the transition for binary non-ideal systems were identified. Dimensionless groups were developed to reduce the number of variables. Simulations were used to find the transition points fromthe transient state to the constant-pattern state, which indicates the minimum dimensionless column lengths in the multi-parameter space. Strategic combination of the key dimensionless groups allows the minimum dimensionless column lengths to correlate with the combined groups in a two-dimensional diagram (or a map). The correlation curve divides the multi-dimensional space into the transient region and the constant-pattern region. The correlation was further verified with five sets of experiments. It can be used to find, without process simulations or experiments, the minimum column lengths for developing constant-pattern isotachic trains for non-ideal systems, which is useful for designing efficient ligand-assisted displacement chromatography at any scale.


Subject(s)
Chromatography, Ion Exchange , Metals, Rare Earth/analysis , Hydrogen-Ion Concentration , Ligands , Metals, Rare Earth/isolation & purification , Models, Theoretical , Molecular Weight , Neodymium/analysis , Neodymium/isolation & purification , Praseodymium/analysis , Praseodymium/isolation & purification
2.
J Colloid Interface Sci ; 504: 780-789, 2017 Oct 15.
Article in English | MEDLINE | ID: mdl-28623703

ABSTRACT

Algal (Laminaria digitata) beads and algal foams have been prepared by a new synthesis mode and the sorbents were tested for praseodymium sorption in batch and fixed-bed like systems (recirculation or one-pass modes), respectively. Metal binding occurs through ion-exchange with Ca(II) ions used for ionotropic gelation of alginate contained in the algal biomass and eventually with protons. Sorption isotherms at pH 4 are described by the Langmuir and the Sips equations with maximum sorption capacities close to 110-120mgPrg-1. Uptake kinetics are fitted by the pseudo-second order reaction rate equation for both beads and foams; in the case of beads the Crank equation also gives good fit of experimental data. Metal is successfully desorbed using 2M HCl/0.05M CaCl2 solutions and the sorbent can be efficiently re-used for a minimum of 5 cycles with negligible decrease in sorption/desorption properties and appreciable concentrating effect (around 8-10 times the initial metal concentration). Tested in continuous mode, the algal foam shows typical breakthrough curves that are fitted by the Yan method; desorption is also efficient and allows under the best conditions to achieve a concentration factor close to 8.


Subject(s)
Alginates/chemistry , Laminaria/chemistry , Praseodymium/isolation & purification , Adsorption , Calcium/chemistry , Glucuronic Acid/chemistry , Hexuronic Acids/chemistry , Hydrogen-Ion Concentration , Kinetics , Laminaria/cytology
3.
PLoS One ; 9(4): e94025, 2014.
Article in English | MEDLINE | ID: mdl-24718502

ABSTRACT

The complete Cd-Pr equilibrium phase diagram was investigated with a combination of powder-XRD, SEM and DTA. All intermetallic compounds within this system, already reported in literature, could be confirmed: CdPr, Cd2Pr, Cd3Pr, Cd45Pr11, Cd58Pr13, Cd6Pr and Cd11Pr. The corresponding phase boundaries were determined at distinct temperatures. The homogeneity range of the high-temperature allotropic modification of Pr could be determined precisely and a limited solubility of 22.1 at.% Cd was derived. Additionally, single-crystal X-ray diffraction was employed to investigate structural details of Cd2Pr; it is isotypic to the AlB2-type structure with a z value of the Cd site of 0.5. DTA results of alloys located in the adjacent two-phase fields of Cd2Pr suggested a phase transformation between 893 and 930°C. For the phase Cd3Pr it was found that the lattice parameter a changes linearly with increasing Cd content, following Vegard's rule. The corresponding defect mechanism could be evaluated from structural data collected with single-crystal XRD. Introduction of a significant amount of vacancies on the Pr site and the reduction in symmetry of one Cd position (8c to 32f) resulted in a noticeable decrease of all R-values.


Subject(s)
Cadmium/chemistry , Nuclear Energy , Phase Transition , Praseodymium/isolation & purification , Radioactive Waste , Alloys/chemistry , Cadmium Compounds/chemistry , Crystallography, X-Ray , Differential Thermal Analysis , Liquid-Liquid Extraction , Models, Chemical , Praseodymium/chemistry , Solubility , Temperature , Thermodynamics , Transition Temperature
4.
J Chromatogr ; 538(1): 133-40, 1991 Jan 18.
Article in English | MEDLINE | ID: mdl-2050786

ABSTRACT

Besides being widely used in electronic and glass industries, rare earth elements have recently been found to have important biological effects including the ability to stabilize and enhance interferon activity [J.J. Sedmak and S.E. Grossberg, J. Gen. Virol, 52 (1981) 195]. In this paper, the rare earth elements have been separated using a high-speed counter-current chromatography (HSCCC) centrifuge equipped with three multilayer coils connected in series. Two-phase solvent systems were composed of n-heptane containing di-(2-ethylhexyl)phosphoric acid (stationary phase) and dilute hydrochloric acid (mobile phase) where the partition coefficient of each can be optimized by selecting the proper hydrochloric acid concentration. The mobile phase was eluted through the column at a flow-rate of 5 ml/min, while the apparatus was rotated at 900 rpm. Continuous detection of the rare earth elements was effected by means of a post-column reaction with arsenazo III and the elution curve was obtained by on-line monitoring at 650 nm. Excellent isocratic separations of closely related rare earth elements were achieved at high partition efficiencies up to several thousand theoretical plates. Versatility of the present method was demonstrated in an exponential gradient elution of hydrochloric acid concentration where fourteen rare earth elements were all resolved in about 4.5 h.


Subject(s)
Chromatography, Liquid/methods , Metals, Rare Earth/isolation & purification , Centrifugation , Chromatography, Liquid/instrumentation , Hydrochloric Acid , Lanthanum/isolation & purification , Lutetium/isolation & purification , Neodymium/isolation & purification , Praseodymium/isolation & purification , Solubility , Thulium/isolation & purification , Ytterbium/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...