Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.265
Filter
1.
Front Endocrinol (Lausanne) ; 15: 1386309, 2024.
Article in English | MEDLINE | ID: mdl-38846494

ABSTRACT

Introduction: Leptin and its receptors are expressed by the human placenta throughout gestation, yet the role of leptin in early human placental development is not well characterized. Leptin is overexpressed in the placentas from preeclamptic (PE) pregnancies. PE can result from the impaired invasion of fetal placental cells, cytotrophoblasts (CTBs), into the maternal decidua. We hypothesized that elevated leptin levels would impair human CTB invasion. Methods: The effects of leptin on the invasion of human CTBs were evaluated in three cell models, HTR-8/SVneo cells, primary CTBs, and placental villous explants using invasion assays. Further, leptin receptor expression was characterized in all three cell models using RT-PCR. Further phosphokinase assays were performed in HTR-8/SVneo cells to determine signaling pathways involved in CTB invasion in response to differential leptin doses. Results: We found that, prior to 8 weeks gestation, leptin promoted CTB invasion in the explant model. After 11 weeks gestation in explants, primary CTBs and in HTR-8/SVneo cells, leptin promoted invasion at moderate but not at high concentrations. Further, leptin receptor characterization revealed that leptin receptor expression did not vary over gestation, however, STAT, PI3K and MAPK pathways showed different signaling in response to varied leptin doses. Discussion: These data suggest that the excess placental leptin observed in PE may cause impaired CTB invasion as a second-trimester defect. Leptin's differential effect on trophoblast invasion may explain the role of hyperleptinemia in preeclampsia pathogenesis.


Subject(s)
Gestational Age , Leptin , Receptors, Leptin , Trophoblasts , Humans , Trophoblasts/metabolism , Trophoblasts/drug effects , Trophoblasts/pathology , Leptin/metabolism , Leptin/pharmacology , Female , Pregnancy , Receptors, Leptin/metabolism , Receptors, Leptin/genetics , Placenta/metabolism , Placenta/drug effects , Placenta/pathology , Pre-Eclampsia/metabolism , Pre-Eclampsia/pathology , Dose-Response Relationship, Drug , Signal Transduction , Placentation/drug effects , Cell Movement/drug effects
2.
Front Endocrinol (Lausanne) ; 15: 1371220, 2024.
Article in English | MEDLINE | ID: mdl-38737551

ABSTRACT

Background and objective: Aberrant epigenetic regulation and increased oxidative stress in the placenta play a significant role in placental pathophysiology and fetal programming in preeclampsia, a hypertensive disorder in human pregnancy. The purpose of the study is to investigate if hypermethylation of histone H3K9 occurs in placental trophoblasts from preeclampsia. Methods: Trophoblasts were isolated and cultured from 14 placentas, 7 from normotensive pregnant women and 7 from preeclamptic pregnancies. Methylated H3K9 expression and antioxidant superoxide dismutase expression were determined by Western blot. We also examined consequences of oxidative stress and the downstream effects of histone methyltransferase inhibition on H3K9 expression associated with antioxidant CuZn-SOD and Mn-SOD expression in placental trophoblasts. Results: We found that expression of mono-, di-, and tri-methylation of histone H3 lysine 9 (H3K9me1, H3K9me2 and H3K9me3) was significantly increased, p<0.01, which correlated with downregulation of antioxidant superoxide dismutase CuZn-SOD and Mn-SOD expression, in trophoblasts from preeclamptic placentas compared to those from uncomplicated control placentas. We further demonstrated hypoxia could promote histone H3K9 methylation in placental trophoblasts, and hypoxia-induced upregulation of H3K9me1, H3K9me2 and H3K9me3 expression was reversible when hypoxic condition was removed. In addition, we also uncovered that inhibition of methyltransferase not only prevented hypoxia-induced upregulation of H3K9me1, H3K9me2 and H3K9me3 expression, but also abolished hypoxia-induced downregulation of CuZn-SOD and Mn-SOD expression in placental trophoblasts. Conclusions: These findings are noteworthy and provide further evidence that increased oxidative stress in the intrauterine environment is likely a mechanism to induce aberrant histone modification in placental trophoblasts in preeclampsia. Moreover, CuZn-SOD and Mn-SOD expression/activity are possibly H3K9 methylation-dependent in placental trophoblasts, which further suggest that oxidative stress and aberrant histone modification have significant impact on placental trophoblasts/fetal programming in preeclampsia.


Subject(s)
Histones , Oxidative Stress , Placenta , Pre-Eclampsia , Trophoblasts , Humans , Female , Pre-Eclampsia/metabolism , Pre-Eclampsia/genetics , Pre-Eclampsia/pathology , Pregnancy , Trophoblasts/metabolism , Histones/metabolism , Adult , Placenta/metabolism , Methylation , Superoxide Dismutase/metabolism , Superoxide Dismutase/genetics , DNA Methylation , Cells, Cultured , Lysine/metabolism
3.
Int J Mol Sci ; 25(10)2024 May 17.
Article in English | MEDLINE | ID: mdl-38791492

ABSTRACT

The review examines the impact of maternal preeclampsia (PE) on the cardiometabolic and cardiovascular health of offspring. PE, a hypertensive disorder of pregnancy, is responsible for 2 to 8% of pregnancy-related complications. It significantly contributes to adverse outcomes for their infants, affecting the time of birth, the birth weight, and cardiometabolic risk factors such as blood pressure, body mass index (BMI), abdominal obesity, lipid profiles, glucose, and insulin. Exposure to PE in utero predisposes offspring to an increased risk of cardiometabolic diseases (CMD) and cardiovascular diseases (CVD) through mechanisms that are not fully understood. The incidence of CMD and CVD is constantly increasing, whereas CVD is the main cause of morbidity and mortality globally. A complex interplay of genes, environment, and developmental programming is a plausible explanation for the development of endothelial dysfunction, which leads to atherosclerosis and CVD. The underlying molecular mechanisms are angiogenic imbalance, inflammation, alterations in the renin-angiotensin-aldosterone system (RAAS), endothelium-derived components, serotonin dysregulation, oxidative stress, and activation of both the hypothalamic-pituitary-adrenal axis and hypothalamic-pituitary-gonadal axis. Moreover, the potential role of epigenetic factors, such as DNA methylation and microRNAs as mediators of these effects is emphasized, suggesting avenues for future research and therapeutic interventions.


Subject(s)
Cardiovascular Diseases , Humans , Female , Pregnancy , Cardiovascular Diseases/genetics , Cardiovascular Diseases/etiology , Cardiovascular Diseases/metabolism , Pre-Eclampsia/genetics , Pre-Eclampsia/metabolism , Hypertension, Pregnancy-Induced/genetics , Hypertension, Pregnancy-Induced/metabolism , Prenatal Exposure Delayed Effects/metabolism , Prenatal Exposure Delayed Effects/genetics , Epigenesis, Genetic , Risk Factors , MicroRNAs/genetics , MicroRNAs/metabolism
4.
J Hypertens ; 42(7): 1154-1162, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38690926

ABSTRACT

BACKGROUND: : Circular RNAs (circRNAs) have been shown to be extensively involved in preeclampsia progression. At present, the role of circ_0007445 in preeclampsia progression is not clear. METHODS: A total of 30 preeclampsia patients and 30 normal pregnant women were recruited in our study. The function of trophoblast cells was explored to clarify the role and mechanism of circ_0007445 on the preeclampsia progression. The expression of circ_0007445, microRNA (miR)-4432 and high temperature requirement A1 (HTRA1) was analyzed by quantitative real-time PCR. The proliferation, migration and invasion of trophoblast cells were determined by cell counting kit 8 assay, EdU assay, colony formation assay, flow cytometry, and transwell assay. Protein expression was examined by western blot analysis. Dual-luciferase reporter assay, RNA immunoprecipitation (RIP) assay and RNA pull-down assay were used to assess RNA interaction relationships. RESULTS: Our data suggested that circ_0007445 had increased expression in preeclampsia patients. Knockdown of circ_0007445 enhanced trophoblast cell proliferation, migration and invasion. MiR-4432 was lowly expressed in preeclampsia patients, and it could be sponged by circ_0007445. MiR-4432 inhibitor overturned the promotion effects of circ_0007445 knockdown on trophoblast cell functions. HTRA1 was highly expressed in preeclampsia patients, and it could be targeted by miR-4432. HTRA1 overexpression could also reverse the proliferation, migration and invasion of trophoblast cells promoted by miR-4432 mimic. In addition, circ_0007445 positively regulated HTRA1 through targeting miR-4432. CONCLUSION: :Our results suggested that circ_0007445 facilitated the development of preeclampsia by suppressing trophoblast cell function through miR-4432/HTRA1 axis.


Subject(s)
Cell Movement , Cell Proliferation , High-Temperature Requirement A Serine Peptidase 1 , MicroRNAs , Pre-Eclampsia , RNA, Circular , Trophoblasts , Humans , Female , Pre-Eclampsia/genetics , Pre-Eclampsia/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Trophoblasts/metabolism , High-Temperature Requirement A Serine Peptidase 1/genetics , High-Temperature Requirement A Serine Peptidase 1/metabolism , RNA, Circular/genetics , RNA, Circular/metabolism , Pregnancy , Adult
5.
Clin Perinatol ; 51(2): 391-409, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38705648

ABSTRACT

The complexity of preterm birth (PTB), both spontaneous and medically indicated, and its various etiologies and associated risk factors pose a significant challenge for developing tools to accurately predict risk. This review focuses on the discovery of proteomics signatures that might be useful for predicting spontaneous PTB or preeclampsia, which often results in PTB. We describe methods for proteomics analyses, proteomics biomarker candidates that have so far been identified, obstacles for discovering biomarkers that are sufficiently accurate for clinical use, and the derivation of composite signatures including clinical parameters to increase predictive power.


Subject(s)
Biomarkers , Premature Birth , Proteomics , Humans , Female , Pregnancy , Biomarkers/metabolism , Pre-Eclampsia/diagnosis , Pre-Eclampsia/metabolism , Infant, Newborn , Predictive Value of Tests
6.
Am J Reprod Immunol ; 91(5): e13857, 2024 May.
Article in English | MEDLINE | ID: mdl-38716824

ABSTRACT

Preeclampsia, poses significant risks to both maternal and fetal well-being. Exosomes released by the placenta play a crucial role in intercellular communication and are recognized as potential carriers of essential information for placental development. These exosomes transport a payload of proteins, nucleic acids, and lipids that mirror the placental microenvironment. This review delves into the functional roles of placental exosomes and its contents shedding light on their involvement in vascular regulation and immune modulation in normal pregnancy. Discernible changes are reported in the composition and quantity of placental exosome contents in pregnancies affected by preeclampsia. The exosomes from preeclamptic mothers affect vascularization and fetal kidney development. The discussion also explores the implications of utilizing placental exosomes as biomarkers and the prospects of translating these findings into clinical applications. In conclusion, placental exosomes hold promise as a valuable avenue for deciphering the complexities of preeclampsia, providing crucial diagnostic and prognostic insights. As the field progresses, a more profound comprehension of the distinct molecular signatures carried by placental exosomes may open doors to innovative strategies for managing and offering personalized care to pregnancies affected by preeclampsia.


Subject(s)
Exosomes , Placenta , Pre-Eclampsia , Humans , Pregnancy , Pre-Eclampsia/metabolism , Exosomes/metabolism , Female , Placenta/metabolism , Placenta/immunology , Biomarkers/metabolism , Animals , Cell Communication
7.
Cell Mol Life Sci ; 81(1): 246, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38819479

ABSTRACT

The glycosylphosphatidylinositol (GPI) biosynthetic pathway in the endoplasmic reticulum (ER) is crucial for generating GPI-anchored proteins (GPI-APs), which are translocated to the cell surface and play a vital role in cell signaling and adhesion. This study focuses on two integral components of the GPI pathway, the PIGL and PIGF proteins, and their significance in trophoblast biology. We show that GPI pathway mutations impact on placental development impairing the differentiation of the syncytiotrophoblast (SynT), and especially the SynT-II layer, which is essential for the establishment of the definitive nutrient exchange area within the placental labyrinth. CRISPR/Cas9 knockout of Pigl and Pigf in mouse trophoblast stem cells (mTSCs) confirms the role of these GPI enzymes in syncytiotrophoblast differentiation. Mechanistically, impaired GPI-AP generation induces an excessive unfolded protein response (UPR) in the ER in mTSCs growing in stem cell conditions, akin to what is observed in human preeclampsia. Upon differentiation, the impairment of the GPI pathway hinders the induction of WNT signaling for early SynT-II development. Remarkably, the transcriptomic profile of Pigl- and Pigf-deficient cells separates human patient placental samples into preeclampsia and control groups, suggesting an involvement of Pigl and Pigf in establishing a preeclamptic gene signature. Our study unveils the pivotal role of GPI biosynthesis in early placentation and uncovers a new preeclampsia gene expression profile associated with mutations in the GPI biosynthesis pathway, providing novel molecular insights into placental development with implications for enhanced patient stratification and timely interventions.


Subject(s)
Cell Differentiation , Glycosylphosphatidylinositols , Placentation , Trophoblasts , Trophoblasts/metabolism , Trophoblasts/cytology , Female , Pregnancy , Animals , Humans , Mice , Placentation/genetics , Glycosylphosphatidylinositols/metabolism , Glycosylphosphatidylinositols/biosynthesis , Placenta/metabolism , Placenta/cytology , Wnt Signaling Pathway , Pre-Eclampsia/metabolism , Pre-Eclampsia/genetics , Pre-Eclampsia/pathology , Endoplasmic Reticulum/metabolism , Biosynthetic Pathways/genetics , Unfolded Protein Response , CRISPR-Cas Systems
8.
Biosci Rep ; 44(5)2024 May 29.
Article in English | MEDLINE | ID: mdl-38700092

ABSTRACT

Pre-eclampsia (PE) is a hypertensive disorder of pregnancy which is associated with increased risk of neurodevelopmental disorders in exposed offspring. The pathophysiological mechanisms mediating this relationship are currently unknown, and one potential candidate is the anti-angiogenic factor soluble Fms-like tyrosine kinase 1 (sFlt-1), which is highly elevated in PE. While sFlt-1 can impair angiogenesis via inhibition of VEGFA signalling, it is unclear whether it can directly affect neuronal development independently of its effects on the vasculature. To test this hypothesis, the current study differentiated the human neural progenitor cell (NPC) line ReNcell® VM into a mixed culture of mature neurons and glia, and exposed them to sFlt-1 during development. Outcomes measured were neurite growth, cytotoxicity, mRNA expression of nestin, MBP, GFAP, and ßIII-tubulin, and neurosphere differentiation. sFlt-1 induced a significant reduction in neurite growth and this effect was timing- and dose-dependent up to 100 ng/ml, with no effect on cytotoxicity. sFlt-1 (100 ng/ml) also reduced ßIII-tubulin mRNA and neuronal differentiation of neurospheres. Undifferentiated NPCs and mature neurons/glia expressed VEGFA and VEGFR-2, required for endogenous autocrine and paracrine VEGFA signalling, while sFlt-1 treatment prevented the neurogenic effects of exogenous VEGFA. Overall, these data provide the first experimental evidence for a direct effect of sFlt-1 on neurite growth and neuronal differentiation in human neurons through inhibition of VEGFA signalling, clarifying our understanding of the potential role of sFlt-1 as a mechanism by which PE can affect neuronal development.


Subject(s)
Cell Differentiation , Neural Stem Cells , Neurons , Vascular Endothelial Growth Factor Receptor-1 , Humans , Vascular Endothelial Growth Factor Receptor-1/metabolism , Vascular Endothelial Growth Factor Receptor-1/genetics , Neural Stem Cells/metabolism , Neural Stem Cells/drug effects , Neurons/metabolism , Neurons/drug effects , Neurons/cytology , Cell Differentiation/drug effects , Neurites/metabolism , Neurites/drug effects , Neurogenesis/drug effects , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor A/genetics , Female , Pre-Eclampsia/metabolism , Pre-Eclampsia/pathology , Pregnancy , Cell Line, Tumor , Signal Transduction
9.
Commun Biol ; 7(1): 530, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38704457

ABSTRACT

Cell stiffness is regulated by dynamic interaction between ras-related C3 botulinum toxin substrate 1 (Rac1) and p21 protein-activated kinase 1 (PAK1) proteins, besides other biochemical and molecular regulators. In this study, we investigated how the Placental Growth Factor (PlGF) changes endometrial mechanics by modifying the actin cytoskeleton at the maternal interface. We explored the global effects of PlGF in endometrial stromal cells (EnSCs) using the concerted approach of proteomics, atomic force microscopy (AFM), and electrical impedance spectroscopy (EIS). Proteomic analysis shows PlGF upregulated RhoGTPases activating proteins and extracellular matrix organization-associated proteins in EnSCs. Rac1 and PAK1 transcript levels, activity, and actin polymerization were significantly increased with PlGF treatment. AFM further revealed an increase in cell stiffness with PlGF treatment. The additive effect of PlGF on actin polymerization was suppressed with siRNA-mediated inhibition of Rac1, PAK1, and WAVE2. Interestingly, the increase in cell stiffness by PlGF treatment was pharmacologically reversed with pravastatin, resulting in improved trophoblast cell invasion. Taken together, aberrant PlGF levels in the endometrium can contribute to an altered pre-pregnancy maternal microenvironment and offer a unifying explanation for the pathological changes observed in conditions such as pre-eclampsia (PE).


Subject(s)
Endometrium , Placenta Growth Factor , Pre-Eclampsia , Signal Transduction , rac1 GTP-Binding Protein , Female , rac1 GTP-Binding Protein/metabolism , rac1 GTP-Binding Protein/genetics , Humans , Pre-Eclampsia/metabolism , Pregnancy , Endometrium/metabolism , Endometrium/pathology , Placenta Growth Factor/metabolism , Placenta Growth Factor/genetics , Stromal Cells/metabolism , p21-Activated Kinases/metabolism , p21-Activated Kinases/genetics , Microscopy, Atomic Force
10.
Anal Cell Pathol (Amst) ; 2024: 8972022, 2024.
Article in English | MEDLINE | ID: mdl-38715918

ABSTRACT

Preeclampsia (PE) manifests as a pregnancy-specific complication arising from compromised placentation characterized by inadequate trophoblast invasion. A growing body of evidence underscores the pivotal involvement of pseudogenes, a subset of long noncoding RNAs, in the pathological processes of PE. This study presents a novel finding, demonstrating a significant downregulation of the pseudogene PDIA3P1 in PE placental tissues compared to normal tissues. In vitro functional assays revealed that suppressing PDIA3P1 hindered trophoblast proliferation, invasion, and migration, concurrently upregulating the expression of secreted frizzled-related protein 1 (SFRP1). Further exploration of the regulatory role of PDIA3P1 in PE, utilizing human trophoblasts, established that PDIA3P1 exerts its function by binding to HuR, thereby enhancing the stability of Snail expression in trophoblasts. Overall, our findings suggest a crucial role for PDIA3P1 in regulating trophoblast properties and contributing to the pathogenesis of PE, offering potential targets for prognosis and therapeutic intervention.


Subject(s)
Down-Regulation , Pre-Eclampsia , RNA, Long Noncoding , Snail Family Transcription Factors , Trophoblasts , Adult , Female , Humans , Pregnancy , Cell Movement/genetics , Cell Proliferation/genetics , Down-Regulation/genetics , Phenotype , Pre-Eclampsia/genetics , Pre-Eclampsia/metabolism , Pre-Eclampsia/pathology , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Snail Family Transcription Factors/metabolism , Snail Family Transcription Factors/genetics , Trophoblasts/metabolism , Trophoblasts/pathology
11.
Placenta ; 151: 37-47, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38703713

ABSTRACT

Caspases, a family of cysteine proteases, are pivotal regulators of apoptosis, the tightly controlled cell death process crucial for eliminating excessive or unnecessary cells during development, including placental development. Collecting research has unveiled the multifaceted roles of caspases in the placenta, extending beyond apoptosis. Apart from their involvement in placental tissue remodeling via apoptosis, caspases actively participate in essential regulatory processes, such as trophoblast fusion and differentiation, significantly influencing placental growth and functionality. In addition, growing evidence indicates an elevation in caspase activity under pathological conditions like pre-eclampsia (PE) and intrauterine growth restriction (IUGR), leading to excessive cell death as well as inflammation. Drawing from advancements in caspase research and placental development under both normal and abnormal conditions, we examine the significance of caspases in both cell death (apoptosis) and non-cell death-related processes within the placenta. We also discuss potential therapeutics targeting caspase-related pathways for placenta disorders.


Subject(s)
Apoptosis , Caspases , Placenta , Humans , Pregnancy , Female , Caspases/metabolism , Placenta/pathology , Placenta/metabolism , Apoptosis/physiology , Placentation/physiology , Animals , Placenta Diseases/pathology , Placenta Diseases/metabolism , Pre-Eclampsia/pathology , Pre-Eclampsia/metabolism , Trophoblasts/physiology , Trophoblasts/pathology
12.
Am J Reprod Immunol ; 91(6): e13860, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38804582

ABSTRACT

PROBLEM: Early-onset preeclampsia (EOPE) is a severe gestational hypertensive disorder with significant feto-maternal morbidity and mortality due to uteroplacental insufficiency. Circulating extracellular vesicles of placental origin (EV-P) are known to be involved in the pathophysiology of EOPE and might serve as an ideal reservoir for its specific biomarkers. Therefore, we aimed to characterize and perform comparative proteomics of circulating EV-P from healthy pregnant and EOPE women before delivery. METHOD OF STUDY: The EV-P from both groups were isolated using immunoaffinity and were characterized using transmission electron microscopy, dynamic light scattering, nanoparticle tracking analysis, and immunoblotting. Following IgG albumin depletion, the pooled proteins that were isolated from EV-P of both groups were subjected to quantitative TMT proteomics. RESULTS: Circulating term EV-P isolated from both groups revealed ∼150 nm spherical vesicles containing CD9 and CD63 along with placental PLAP and HLA-G proteins. Additionally, the concentration of EOPE-derived EV-P was significantly increased. A total of 208 proteins were identified, with 26 among them being differentially abundant in EV-P of EOPE women. This study linked the pathophysiology of EOPE to 19 known and seven novel proteins associated with innate immune responses such as complement and TLR signaling along with hemostasis and oxygen homeostasis. CONCLUSION: The theory suggesting circulating EVs of placental origin could mimic molecular information from the parent organ-"the placenta"-is strengthened by this study. The findings pave the way for possible discovery of novel prognostic and predictive biomarkers as well as provide insight into the mechanisms driving the pathogenesis of EOPE.


Subject(s)
Extracellular Vesicles , Hemostasis , Immunity, Innate , Placenta , Pre-Eclampsia , Proteomics , Humans , Female , Pregnancy , Extracellular Vesicles/metabolism , Extracellular Vesicles/immunology , Pre-Eclampsia/immunology , Pre-Eclampsia/metabolism , Adult , Placenta/metabolism , Placenta/immunology , Biomarkers/metabolism
13.
Exp Mol Med ; 56(5): 1206-1220, 2024 May.
Article in English | MEDLINE | ID: mdl-38760513

ABSTRACT

The etiology of preeclampsia (PE), a severe complication of pregnancy with several clinical manifestations and a high incidence of maternal and fetal morbidity and mortality, remains unclear. This issue is a major hurdle for effective treatment strategies. We recently demonstrated that PE exhibits an Alzheimer-like etiology of impaired autophagy and proteinopathy in the placenta. Targeting of these pathological pathways may be a novel therapeutic strategy for PE. Stimulation of autophagy with the natural disaccharide trehalose and its lacto analog lactotrehalose in hypoxia-exposed primary human trophoblasts restored autophagy, inhibited the accumulation of toxic protein aggregates, and restored the ultrastructural features of autophagosomes and autolysosomes. Importantly, trehalose and lactotrehalose inhibited the onset of PE-like features in a humanized mouse model by normalizing autophagy and inhibiting protein aggregation in the placenta. These disaccharides restored the autophagy-lysosomal biogenesis machinery by increasing nuclear translocation of the master transcriptional regulator TFEB. RNA-seq analysis of the placentas of mice with PE indicated the normalization of the PE-associated transcriptome profile in response to trehalose and lactotrehalose. In summary, our results provide a novel molecular rationale for impaired autophagy and proteinopathy in patients with PE and identify treatment with trehalose and its lacto analog as promising therapeutic options for this severe pregnancy complication.


Subject(s)
Autophagy , Lysosomes , Pre-Eclampsia , Trehalose , Autophagy/drug effects , Pre-Eclampsia/drug therapy , Pre-Eclampsia/metabolism , Female , Humans , Pregnancy , Animals , Lysosomes/metabolism , Lysosomes/drug effects , Trehalose/analogs & derivatives , Trehalose/pharmacology , Trehalose/therapeutic use , Mice , Trophoblasts/metabolism , Trophoblasts/drug effects , Trophoblasts/pathology , Placenta/metabolism , Placenta/drug effects , Disease Models, Animal
14.
FASEB J ; 38(11): e23714, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38814727

ABSTRACT

Preeclampsia (PE) is a complex human-specific complication frequently associated with placental pathology. The local renin-angiotensin system (RAS) in the human placenta, which plays a crucial role in regulating placental function, has been extensively documented. Glucocorticoids (GCs) are a class of steroid hormones. PE cases often have abnormalities in GCs levels and placental GCs barrier. Despite extensive speculation, there is currently no robust evidence indicating that GCs regulate placental RAS. This study aims to investigate these potential relationships. Plasma and placental samples were collected from both normal and PE pregnancies. The levels of angiotensin-converting enzyme (ACE), angiotensin II (Ang II), cortisol, and 11ß-hydroxysteroid dehydrogenases (11ßHSD) were analyzed. In PE placentas, cortisol, ACE, and Ang II levels were elevated, while 11ßHSD2 expression was reduced. Interestingly, a positive correlation was observed between ACE and cortisol levels in the placenta. A significant inverse correlation was found between the methylation statuses within the 11ßHSD2 gene promoter and its expression, meanwhile, 11ßHSD2 expression was negatively correlated with cortisol and ACE levels. In vitro experiments using placental trophoblast cells confirmed that active GCs can stimulate ACE transcription and expression through the GR pathway. Furthermore, 11ßHSD2 knockdown could enhance this activating effect. An in vivo study using a rat model of intrauterine GCs overexposure during mid-to-late gestation suggested that excess GCs in utero lead to increased ACE and Ang II levels in the placenta. Collectively, this study provides the first evidence of the relationships between 11ßHSD2 expression, GCs barrier, ACE, and Ang II levels in the placenta. It not only contributes to understanding the pathological features of the placental GCs barrier and RAS under PE conditions, also provides important information for revealing the pathological mechanism of PE.


Subject(s)
11-beta-Hydroxysteroid Dehydrogenase Type 2 , Angiotensin II , DNA Methylation , Peptidyl-Dipeptidase A , Placenta , Pre-Eclampsia , Pregnancy , Female , Pre-Eclampsia/metabolism , Pre-Eclampsia/genetics , Pre-Eclampsia/pathology , Humans , Angiotensin II/metabolism , Placenta/metabolism , Animals , 11-beta-Hydroxysteroid Dehydrogenase Type 2/metabolism , 11-beta-Hydroxysteroid Dehydrogenase Type 2/genetics , Rats , Peptidyl-Dipeptidase A/metabolism , Peptidyl-Dipeptidase A/genetics , Adult , Down-Regulation , Renin-Angiotensin System/genetics , Renin-Angiotensin System/physiology , Hydrocortisone/metabolism , Rats, Sprague-Dawley
15.
Metabolomics ; 20(3): 56, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38762675

ABSTRACT

INTRODUCTION: Preeclampsia (PreE) remains a major source of maternal and newborn complications. Prenatal prediction of these complications could significantly improve pregnancy management. OBJECTIVES: Using metabolomic analysis we investigated the prenatal prediction of maternal and newborn complications in early and late PreE and investigated the pathogenesis of such complications. METHODS: Serum samples from 76 cases of PreE (36 early-onset and 40 late-onset), and 40 unaffected controls were collected. Direct Injection Liquid Chromatography-Mass Spectrometry combined with Nuclear Magnetic Resonance (NMR) spectroscopy was performed. Logistic regression analysis was used to generate models for prediction of adverse maternal and neonatal outcomes in patients with PreE. Metabolite set enrichment analysis (MSEA) was used to identify the most dysregulated metabolites and pathways in PreE. RESULTS: Forty-three metabolites were significantly altered (p < 0.05) in PreE cases with maternal complications and 162 metabolites were altered in PreE cases with newborn adverse outcomes. The top metabolite prediction model achieved an area under the receiver operating characteristic curve (AUC) = 0.806 (0.660-0.952) for predicting adverse maternal outcomes in early-onset PreE, while the AUC for late-onset PreE was 0.843 (0.712-0.974). For the prediction of adverse newborn outcomes, regression models achieved an AUC = 0.828 (0.674-0.982) in early-onset PreE and 0.911 (0.828-0.994) in late-onset PreE. Profound alterations of lipid metabolism were associated with adverse outcomes. CONCLUSION: Prenatal metabolomic markers achieved robust prediction, superior to conventional markers for the prediction of adverse maternal and newborn outcomes in patients with PreE. We report for the first-time the prediction and metabolomic basis of adverse maternal and newborn outcomes in patients with PreE.


Subject(s)
Metabolomics , Pre-Eclampsia , Humans , Pregnancy , Female , Pre-Eclampsia/metabolism , Pre-Eclampsia/blood , Metabolomics/methods , Infant, Newborn , Adult , Metabolome , Case-Control Studies , Biomarkers/blood , Magnetic Resonance Spectroscopy/methods , ROC Curve
16.
Aging (Albany NY) ; 16(10): 8585-8598, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38761180

ABSTRACT

Despite its prevalence, preeclampsia (PE) remains unclear as to its etiology. Here, we aimed to investigate the mechanisms regulating differences in the gene expression of zinc-finger protein 516 (ZNF516) in the placenta. The expression of the placental ZNF516 gene and its association with critical clinical markers were verified, and a rigorous correlation analysis was conducted. With a dual-luciferase reporter gene assay, microRNA targeting the ZNF516 gene was predicted and confirmed. Finally, the molecular processes associated with ZNF516 were explored via microarray and bioinformatic analyses. In hypoxic conditions, miR-371-5p expression was reduced, resulting in ZNF516 expression being induced. Moreover, ZNF516 was shown to hinder trophoblast cell migration and invasion while enhancing trophoblast cell death in various in vitro cellular assays, such as cell counting kit-8, colony formation, wound healing, and Transwell assays. Our findings reveal a new regulatory network facilitated by ZNF516. ZNF516 overexpression inhibits trophoblast growth, movement, and penetration, potentially causing problems with placenta formation with the help of miR-371-5p suppression.


Subject(s)
Cell Movement , Cell Proliferation , MicroRNAs , Pre-Eclampsia , Trophoblasts , MicroRNAs/genetics , MicroRNAs/metabolism , Humans , Trophoblasts/metabolism , Cell Movement/genetics , Cell Proliferation/genetics , Female , Pregnancy , Pre-Eclampsia/genetics , Pre-Eclampsia/metabolism , Pre-Eclampsia/pathology , Placenta/metabolism
17.
Acta Cir Bras ; 39: e391524, 2024.
Article in English | MEDLINE | ID: mdl-38629649

ABSTRACT

PURPOSE: Pre-eclampsia (PE) is a pregnancy-related complication. Eucommia is effective in the treatment of hypertensive disorders in pregnancy, but the specific effects and possible mechanisms of Eucommia granules (EG) in PE remain unknown. The aim of this study was to investigate the effects and possible mechanisms of EG in PE rats. METHODS: Pregnant Sprague Dawley rats were divided into five groups (n = 6): the control group, the model group, the low-dose group, the medium-dose group, and the high-dose group of EG. The PE model was established by subcutaneous injection of levonitroarginine methyl ester. Saline was given to the blank and model groups, and the Eucommia granules were given by gavage to the remaining groups. Blood pressure and urinary protein were detected. The body length and weight of the pups and the weight of the placenta were recorded. Superoxide dismutase (SOD) activity and levels of malondialdehyde (MDA), placental growth factor (PIGF), and soluble vascular endothelial growth factor receptor-1 (sFIt-1) were measured in the placenta. Pathological changes were observed by hematoxylin-eosin staining. Wnt/ß-catenin pathway-related protein expression was detected using Western blot. RESULTS: Compared with the model group, the PE rats treated with EG had lower blood pressure and urinary protein. The length and weight of the pups and placental weight were increased. Inflammation and necrosis in the placental tissue was improved. SOD level increased, MDA content and sFIt-1/PIGF ratio decreased, and Wnt/ß-catenin pathway-related protein expression level increased. Moreover, the results of EG on PE rats increased with higher doses of EG. CONCLUSIONS: EG may activate the Wnt/ß-catenin pathway and inhibit oxidative stress, inflammation, and vascular endothelial injury in PE rats, thereby improving the perinatal prognosis of preeclamptic rats. EG may inhibit oxidative stress, inflammation, and vascular endothelial injury through activation of the Wnt/ß-catenin pathway in preeclampsia rats, thereby improving perinatal outcomes in PE rats.


Subject(s)
Pre-Eclampsia , Pregnancy Complications , Humans , Rats , Female , Pregnancy , Animals , Pre-Eclampsia/drug therapy , Pre-Eclampsia/metabolism , Pre-Eclampsia/pathology , Placenta , Rats, Sprague-Dawley , Vascular Endothelial Growth Factor A/metabolism , beta Catenin/metabolism , Placenta Growth Factor/metabolism , Placenta Growth Factor/pharmacology , Placenta Growth Factor/therapeutic use , Oxidative Stress , Pregnancy Complications/metabolism , Inflammation/pathology , Superoxide Dismutase/metabolism
18.
Commun Biol ; 7(1): 429, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38594496

ABSTRACT

The study aims to explore the effect of PPARγ signaling on ferroptosis and preeclampsia (PE) development. Serum and placental tissue are collected from healthy subjects and PE patients. The PPARγ and Nrf2 decreases in the PE. Rosiglitazone intervention reverses hypoxia-induced trophoblast ferroptosis and decreases lipid synthesis by regulating Nfr2 and SREBP1. Compared to the Hypoxia group, the migratory and invasive abilities enhance after rosiglitazone and ferr1 treatment. Rosiglitazone reduces the effect of hypoxia and erastin. The si-Nrf2 treatment attenuats the effects of rosiglitazone on proliferation, migration, and invasion. The si-Nrf2 does not affect SREBP1 expression. PPARγ agonists alleviates ferroptosis in the placenta of the PE rats. The study confirms that PPARγ signaling and ferroptosis-related indicators were dysregulated in PE. PPARγ/Nrf2 signaling affects ferroptosis by regulating lipid oxidation rather than SREBP1-mediated lipid synthesis. In conclusion, our study find that PPARγ can alleviate PE development by regulating lipid oxidation and ferroptosis.


Subject(s)
Ferroptosis , Pre-Eclampsia , Humans , Female , Pregnancy , Rats , Animals , Rosiglitazone/pharmacology , Rosiglitazone/metabolism , PPAR gamma/metabolism , Lipid Metabolism , Placenta/metabolism , Pre-Eclampsia/drug therapy , Pre-Eclampsia/prevention & control , Pre-Eclampsia/metabolism , NF-E2-Related Factor 2/metabolism , Hypoxia/metabolism , Lipids
19.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(3): 437-446, 2024 Mar 20.
Article in Chinese | MEDLINE | ID: mdl-38597434

ABSTRACT

OBJECTIVE: To investigate the protective effect of metformin against PM2.5-induced functional impairment of placental trophoblasts and explore the underlying mechanism. METHODS: Sixteen pregnant Kunming mice were randomly assigned into two groups (n=8) for intratracheal instillation of PBS or PM2.5 suspension at 1.5, 7.5, and 12.5 days of gestation. The pregnancy outcome of the mice was observed, and placental zonal structure and vascular density of the labyrinth area were examined with HE staining, followed by detection of ferroptosis-related indexes in the placenta. In cultured human trophoblasts (HTR8/SVneo cells), the effects of PM2.5 exposure and treatment with metformin on cell viability, proliferation, migration, invasion, and tube formation ability were evaluated using CCK8 assay, EDU staining, wound healing assay, Transwell experiment, and tube formation experiment; the cellular expressions of ferroptosis-related proteins were analyzed using ELISA and Western blotting. RESULTS: M2.5 exposure of the mice during pregnancy resulted in significantly decreased weight and number of the fetuses and increased fetal mortality with a reduced placental weight (all P<0.001). PM2.5 exposure also caused obvious impairment of the placental structure and trophoblast ferroptosis. In cultured HTR8/SVneo cells, PM2.5 significantly inhibited proliferation, migration, invasion, and angiogenesis of the cells by causing ferroptosis. Metformin treatment obviously attenuated PM2.5-induced inhibition of proliferation, migration, invasion, and angiogenesis of the cells, and effectively reversed PM2.5-induced ferroptosis in the trophoblasts as shown by significantly increased intracellular GSH level and SOD activity, reduced MDA and Fe2+ levels, and upregulated GPX4 and SLC7A11 protein expression (P<0.05 or 0.01). CONCLUSION: PM2.5 exposure during pregnancy causes adverse pregnancy outcomes and ferroptosis and functional impairment of placental trophoblasts in mice, and metformin can effectively alleviate PM2.5-induced trophoblast impairment.


Subject(s)
Ferroptosis , Metformin , Pre-Eclampsia , Mice , Pregnancy , Female , Humans , Animals , Placenta/metabolism , Metformin/pharmacology , Trophoblasts , Cell Movement , Particulate Matter/adverse effects , Pre-Eclampsia/metabolism
20.
Front Immunol ; 15: 1385950, 2024.
Article in English | MEDLINE | ID: mdl-38566996

ABSTRACT

The complex pathogenesis of preeclampsia (PE), a significant contributor to maternal and neonatal mortality globally, is poorly understood despite substantial research. This review explores the involvement of exosomal microRNAs (exomiRs) in PE, focusing on their impact on the protein kinase B (AKT)/hypoxia-inducible factor 1-α (HIF1α)/vascular endothelial growth factor (VEGF) signaling pathway as well as endothelial cell proliferation and migration. Specifically, this article amalgamates existing evidence to reveal the pivotal role of exomiRs in regulating mesenchymal stem cell and trophoblast function, placental angiogenesis, the renin-angiotensin system, and nitric oxide production, which may contribute to PE etiology. This review emphasizes the limited knowledge regarding the role of exomiRs in PE while underscoring the potential of exomiRs as non-invasive biomarkers for PE diagnosis, prediction, and treatment. Further, it provides valuable insights into the mechanisms of PE, highlighting exomiRs as key players with clinical implications, warranting further exploration to enhance the current understanding and the development of novel therapeutic interventions.


Subject(s)
MicroRNAs , Pre-Eclampsia , Infant, Newborn , Humans , Pregnancy , Female , MicroRNAs/genetics , MicroRNAs/metabolism , Placenta/metabolism , Pre-Eclampsia/diagnosis , Pre-Eclampsia/genetics , Pre-Eclampsia/metabolism , Vascular Endothelial Growth Factor A/metabolism , Biomarkers/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...