Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.780
Filter
1.
Carbohydr Polym ; 339: 122266, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38823930

ABSTRACT

Konjac glucomannan (KG) is a dietary fiber hydrocolloid derived from Amorphophallus konjac tubers and is widely utilized as a food additive and dietary supplement. As a health-conscious choice, purified KG, along with konjac flour and KG-infused diets, have gained widespread acceptance in Asian and European markets. An overview of the chemical composition and structure of KG is given in this review, along with thorough explanations of the processes used in its extraction, production, and purification. KG has been shown to promote health by reducing glucose, cholesterol, triglyceride levels, and blood pressure, thereby offering significant weight loss advantages. Furthermore, this review delves into the extensive health benefits and pharmaceutical applications of KG and its derivatives, emphasizing its prebiotic, anti-inflammatory, and antitumor activities. This study highlights how these natural polysaccharides can positively influence health, underscoring their potential in various biomedical applications.


Subject(s)
Amorphophallus , Mannans , Mannans/chemistry , Mannans/isolation & purification , Humans , Amorphophallus/chemistry , Animals , Dietary Fiber/analysis , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/isolation & purification , Dietary Supplements , Prebiotics , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification , Antineoplastic Agents/pharmacology
2.
Carbohydr Polym ; 339: 122292, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38823937

ABSTRACT

Through adaptive laboratory evolution (ALE) of Sphingomonas sp. ATCC 31555, fermentation for production of low-molecular-weight welan gum (LMW-WG) was performed using glycerol as sole carbon source. During ALE, GPC-MALS analysis revealed a gradual decrease in WG molecular weight with the increase of adaptation cycles, accompanied by changes in solution conformation. LMW-WG was purified and structurally analyzed using GPC-MALS, monosaccharide composition analysis, infrared spectroscopy, NMR analysis, atomic force microscopy, and scanning electron microscopy. Subsequently, LMW-WG obtains hydration, transparency, antioxidant activity, and rheological properties. Finally, an in vitro simulation colon reactor was used to evaluate potential prebiotic properties of LMW-WG as dietary fiber. Compared with WG produced using sucrose as substrate, LMW-WG exhibited a fourfold reduction in molecular weight while maintaining moderate viscosity. Structurally, L-Rha nearly completely replaced L-Man. Furthermore, LMW-WG demonstrated excellent hydration, antioxidant activity, and high transparency. It also exhibited resistance to saliva and gastrointestinal digestion, showcasing a favorable colonization effect on Bifidobacterium, making it a promising symbiotic agent.


Subject(s)
Antioxidants , Fermentation , Glycerol , Molecular Weight , Sphingomonas , Glycerol/chemistry , Glycerol/metabolism , Antioxidants/chemistry , Antioxidants/pharmacology , Sphingomonas/metabolism , Polysaccharides, Bacterial/chemistry , Polysaccharides, Bacterial/pharmacology , Viscosity , Prebiotics , Bifidobacterium/metabolism
3.
Food Res Int ; 188: 114429, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823856

ABSTRACT

Among the emerging prebiotics, galactooligosaccharide (GOS) has a remarkable value with health-promoting properties confirmed by several studies. In addition, the application of ohmic heating has been gaining prominence in food processing, due to its various technological and nutritional benefits. This study focuses on the transformative potential of ohmic heating processing (OH, voltage values 30 and 60 V, frequencies 100, 300, and 500 Hz, respectively) in prebiotic chocolate milk beverage (3.0 %w/v galactooligosaccharide) processing. Chemical stability of GOS was assessed along all the ohmic conditions. In addition, microbiological analysis (predictive modeling), physical analysis (color and rheology), thermal load indicators assessment, bioactivity values, and volatile compound was performed. HPAEC-PAD analysis confirmed GOS stability and volatile compound evaluation supported OH's ability to preserve flavor-associated compounds. Besides, OH treatments demonstrated superior microbial reduction and decreased thermal load indicators as well as the assessment of the bioactivity. In conclusion, OH presented was able to preserve the GOS chemical stability on chocolate milk beverages processing with positive effects of the intrinsic quality parameters of the product.


Subject(s)
Chocolate , Food Handling , Milk , Oligosaccharides , Oligosaccharides/chemistry , Oligosaccharides/analysis , Chocolate/analysis , Food Handling/methods , Milk/chemistry , Animals , Prebiotics/analysis , Hot Temperature , Beverages/analysis , Rheology , Cacao/chemistry , Volatile Organic Compounds/analysis
4.
Clin Nutr ; 43(6): 1433-1446, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38704983

ABSTRACT

The prevalence of childhood and adolescent obesity has globally reached alarming dimensions and many adolescents affected by obesity already present one or more obesity-related comorbidities. In recent years, emerging evidence supporting the role of gut microbiota in the pathophysiology of metabolic diseases has been reported and the use of prebiotics, probiotics, synbiotics and postbiotics as a strategy to manipulate gut microbiota has become popular. The aim of this review is to explore the relationship between gut microbiota and metabolic syndrome in adolescents and to discuss the potential use of prebiotics, probiotics, synbiotics and postbiotics for the prevention and treatment of this clinical picture in adolescence. According to the most recent literature, prebiotics, probiotics and synbiotics have no clear effect on MetS, but a possible modulation of anthropometric parameters has been observed after synbiotic supplementation. Only one study has examined the role of postbiotics in alleviating metabolic complications in children with obesity but not in adolescents. More extensive research is needed to support the conclusions drawn so far and to develop effective microbiome-based interventions that may help improving the quality of life of children and adolescents exposed to the increasing prevalence of MetS.


Subject(s)
Gastrointestinal Microbiome , Metabolic Syndrome , Pediatric Obesity , Prebiotics , Probiotics , Synbiotics , Humans , Metabolic Syndrome/therapy , Metabolic Syndrome/microbiology , Prebiotics/administration & dosage , Probiotics/administration & dosage , Probiotics/therapeutic use , Synbiotics/administration & dosage , Adolescent , Pediatric Obesity/therapy , Pediatric Obesity/microbiology , Child
5.
Astrobiology ; 24(5): 559-569, 2024 May.
Article in English | MEDLINE | ID: mdl-38768432

ABSTRACT

Ultraviolet (UV) light is likely to have played important roles in surficial origins of life scenarios, potentially as a productive source of energy and molecular activation, as a selective means to remove unwanted side products, or as a destructive mechanism resulting in loss of molecules/biomolecules over time. The transmission of UV light through prebiotic waters depends upon the chemical constituents of such waters, but constraints on this transmission are limited. Here, we experimentally measure the molar decadic extinction coefficients for a number of small molecules used in various prebiotic synthetic schemes. We find that many small feedstock molecules absorb most at short (∼200 nm) wavelengths, with decreasing UV absorption at longer wavelengths. For comparison, we also measured the nucleobase adenine and found that adenine absorbs significantly more than the simpler molecules often invoked in prebiotic synthesis. Our results enable the calculation of UV photon penetration under varying chemical scenarios and allow further constraints on plausibility and self-consistency of such scenarios. While the precise path that prebiotic chemistry took remains elusive, improved understanding of the UV environment in prebiotically plausible waters can help constrain both the chemistry and the environmental conditions that may allow such chemistry to occur.


Subject(s)
Earth, Planet , Origin of Life , Ultraviolet Rays , Adenine/chemistry , Prebiotics/analysis , Water/chemistry
6.
J R Soc Interface ; 21(214): 20240014, 2024 May.
Article in English | MEDLINE | ID: mdl-38715323

ABSTRACT

Prebiotic peptide synthesis has consistently been a prominent topic within the field of the origin of life. While research predominantly centres on the 20 classical amino acids, the synthesis process encounters significant thermodynamic barriers. Consequently, amino acid analogues are being explored as potential building blocks for prebiotic peptide synthesis. This review delves into the pathway of polypeptide formation, identifying specific amino acid analogues that might have existed on early Earth, potentially participating in peptide synthesis and chemical evolution. Moreover, considering the complexity and variability of the environment on early Earth, we propose the plausibility of coevolution between amino acids and their analogues.


Subject(s)
Amino Acids , Evolution, Chemical , Peptides , Amino Acids/chemistry , Peptides/chemistry , Origin of Life , Prebiotics
7.
World J Gastroenterol ; 30(16): 2258-2271, 2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38690023

ABSTRACT

BACKGROUND: Irritable bowel syndrome (IBS) is one of the most frequent and debilitating conditions leading to gastroenterological referrals. However, recommended treatments remain limited, yielding only limited therapeutic gains. Chitin-glucan (CG) is a novel dietary prebiotic classically used in humans at a dosage of 1.5-3.0 g/d and is considered a safe food ingredient by the European Food Safety Authority. To provide an alternative approach to managing patients with IBS, we performed preclinical molecular, cellular, and animal studies to evaluate the role of chitin-glucan in the main pathophysiological mechanisms involved in IBS. AIM: To evaluate the roles of CG in visceral analgesia, intestinal inflammation, barrier function, and to develop computational molecular models. METHODS: Visceral pain was recorded through colorectal distension (CRD) in a model of long-lasting colon hypersensitivity induced by an intra-rectal administration of TNBS [15 milligrams (mg)/kilogram (kg)] in 33 Sprague-Dawley rats. Intracolonic pressure was regularly assessed during the 9 wk-experiment (weeks 0, 3, 5, and 7) in animals receiving CG (n = 14) at a human equivalent dose (HED) of 1.5 g/d or 3.0 g/d and compared to negative control (tap water, n = 11) and positive control (phloroglucinol at 1.5 g/d HED, n = 8) groups. The anti-inflammatory effect of CG was evaluated using clinical and histological scores in 30 C57bl6 male mice with colitis induced by dextran sodium sulfate (DSS) administered in their drinking water during 14 d. HT-29 cells under basal conditions and after stimulation with lipopolysaccharide (LPS) were treated with CG to evaluate changes in pathways related to analgesia (µ-opioid receptor (MOR), cannabinoid receptor 2 (CB2), peroxisome proliferator-activated receptor alpha, inflammation [interleukin (IL)-10, IL-1b, and IL-8] and barrier function [mucin 2-5AC, claudin-2, zonula occludens (ZO)-1, ZO-2] using the real-time PCR method. Molecular modelling of CG, LPS, lipoteichoic acid (LTA), and phospholipomannan (PLM) was developed, and the ability of CG to chelate microbial pathogenic lipids was evaluated by docking and molecular dynamics simulations. Data were expressed as the mean ± SEM. RESULTS: Daily CG orally-administered to rats or mice was well tolerated without including diarrhea, visceral hypersensitivity, or inflammation, as evaluated at histological and molecular levels. In a model of CRD, CG at a dosage of 3 g/d HED significantly decreased visceral pain perception by 14% after 2 wk of administration (P < 0.01) and reduced inflammation intensity by 50%, resulting in complete regeneration of the colonic mucosa in mice with DSS-induced colitis. To better reproduce the characteristics of visceral pain in patients with IBS, we then measured the therapeutic impact of CG in rats with TNBS-induced inflammation to long-lasting visceral hypersensitivity. CG at a dosage of 1.5 g/d HED decreased visceral pain perception by 20% five weeks after colitis induction (P < 0.01). When the CG dosage was increased to 3.0 g/d HED, this analgesic effect surpassed that of the spasmolytic agent phloroglucinol, manifesting more rapidly within 3 wk and leading to a 50% inhibition of pain perception (P < 0.0001). The underlying molecular mechanisms contributing to these analgesic and anti-inflammatory effects of CG involved, at least in part, a significant induction of MOR, CB2 receptor, and IL-10, as well as a significant decrease in pro-inflammatory cytokines IL-1b and IL-8. CG also significantly upregulated barrier-related genes including muc5AC, claudin-2, and ZO-2. Molecular modelling of CG revealed a new property of the molecule as a chelator of microbial pathogenic lipids, sequestering gram-negative LPS and gram-positive LTA bacterial toxins, as well as PLM in fungi at the lowesr energy conformations. CONCLUSION: CG decreased visceral perception and intestinal inflammation through master gene regulation and direct binding of microbial products, suggesting that CG may constitute a new therapeutic strategy for patients with IBS or IBS-like symptoms.


Subject(s)
Chitin , Colon , Disease Models, Animal , Glucans , Irritable Bowel Syndrome , Rats, Sprague-Dawley , Visceral Pain , Animals , Irritable Bowel Syndrome/drug therapy , Irritable Bowel Syndrome/physiopathology , Male , Humans , Colon/drug effects , Colon/pathology , Rats , Visceral Pain/drug therapy , Visceral Pain/physiopathology , Visceral Pain/metabolism , Visceral Pain/etiology , Chitin/pharmacology , Glucans/pharmacology , Glucans/administration & dosage , Mice , Prebiotics/administration & dosage , Trinitrobenzenesulfonic Acid/toxicity , Intestinal Mucosa/drug effects , Intestinal Mucosa/pathology , Intestinal Mucosa/metabolism , Colitis/drug therapy , Colitis/chemically induced , Colitis/physiopathology , Colitis/pathology , HT29 Cells
9.
J Microbiol Biotechnol ; 34(5): 1051-1058, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38803106

ABSTRACT

This study investigated the impact of inulin (INL) on viability of L. plantarum D-2 (LPD2) by encapsulation through spray drying (SD) and its commercialization potential to alternative of conventional wall material maltodextrin (MD). LPD2, derived from sea tangle (Saccharina japonica) kimchi, is probiotics exhibiting significant attributes like cholesterol reduction, antioxidant properties, and resilience to acidic and bile environments. To enhance storage viability and stability of LPD2, encapsulation was applied by SD technology. The optimum encapsulation condition with MD was 10% MD concentration (MD10) and inlet temperature (96°C). The optimum concentration ratio of MD and INL was 7:3 (INL3) for alternative of MD with similar encapsulation yield and viability of LPD2. Viability of LPD2 with INL3 exhibited almost 8% higher than that with MD10 after 50 days storage at 25°C. Physicochemical characteristics of the encapsulated LPD2 (ELPD2) with MD10 and INL3 had no significant different between flowability and morphology. But, ELPD2 with INL3 had lower water solubility and higher water absorption resulting in extension of viability of LPD2 compared to that with MD10. The comprehensive study results showed that there was no significant difference in the encapsulation yield and physicochemical properties between ELPD2 with MD10 and INL3, except of water solubility index (WSI) and water absorption index (WAI). INL have the potential to substitute of MD as a commercial wall material with prebiotic functionality to enhance the viability of LPD2 by encapsulation.


Subject(s)
Inulin , Lactobacillus plantarum , Microbial Viability , Polysaccharides , Prebiotics , Spray Drying , Inulin/chemistry , Inulin/pharmacology , Polysaccharides/chemistry , Microbial Viability/drug effects , Lactobacillus plantarum/growth & development , Lactobacillus plantarum/metabolism , Lactobacillus plantarum/chemistry , Probiotics , Temperature , Desiccation/methods , Solubility
10.
ACS Nano ; 18(21): 13583-13598, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38740518

ABSTRACT

A significant gap exists in the demand for safe and effective drugs for inflammatory bowel disease (IBD), and its associated intestinal fibrosis. As oxidative stress plays a central role in the pathogenesis of IBD, astaxanthin (AST), a good antioxidant with high safety, holds promise for treating IBD. However, the application of AST is restricted by its poor solubility and easy oxidation. Herein, different protein-based nanoparticles (NPs) are fabricated for AST loading to identify an oral nanovehicle with potential clinical applicability. Through systematic validation via molecular dynamics simulation and in vitro characterization of properties, whey protein isolate (WPI)-driven NPs using a simple preparation method without the need for cross-linking agents or emulsifiers were identified as the optimal carrier for oral AST delivery. Upon oral administration, the WPI-driven NPs, benefiting from the intrinsic pH sensitivity and mucoadhesive properties, effectively shielded AST from degradation by gastric juices and targeted release of AST at intestinal lesion sites. Additionally, the AST NPs displayed potent therapeutic efficacy in both dextran sulfate sodium (DSS)-induced acute colitis and chronic colitis-associated intestinal fibrosis by ameliorating inflammation, oxidative damage, and intestinal microecology. In conclusion, the AST WPI NPs hold a potential therapeutic value in treating inflammation and fibrosis in IBD.


Subject(s)
Inflammatory Bowel Diseases , Nanoparticles , Prebiotics , Reactive Oxygen Species , Whey Proteins , Whey Proteins/chemistry , Whey Proteins/pharmacology , Animals , Inflammatory Bowel Diseases/drug therapy , Inflammatory Bowel Diseases/pathology , Reactive Oxygen Species/metabolism , Administration, Oral , Nanoparticles/chemistry , Prebiotics/administration & dosage , Fibrosis/drug therapy , Inflammation/drug therapy , Inflammation/pathology , Inflammation/metabolism , Mice , Xanthophylls/pharmacology , Xanthophylls/chemistry , Xanthophylls/administration & dosage , Dextran Sulfate , Mice, Inbred C57BL , Male , Antioxidants/chemistry , Antioxidants/pharmacology , Humans
11.
Cell Commun Signal ; 22(1): 268, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38745207

ABSTRACT

Ulcerative colitis (UC) is increasingly common, and it is gradually become a kind of global epidemic. UC is a type of inflammatory bowel disease (IBD), and it is a lifetime recurrent disease. UC as a common disease has become a financial burden for many people and has the potential to develop into cancer if not prevented or treated. There are multiple factors such as genetic factors, host immune system disorders, and environmental factors to cause UC. A growing body of research have suggested that intestinal microbiota as an environmental factor play an important role in the occurrence and development of UC. Meanwhile, evidence to date suggests that manipulating the gut microbiome may represent effective treatment for the prevention or management of UC. In addition, the main clinical drugs to treat UC are amino salicylate and corticosteroid. These clinical drugs always have some side effects and low success rate when treating patients with UC. Therefore, there is an urgent need for safe and efficient methods to treat UC. Based on this, probiotics and prebiotics may be a valuable treatment for UC. In order to promote the wide clinical application of probiotics and prebiotics in the treatment of UC. This review aims to summarize the recent literature as an aid to better understanding how the probiotics and prebiotics contributes to UC while evaluating and prospecting the therapeutic effect of the probiotics and prebiotics in the treatment of UC based on previous publications.


Subject(s)
Colitis, Ulcerative , Gastrointestinal Microbiome , Prebiotics , Probiotics , Humans , Colitis, Ulcerative/therapy , Colitis, Ulcerative/microbiology , Probiotics/therapeutic use , Probiotics/administration & dosage , Prebiotics/administration & dosage , Animals
12.
Rev Assoc Med Bras (1992) ; 70(5): e20231401, 2024.
Article in English | MEDLINE | ID: mdl-38775507

ABSTRACT

OBJECTIVE: It was recently discovered that the microbiota has a significant impact on pregnancy, gynecological, and neonatal health. However, studies indicate that people struggle to understand topics, such as microbiota, microbiome, probiotics, and prebiotics, or comprehend them inaccurately or incompletely. Understanding the human microbiota and probiotics that can regulate the microbiota helps women develop daily habits for both healthy nutrition and health protection. The aim of this study was to assess the microbiota awareness levels of women who are planning pregnancy. METHODS: A cross-sectional descriptive study was carried out on 417 women who were planning pregnancy. Face-to-face interviews and questionnaires were used to collect research data. A microbiota awareness scale was used as a data collection tool. RESULTS: The study found a statistically significant difference in the subdimension scores related to microbiota awareness, general information, product knowledge, chronic disease, and probiotic and prebiotic knowledge based on the educational status of the participants. The study concluded that the participants had a confusion about microbiota awareness, general information, product information, chronic disease, and probiotic and prebiotic subdimensions. Furthermore, it was found that the participants had only a partial understanding of the relationship between microbiota and diseases. CONCLUSION: It is recommended that training programs focusing on the relationship between microbiota and health in women, such as "microbiota and its importance in women's health" and "microbiota and disease relationship," be organized and women would be encouraged to participate in these training programs.


Subject(s)
Health Knowledge, Attitudes, Practice , Microbiota , Probiotics , Humans , Female , Cross-Sectional Studies , Adult , Pregnancy , Surveys and Questionnaires , Microbiota/physiology , Young Adult , Prebiotics , Adolescent , Educational Status , Socioeconomic Factors
13.
Food Chem ; 451: 139499, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38703731

ABSTRACT

Paotianxiong (PTX) is a processing product of Aconitum carmichaelii Debx., often used as a tonic food daily. However, the structure and activity of the polysaccharide component that plays a major role still need to be determined. In our work, two new polysaccharides were purified from PTX and named PTXP-1 and PTXP-2. Structural analysis showed that PTXP-1 is a glucan with a molecular weight of 915 Da and a structure of 4)-α-D-Glcp-(1 â†’ as the main chain. PTXP-2 is a glucose arabinoglycan with 4)-α-D-Glcp-(1 â†’ as the main chain, containing 8 glycosidic bonds attached, and a molecular weight of 57.9KDa. In vitro probiotic experiments demonstrated that PTXP-1 could significantly promote probiotic growth and acid production. In vivo experiments demonstrated that both PTXP-1 and PTXP-2 exhibited significant effectiveness in promoting the growth of intestinal probiotics. These findings help expand the application of polysaccharide components extracted from tonic herbs as functional food ingredients.


Subject(s)
Polysaccharides , Prebiotics , Probiotics , Prebiotics/analysis , Polysaccharides/chemistry , Animals , Probiotics/chemistry , Mice , Molecular Weight , Humans , Male , Plant Extracts/chemistry
14.
Food Res Int ; 187: 114358, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38763642

ABSTRACT

One third of the food produced for human consumption is currently lost or wasted. Insects have a high potential for converting organic waste- and by-products into food and feed for a growing human population due to symbiosis with microorganisms. These symbioses provide an untapped reservoir of functional microbiomes that can be used to improve industrial insect production but are poorly studied in most insect species. Here we review the most current understanding and challenges of valorizing organic waste- and by-products through insects and their microbiomes for food and feed, and emerging novel food technologies that can be used to investigate and manipulate host(insects)-microbiome interactions. We further construct a holistic framework, by integration of novel food technologies including holo-omics, genome editing, breeding, phage therapy, and administration of prebiotics and probiotics to investigate and manipulate host(insects)-microbiome interactions, and solutions for achieving stakeholder acceptance of novel food technologies for a sustainable food production.


Subject(s)
Insecta , Microbiota , Animals , Insecta/microbiology , Animal Feed/microbiology , Humans , Food Technology , Waste Products , Symbiosis , Probiotics , Prebiotics
15.
Food Res Int ; 187: 114395, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38763655

ABSTRACT

Pectic polysaccharides are one of the most vital functional ingredients in quinoa microgreens, which exhibit numerous health-promoting benefits. Nevertheless, the detailed information about the structure-function relationships of pectic polysaccharides from quinoa microgreens (QMP) remains unknown, thereby largely restricting their applications as functional foods or fortified ingredients. Therefore, to unveil the possible structure-function relationships of QMP, the mild alkali de-esterification was utilized to modify QMP, and then the correlations of esterification degrees of native and modified QMPs to their biological functions were systematically investigated. The results showed that the modified QMPs with different esterification degrees were successfully prepared by the mild alkali treatment, and the primary chemical structure (e.g., compositional monosaccharides and glycosidic linkages) of the native QMP was overall stable after the de-esterified modification. Furthermore, the results revealed that the antioxidant capacity, antiglycation effect, prebiotic potential, and immunostimulatory activity of the native QMP were negatively correlated to its esterification degree. In addition, both native and modified QMPs exerted immunostimulatory effects through activating the TLR4/NF-κB signaling pathway. These results are conducive to unveiling the precise structure-function relationships of QMP, and can also promote its applications as functional foods or fortified ingredients.


Subject(s)
Antioxidants , Chenopodium quinoa , Esterification , Chenopodium quinoa/chemistry , Structure-Activity Relationship , Antioxidants/chemistry , Antioxidants/pharmacology , Antioxidants/analysis , Pectins/chemistry , Polysaccharides/chemistry , Prebiotics , Animals , Mice , Functional Food , RAW 264.7 Cells , NF-kappa B/metabolism
16.
Food Res Int ; 187: 114417, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38763667

ABSTRACT

Resistant starch serves as a prebiotic in the large intestine, aiding in the maintenance of a healthy intestinal environment and mitigating associated chronic illnesses. This study aimed to investigate the impact of resistant starch-enriched brown rice (RBR) on intestinal health and functionality. We assessed changes in resistant starch concentration, structural alterations, and branch chain length distribution throughout the digestion process using an in vitro model. The efficacy of RBR in the intestinal environment was evaluated through analyses of its prebiotic potential, effects on intestinal microbiota, and intestinal function-related proteins in obese animals fed a high-fat diet. RBR exhibited a higher yield of insoluble fraction in both the small and large intestines compared to white and brown rice. The total digestible starch content decreased, while the resistant starch content significantly increased during in vitro digestion. Furthermore, RBR notably enhanced the growth of four probiotic strains compared to white and brown rice, displaying higher proliferation activity than the positive control, FOS. Notably, consumption of RBR by high-fat diet-induced obese mice suppressed colon shortening, increased Bifidobacteria growth, and improved intestinal permeability. These findings underscore the potential prebiotic and gut health-promoting attributes of RBR, offering insights for the development of functional foods aimed at preventing gastrointestinal diseases.


Subject(s)
Diet, High-Fat , Gastrointestinal Microbiome , Mice, Inbred C57BL , Obesity , Oryza , Prebiotics , Starch , Animals , Oryza/chemistry , Gastrointestinal Microbiome/drug effects , Mice , Starch/metabolism , Male , Obesity/metabolism , Mice, Obese , Resistant Starch , Probiotics , Digestion , Bifidobacterium/growth & development
17.
Carbohydr Polym ; 338: 122236, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38763717

ABSTRACT

Avicennia marina (Forssk.) Vierh. is a highly salt-tolerant mangrove, and its fruit has been traditionally used for treating constipation and dysentery. In this study, a pectin (AMFPs-0-1) was extracted and isolated from this fruit for the first time, its structure was analyzed, and the effects on the human gut microbiota were investigated. The results indicated that AMFPs-0-1 with a molecular weight of 798 kDa had a backbone consisting of alternating →2)-α-L-Rhap-(1→ and →4)-α-D-GalpA-(1→ residues and side chains composed of →3-α-L-Araf-(1→-linked arabinan with a terminal ß-L-Araf, →5-α-L-Araf-(1→-linked arabinan, and →4)-ß-D-Galp-(1→-linked galactan that linked to the C-4 positions of all α-L-Rhap residues in the backbone. It belongs to a type I rhamnogalacturonan (RG-I) pectin but has no arabinogalactosyl chains. AMFPs-0-1 could be consumed by human gut microbiota and increase the abundance of some beneficial bacteria, such as Bifidobacterium, Mitsuokella, and Megasphaera, which could help fight digestive disorders. These findings provide a structural basis for the potential application of A. marina fruit RG-I pectic polysaccharides in improving human intestinal health.


Subject(s)
Avicennia , Fermentation , Fruit , Gastrointestinal Microbiome , Pectins , Prebiotics , Pectins/chemistry , Fruit/chemistry , Avicennia/chemistry , Avicennia/microbiology , Humans , Gastrointestinal Microbiome/drug effects , Molecular Weight
18.
Sci Rep ; 14(1): 10960, 2024 05 14.
Article in English | MEDLINE | ID: mdl-38744950

ABSTRACT

The relationship between gut microbiota and obesity has recently been an important subject for research as the gut microbiota is thought to affect body homeostasis including body weight and composition, intervening with pro and prebiotics is an intelligent possible way for obesity management. To evaluate the effect of hypo caloric adequate fiber regimen with probiotic supplementation and physical exercise, whether it will have a good impact on health, body composition, and physique among obese Egyptian women or has no significant effect. The enrolled 58 women, in this longitudinal follow-up intervention study; followed a weight loss eating regimen (prebiotic), including a low-carbohydrate adequate-fiber adequate-protein dietary pattern with decreased energy intake. They additionally received daily probiotic supplements in the form of yogurt and were instructed to exercise regularly for 3 months. Anthropometric measurements, body composition, laboratory investigations, and microbiota analysis were obtained before and after the 3 months weight loss program. Statistically highly significant differences in the anthropometry, body composition parameters: and obesity-related biomarkers (Leptin, ALT, and AST) between the pre and post-follow-up measurements at the end of the study as they were all decreased. The prebiotic and probiotic supplementation induced statistically highly significant alterations in the composition of the gut microbiota with increased relative abundance of Lactobacillus, Bifidobacteria, and Bacteroidetes and decreased relative abundance of Firmicutes and Firmicutes/Bacteroidetes Ratio. Hypo caloric adequate fiber regimen diet with probiotics positively impacts body composition and is effective for weight loss normalizing serum Leptin and AST.


Subject(s)
Body Composition , Gastrointestinal Microbiome , Obesity , Prebiotics , Probiotics , Humans , Probiotics/administration & dosage , Female , Prebiotics/administration & dosage , Adult , Longitudinal Studies , Obesity/therapy , Obesity/diet therapy , Obesity/microbiology , Weight Reduction Programs/methods , Weight Loss , Middle Aged , Exercise
19.
Sci Rep ; 14(1): 11127, 2024 05 15.
Article in English | MEDLINE | ID: mdl-38750102

ABSTRACT

Nutraceutical interventions supporting microbiota and eliciting clinical improvements in metabolic diseases have grown significantly. Chronic stress, gut dysbiosis, and metainflammation have emerged as key factors intertwined with sleep disorders, consequently exacerbating the decline in quality of life. This study aimed to assess the effects of two nutraceutical formulations containing prebiotics (fructooligosaccharides (FOS), galactooligosaccharides (GOS), yeast ß-glucans), minerals (Mg, Se, Zn), and the herbal medicine Silybum marianum L. Gaertn., Asteraceae (Milk thistle or Silymarin). These formulations, namely NSupple (without silymarin) and NSupple_Silybum (with silymarin) were tested over 180 days in overweight/obese volunteers from Brazil's southeastern region. We accessed fecal gut microbiota by partial 16S rRNA sequences; cytokines expression by CBA; anthropometrics, quality of life and sleep, as well as metabolic and hormonal parameters, at baseline (T0) and 180 days (T180) post-supplementation. Results demonstrated gut microbiota reshaping at phyla, genera, and species level post-supplementation. The Bacteroidetes phylum, Bacteroides, and Prevotella genera were positively modulated especially in the NSupple_Silybum group. Gut microbiota modulation was associated with improved sleep patterns, quality-of-life perception, cytokines expression, and anthropometric parameters post-supplementation. Our findings suggest that the nutraceutical blends positively enhance cardiometabolic and inflammatory markers. Particularly, NSupple_Silybum modulated microbiota composition, underscoring its potential significance in ameliorating metabolic dysregulation. Clinical trial registry number: NCT04810572. 23/03/2021.


Subject(s)
Cytokines , Dietary Supplements , Gastrointestinal Microbiome , Quality of Life , Humans , Gastrointestinal Microbiome/drug effects , Male , Brazil , Female , Double-Blind Method , Adult , Cytokines/metabolism , Middle Aged , Prebiotics/administration & dosage , Feces/microbiology , Silymarin/pharmacology , Minerals/pharmacology , Obesity/microbiology , Oligosaccharides/pharmacology , Oligosaccharides/administration & dosage
20.
Appl Microbiol Biotechnol ; 108(1): 354, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38819482

ABSTRACT

Whey is a byproduct of dairy industries, the aqueous portion which separates from cheese during the coagulation of milk. It represents approximately 85-95% of milk's volume and retains much of its nutrients, including functional proteins and peptides, lipids, lactose, minerals, and vitamins. Due to its composition, mainly proteins and lactose, it can be considered a raw material for value-added products. Whey-derived products are often used to supplement food, as they have shown several physiological effects on the body. Whey protein hydrolysates are reported to have different activities, including antihypertensive, antioxidant, antithrombotic, opioid, antimicrobial, cytomodulatory, and immuno-modulatory. On the other hand, galactooligosaccharides obtained from lactose can be used as prebiotic for beneficial microorganisms for the human gastrointestinal tract. All these compounds can be obtained through physicochemical, microbial, or enzymatic treatments. Particularly, enzymatic processes have the advantage of being highly selective, more stable than chemical transformations, and less polluting, making that the global enzyme market grow at accelerated rates. The sources and different products associated with the most used enzymes are particularly highlighted in this review. Moreover, we discuss metagenomics as a tool to identify novel proteolytic enzymes, from both cultivable and uncultivable microorganisms, which are expected to have new interesting activities. Finally enzymes for the transformation of whey sugar are reviewed. In this sense, carbozymes with ß-galactosidase activity are capable of lactose hydrolysis, to obtain free monomers, and transgalactosylation for prebiotics production. KEY POINTS: • Whey can be used to obtain value-added products efficiently through enzymatic treatments • Proteases transform whey proteins into biopeptides with physiological activities • Lactose can be transformed into prebiotic compounds using ß-galactosidases.


Subject(s)
Protein Hydrolysates , Whey Proteins , Whey Proteins/metabolism , Protein Hydrolysates/metabolism , Protein Hydrolysates/chemistry , Prebiotics , Humans , Whey/chemistry , Whey/metabolism , Lactose/metabolism , beta-Galactosidase/metabolism , beta-Galactosidase/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...