Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.250
Filter
2.
Biotech Histochem ; 99(3): 174-181, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38736402

ABSTRACT

Laminin receptor 1 (LAMR) may have a role in the progression of premalignant squamous epithelial lesions to cervical cancer. Therefore, we aimed to investigate the expression of laminin receptor 1 (LAMR) in normal, premalignant, and malignant tissues of the uterine cervix. Paraffin blocks of 129 specimens with the diagnoses of normal cervical tissue (n = 33), cervical intraepithelial neoplasia (CIN) 1 (n = 30), CIN 2 (n = 14), CIN 3 (n = 28), and squamous cell carcinoma (n = 24) were immunohistochemically stained with LAMR antibody and its expression percentage, pattern, and intensity in these tissues were assessed. Compared to the other groups, the nonstaining with LAMR was highest in low grade squamous intraepithelial lesion (LSIL) (p < 0.0001). LAMR expression, which was positive in less than 50% of cells with weak staining, increased significantly between normal cervical epithelium and high-grade squamous intraepithelial lesion (HSIL) or invasive carcinoma, as well as between LSIL and HSIL (p < 0.0001). Between LSIL and invasive carcinoma, a significant increment was also observed for weak staining in less than 50% of cells (p < 0.001). LAMR expression, which was positive in more than 50% of cells with strong staining, was significantly higher in normal cervical tissue compared to the other groups (p < 0.0001). Disease progression related gradual increment of LAMR expression from normal cervical epithelium or LSIL towards HSIL or cervical cancer reveals that LAMR may play an important role in the transition from premalignant to malignant state in cervical lesions.


Subject(s)
Carcinoma, Squamous Cell , Receptors, Laminin , Uterine Cervical Dysplasia , Uterine Cervical Neoplasms , Humans , Female , Uterine Cervical Neoplasms/metabolism , Uterine Cervical Neoplasms/pathology , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/pathology , Receptors, Laminin/metabolism , Uterine Cervical Dysplasia/metabolism , Uterine Cervical Dysplasia/pathology , Immunohistochemistry , Precancerous Conditions/metabolism , Precancerous Conditions/pathology , Cervix Uteri/pathology , Cervix Uteri/metabolism , Adult , Middle Aged
3.
J Pak Med Assoc ; 74(5): 852-856, 2024 May.
Article in English | MEDLINE | ID: mdl-38783429

ABSTRACT

Objective: To determine the expression of podoplanin, and to correlate it with histopathological grades in oral epithelial dysplasia and oral squamous cell carcinoma cases. METHODS: The retrospective, analytical, cross-sectional study was conducted at the City Laboratory, Peshawar, Pakistan, and comprised specimen block data of histologically diagnosed cases of oral benign lesions, dysplastic lesions and oral squamous cell carcinoma from January 2017 to August 2021. Two sections (4um) were cut from each specimen block for Haematoxylin and Eosin staining and immunohistochemistry. The slides were re-evaluated by two pathologists for confirmation of the diagnosis, and podoplanin marker was applied to cases selected using immunohistochemistry. Data was analysed using SPSS 22. RESULTS: Of the 80 cases identified, 68(85%) were analysed. There were 20(29.4%) benign cases; 11(55%) females and 9(45%) males with mean age 39.90±16.23 years, 20(29.4%) oral dysplastic cases; 14(70%) males and 6(30%) females with mean age 57.75±12.02 years, and 28(41.2%) oral squamous cell carcinoma cases; 17(61%) males and 11(39%) females with mean age 50.55±14.80 years. Podoplanin expression in oral epithelial dysplasia cases was significant (p=0.028), while it was not significant in the other 2 groups (p>0.05). CONCLUSIONS: Podoplanin when used along with histopathological evaluation could aid as an adjuvant technique in the diagnosis and grading of oral epithelial dysplasia.


Subject(s)
Membrane Glycoproteins , Mouth Neoplasms , Humans , Female , Male , Membrane Glycoproteins/metabolism , Mouth Neoplasms/pathology , Mouth Neoplasms/metabolism , Middle Aged , Adult , Cross-Sectional Studies , Retrospective Studies , Aged , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/metabolism , Precancerous Conditions/pathology , Precancerous Conditions/metabolism , Pakistan/epidemiology , Young Adult , Mouth Mucosa/pathology , Mouth Mucosa/metabolism , Neoplasm Grading , Biomarkers, Tumor/metabolism , Immunohistochemistry
4.
J Cancer Res Ther ; 20(2): 706-711, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38687943

ABSTRACT

BACKGROUND: Oral submucous fibrosis (OSF) is a precancerous lesion, with oral squamous cell carcinoma (OSCC) being the most prevalent malignancy affecting the oral mucosa. The malignant transformation of OSF into OSCC is estimated to occur in 7-13% of cases. Myofibroblasts (MFs) play pivotal roles in both physiological and pathological processes, such as wound healing and tumorigenesis, respectively. This study aimed to explore the involvement of MFs in the progression of OSF and its malignant transformation. MATERIALS AND METHODS: In total, 94 formalin-fixed paraffin-embedded tissue blocks were collected, including normal oral mucosa (NOM; n = 10), early-moderate OSF (EMOSF; n = 29), advanced OSF (AOSF; n = 29), paracancerous OSF (POSF; n = 21), and OSCC (n = 5) samples. Alpha-smooth muscle actin was used for the immunohistochemical identification of MFs. RESULTS: NOM exhibited infrequent expression of MFs. A higher staining index of MFs was found in AOSF, followed by EMOSF and NOM. Additionally, a significant increase in the staining index of MFs was found from EMOSF to POSF and OSCC. The staining index of MFs in NOM, EMOSF, AOSF, POSF, and OSCC was 0.14 ± 0.2, 1.69 ± 1.4, 2.47 ± 1.2, 3.57 ± 2.6, and 8.86 ± 1.4, respectively. All results were statistically significant (P < 0.05). CONCLUSIONS: The expression of MFs exhibited a gradual increase as the disease progressed from mild to malignant transformation, indicating the contributory role of MFs in the fibrogenesis and potential tumorigenesis associated with OSF.


Subject(s)
Cell Transformation, Neoplastic , Immunohistochemistry , Mouth Neoplasms , Myofibroblasts , Oral Submucous Fibrosis , Humans , Oral Submucous Fibrosis/pathology , Oral Submucous Fibrosis/metabolism , Myofibroblasts/pathology , Myofibroblasts/metabolism , Cell Transformation, Neoplastic/pathology , Cell Transformation, Neoplastic/metabolism , Mouth Neoplasms/pathology , Mouth Neoplasms/metabolism , Male , Female , Mouth Mucosa/pathology , Mouth Mucosa/metabolism , Precancerous Conditions/pathology , Precancerous Conditions/metabolism , Middle Aged , Adult , Actins/metabolism , Disease Progression
5.
Asian Pac J Cancer Prev ; 25(4): 1257-1264, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38679985

ABSTRACT

OBJECTIVES: Previous study showed aberrant CLLD7 and CHC1L protein expression in oral squamous cell carcinoma (OSCC) compared to normal oral mucosa (NOM). This study aimed to evaluate the expression of these proteins in oral epithelial dysplasia (OED). MATERIALS AND METHODS: Forty specimens of OED and 11 NOM were used. The expression of CLLD7 and CHC1L was determined by immunohistochemistry. In each case, at least 1000 cells were counted. Presence of nuclear, cytoplasmic, and/or membrane staining of CLLD7 and CHC1L were considered positive. Percentages of total positive cells and positive cells at different locations were recorded. SPSS version 18 was used to compare variation between groups with statistical significance at p<0.05. RESULTS: No significant differences in the percentages of total positive cells of CLLD7 and CHC1L were found between NOM and all grades of OED. Nevertheless, there were significant differences in subcellular staining of these two proteins. In CLLD7, the nuclear staining of the moderate and the severe OED groups was significantly lower than that of the NOM group (p<0.05). The percentages of membrane staining of CHC1L in moderate and severe OED were significantly higher than that of NOM (p<0.001). In addition, the nuclear staining of CHC1L in each grade of OED was significantly lower than that of NOM (p<0.05). CONCLUSION: The subcellular mislocalization of CLLD7 and CHC1L in OED suggests that the expression of these potential tumor suppressor proteins might be dysregulated during the dysplastic process. The distinct membrane staining of CHC1L observed in OED but not in NOM is a useful characteristic that can be used to separate OED from NOM. Thus, CHC1L may be a good marker to assist in the diagnosis of OED.


Subject(s)
Biomarkers, Tumor , Carcinoma, Squamous Cell , Mouth Mucosa , Mouth Neoplasms , Humans , Mouth Neoplasms/metabolism , Mouth Neoplasms/pathology , Mouth Mucosa/metabolism , Mouth Mucosa/pathology , Female , Male , Biomarkers, Tumor/metabolism , Middle Aged , Thailand , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/pathology , Precancerous Conditions/metabolism , Precancerous Conditions/pathology , Prognosis , Adult , Case-Control Studies , Aged , Follow-Up Studies , Southeast Asian People
6.
Front Biosci (Landmark Ed) ; 29(3): 127, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38538255

ABSTRACT

BACKGROUND: Gastric cancer (GC) stands as one of the most prevalent cancer types worldwide, holding the position of the second leading cause of cancer-related deaths. Gastric lesions represent pathological alterations to the gastric mucosa, with an elevated propensity to advance to gastric cancer. Limited research has explored the potential of stem cells in the treatment of gastric lesions. METHODS: This study aimed to explore the potential of intravenous transplantation of labeled bone marrow-derived mesenchymal stem cells (BMMSCs) to inhibit the progression of precancerous gastric lesions. RESULTS: In the gastric lesion disease model group, the rat tissue exhibited noteworthy mucosal atrophy, intestinal metaplasia, dysplasia, and inflammatory cell infiltration. Following the infusion of BMMSCs, a notable decrease in gastric lesions was found, with atrophic gastritis being the sole remaining lesion, which was confirmed by morphological and histological examinations. BMMSCs that were colonized at gastric lesions could differentiate into epithelial and stromal cells, as determined by the expression of pan-keratin or vimentin. The expression of vascular endothelial growth factor was significantly elevated following BMMSC transplantation. BMMSCs could also upregulate the production of humoral immune response cytokines, including interleukin (IL)-4 and IL-10, and downregulate the production of IL-17 and interferon-gamma, which could be highly associated with the cellular immune response and inflammation severity of the lesions. CONCLUSIONS: BMMSC transplantation significantly reduced inflammation and reversed gastric lesion progression.


Subject(s)
Mesenchymal Stem Cells , Precancerous Conditions , Stomach Neoplasms , Rats , Animals , Stomach Neoplasms/metabolism , Vascular Endothelial Growth Factor A/metabolism , Bone Marrow/pathology , Gastric Mucosa/metabolism , Gastric Mucosa/pathology , Mesenchymal Stem Cells/metabolism , Inflammation/metabolism , Precancerous Conditions/therapy , Precancerous Conditions/metabolism , Precancerous Conditions/pathology
7.
Nature ; 627(8004): 656-663, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38418883

ABSTRACT

Understanding the cellular processes that underlie early lung adenocarcinoma (LUAD) development is needed to devise intervention strategies1. Here we studied 246,102 single epithelial cells from 16 early-stage LUADs and 47 matched normal lung samples. Epithelial cells comprised diverse normal and cancer cell states, and diversity among cancer cells was strongly linked to LUAD-specific oncogenic drivers. KRAS mutant cancer cells showed distinct transcriptional features, reduced differentiation and low levels of aneuploidy. Non-malignant areas surrounding human LUAD samples were enriched with alveolar intermediate cells that displayed elevated KRT8 expression (termed KRT8+ alveolar intermediate cells (KACs) here), reduced differentiation, increased plasticity and driver KRAS mutations. Expression profiles of KACs were enriched in lung precancer cells and in LUAD cells and signified poor survival. In mice exposed to tobacco carcinogen, KACs emerged before lung tumours and persisted for months after cessation of carcinogen exposure. Moreover, they acquired Kras mutations and conveyed sensitivity to targeted KRAS inhibition in KAC-enriched organoids derived from alveolar type 2 (AT2) cells. Last, lineage-labelling of AT2 cells or KRT8+ cells following carcinogen exposure showed that KACs are possible intermediates in AT2-to-tumour cell transformation. This study provides new insights into epithelial cell states at the root of LUAD development, and such states could harbour potential targets for prevention or intervention.


Subject(s)
Adenocarcinoma of Lung , Cell Differentiation , Epithelial Cells , Lung Neoplasms , Animals , Humans , Mice , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/pathology , Alveolar Epithelial Cells/metabolism , Alveolar Epithelial Cells/pathology , Aneuploidy , Carcinogens/toxicity , Epithelial Cells/classification , Epithelial Cells/metabolism , Epithelial Cells/pathology , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Mutation , Organoids/drug effects , Organoids/metabolism , Precancerous Conditions/metabolism , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Survival Rate , Tobacco Products/adverse effects , Tobacco Products/toxicity
8.
Gastroenterology ; 166(5): 772-786.e14, 2024 05.
Article in English | MEDLINE | ID: mdl-38272100

ABSTRACT

BACKGROUND & AIMS: Gastric carcinogenesis develops within a sequential carcinogenic cascade from precancerous metaplasia to dysplasia and adenocarcinoma, and oncogenic gene activation can drive the process. Metabolic reprogramming is considered a key mechanism for cancer cell growth and proliferation. However, how metabolic changes contribute to the progression of metaplasia to dysplasia remains unclear. We have examined metabolic dynamics during gastric carcinogenesis using a novel mouse model that induces Kras activation in zymogen-secreting chief cells. METHODS: We generated a Gif-rtTA;TetO-Cre;KrasG12D (GCK) mouse model that continuously induces active Kras expression in chief cells after doxycycline treatment. Histologic examination and imaging mass spectrometry were performed in the GCK mouse stomachs at 2 to 14 weeks after doxycycline treatment. Mouse and human gastric organoids were used for metabolic enzyme inhibitor treatment. The GCK mice were treated with a stearoyl- coenzyme A desaturase (SCD) inhibitor to inhibit the fatty acid desaturation. Tissue microarrays were used to assess the SCD expression in human gastrointestinal cancers. RESULTS: The GCK mice developed metaplasia and high-grade dysplasia within 4 months. Metabolic reprogramming from glycolysis to fatty acid metabolism occurred during metaplasia progression to dysplasia. Altered fatty acid desaturation through SCD produces a novel eicosenoic acid, which fuels dysplastic cell hyperproliferation and survival. The SCD inhibitor killed both mouse and human dysplastic organoids and selectively targeted dysplastic cells in vivo. SCD was up-regulated during carcinogenesis in human gastrointestinal cancers. CONCLUSIONS: Active Kras expression only in gastric chief cells drives the full spectrum of gastric carcinogenesis. Also, oncogenic metabolic rewiring is an essential adaptation for high-energy demand in dysplastic cells.


Subject(s)
Energy Metabolism , Fatty Acids , Metaplasia , Organoids , Proto-Oncogene Proteins p21(ras) , Stomach Neoplasms , Animals , Stomach Neoplasms/pathology , Stomach Neoplasms/metabolism , Stomach Neoplasms/genetics , Humans , Fatty Acids/metabolism , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Organoids/metabolism , Mice , Disease Models, Animal , Carcinogenesis/metabolism , Carcinogenesis/genetics , Carcinogenesis/pathology , Chief Cells, Gastric/metabolism , Chief Cells, Gastric/pathology , Cell Transformation, Neoplastic/metabolism , Cell Transformation, Neoplastic/pathology , Cell Transformation, Neoplastic/genetics , Mice, Transgenic , Glycolysis , Adenocarcinoma/pathology , Adenocarcinoma/metabolism , Adenocarcinoma/genetics , Disease Progression , Precancerous Conditions/pathology , Precancerous Conditions/metabolism , Precancerous Conditions/genetics
9.
J Nutr Biochem ; 125: 109566, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38176623

ABSTRACT

Liver precancerous lesions are the key to improving the efficacy of cancer treatment because of the extremely poor prognosis of HCC patients in moderate and late stages. Obesity-related HCC progression is closely related to the inflammatory microenvironment, in which macrophages are one of the major constituents. In the present study, we ask whether obesity promotes diethylnitrosamine (DEN)-induced precancerous lesions by M1 macrophage polarization. First, an association between obesity and liver precancerous lesions was determined by histopathological observations, immunochemistry and immunoblotting. The characteristics of early precancerous lesions (trabecular thickening) appeared earlier eight weeks in obese mice than in normal diet mice after DEN induction. The glutathione S-transferase placental-1 (Gstp 1) and alpha-fetoprotein (AFP) expression in obese mice after DEN induction was higher than that in the same period after DEN injection in normal diet mice. Furthermore, there was a significant increase in the total macrophage number (F4/80+) of DEN and M1 macrophage number (CD86+F4/80+) in obese mice compared with that in normal diet mice. Besides, the expressions of four pro-inflammatory factors in DEN-induced obese mice were significantly higher compared with that in normal diet mice. Additionally, angiogenesis was revealed by immunostaining assay to be associated with the inflammatory response. All the results demonstrate that obesity promotes DEN-induced precancerous lesions by inducing M1 macrophage polarization and angiogenesis.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Precancerous Conditions , Humans , Pregnancy , Mice , Female , Animals , Diet, High-Fat/adverse effects , Carcinoma, Hepatocellular/pathology , Diethylnitrosamine/toxicity , Liver Neoplasms/chemically induced , Liver Neoplasms/metabolism , Mice, Obese , Placenta , Obesity/metabolism , Phenotype , Precancerous Conditions/chemically induced , Precancerous Conditions/metabolism , Precancerous Conditions/pathology , Macrophages/metabolism , Tumor Microenvironment
10.
Biochim Biophys Acta Mol Cell Res ; 1871(2): 119646, 2024 02.
Article in English | MEDLINE | ID: mdl-38061566

ABSTRACT

Members of the Protein kinase D (PKD) kinase family each play important cell-specific roles in the regulation of normal pancreas functions. In pancreatic diseases PKD1 is the most widely characterized isoform with roles in pancreatitis and in induction of pancreatic cancer and its progression. PKD1 expression and activation increases in pancreatic acinar cells through macrophage secreted factors, Kirsten rat sarcoma viral oncogene homolog (KRAS) signaling, and reactive oxygen species (ROS), driving the formation of precancerous lesions. In precancerous lesions PKD1 regulates cell survival, growth, senescence, and generation of doublecortin like kinase 1 (DCLK1)-positive cancer stem cells (CSCs). Within tumors, regulation by PKD1 includes chemoresistance, apoptosis, proliferation, CSC features, and the Warburg effect. Thus, PKD1 plays a critical role throughout pancreatic disease initiation and progression.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Pancreatitis , Precancerous Conditions , Humans , Carcinoma, Pancreatic Ductal/metabolism , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Pancreatitis/metabolism , Pancreatitis/pathology , Protein Kinases , Precancerous Conditions/metabolism , Precancerous Conditions/pathology , Doublecortin-Like Kinases
11.
Gut ; 73(2): 255-267, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-37751933

ABSTRACT

OBJECTIVE: The presence of intestinal metaplasia (IM) is a risk factor for gastric cancer. However, it is still controversial whether IM itself is precancerous or paracancerous. Here, we aimed to explore the precancerous nature of IM by analysing epigenetic alterations. DESIGN: Genome-wide DNA methylation analysis was conducted by EPIC BeadArray using IM crypts isolated by Alcian blue staining. Chromatin immunoprecipitation sequencing for H3K27ac and single-cell assay for transposase-accessible chromatin by sequencing were conducted using IM mucosa. NOS2 was induced using Tet-on gene expression system in normal cells. RESULTS: IM crypts had a methylation profile unique from non-IM crypts, showing extensive DNA hypermethylation in promoter CpG islands, including those of tumour-suppressor genes. Also, the IM-specific methylation profile, namely epigenetic footprint, was present in a fraction of gastric cancers with a higher frequency than expected, and suggested to be associated with good overall survival. IM organoids had remarkably high NOS2 expression, and NOS2 induction in normal cells led to accelerated induction of aberrant DNA methylation, namely epigenetic instability, by increasing DNA methyltransferase activity. IM mucosa showed dynamic enhancer reprogramming, including the regions involved in higher NOS2 expression. NOS2 had open chromatin in IM cells but not in gastric cells, and IM cells had frequent closed chromatin of tumour-suppressor genes, indicating their methylation-silencing. NOS2 expression in IM-derived organoids was upregulated by interleukin-17A, a cytokine secreted by extracellular bacterial infection. CONCLUSIONS: IM cells were considered to have a precancerous nature potentially with an increased chance of converting into cancer cells, and an accelerated DNA methylation induction due to abnormal NOS2 expression.


Subject(s)
Helicobacter Infections , Helicobacter pylori , Precancerous Conditions , Stomach Neoplasms , Humans , DNA Methylation , Stomach Neoplasms/microbiology , DNA , Chromatin/metabolism , Metaplasia/genetics , Metaplasia/metabolism , Precancerous Conditions/genetics , Precancerous Conditions/metabolism , Gastric Mucosa/metabolism , Helicobacter pylori/genetics , Helicobacter Infections/complications
12.
Int J Mol Sci ; 24(24)2023 Dec 06.
Article in English | MEDLINE | ID: mdl-38139034

ABSTRACT

Hepatocellular carcinoma (HCC) is a major global health concern, representing one of the leading causes of cancer-related deaths. Despite various treatment options, the prognosis for HCC patients remains poor, emphasizing the need for a deeper understanding of the factors contributing to HCC development. This study investigates the role of poly(ADP-ribosyl)ation in hepatocyte maturation and its impact on hepatobiliary carcinogenesis. A conditional Parg knockout mouse model was employed, utilizing Cre recombinase under the albumin promoter to target Parg depletion specifically in hepatocytes. The disruption of the poly(ADP-ribosyl)ating pathway in hepatocytes affects the early postnatal liver development. The inability of hepatocytes to finish the late maturation step that occurs early after birth causes intensive apoptosis and acute inflammation, resulting in hypertrophic liver tissue with enlarged hepatocytes. Regeneration nodes with proliferative hepatocytes eventually replace the liver tissue and successfully fulfill the liver function. However, early developmental changes predispose these types of liver to develop pathologies, including with a malignant nature, later in life. In a chemically induced liver cancer model, Parg-depleted livers displayed a higher tendency for hepatocellular carcinoma development. This study underscores the critical role of the poly(ADP-ribosyl)ating pathway in hepatocyte maturation and highlights its involvement in liver pathologies and hepatobiliary carcinogenesis. Understanding these processes may provide valuable insights into liver biology and liver-related diseases, including cancer.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Precancerous Conditions , Animals , Mice , Humans , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Hepatocytes/metabolism , Precancerous Conditions/metabolism , Carcinogenesis/genetics , Carcinogenesis/metabolism , Glycoside Hydrolases/metabolism , Poly Adenosine Diphosphate Ribose/metabolism , Mammals/metabolism
13.
Hum Genomics ; 17(1): 72, 2023 08 04.
Article in English | MEDLINE | ID: mdl-37542347

ABSTRACT

Head and neck cancers are a complex malignancy comprising multiple anatomical sites, with cancer of the oral cavity ranking among the deadliest and the most disfiguring cancers globally. Oral cancer (OC) constitutes a subset of head and neck cancer cases, presenting primarily as tobacco- and alcohol-associated oral squamous cell carcinoma (OSCC), with a 5-year survival rate of ~ 65%, partly due to the lack of early detection and effective treatments. OSCC arises from premalignant lesions (PMLs) in the oral cavity through a multi-step series of clinical and histopathological stages, including varying degrees of epithelial dysplasia. To gain insights into the molecular mechanisms associated with the progression of PMLs to OSCC, we profiled the whole transcriptome of 66 human PMLs comprising leukoplakia with dysplasia and hyperkeratosis non-reactive (HkNR) pathologies, alongside healthy controls and OSCC. Our data revealed that PMLs were enriched in gene signatures associated with cellular plasticity, such as partial EMT (p-EMT) phenotypes, and with immune response. Integrated analyses of the host transcriptome and microbiome further highlighted a significant association between differential microbial abundance and PML pathway activity, suggesting a contribution of the oral microbiome toward PML evolution to OSCC. Collectively, this study reveals molecular processes associated with PML progression that may help early diagnosis and disease interception at an early stage.


Subject(s)
Carcinoma, Squamous Cell , Mouth Neoplasms , Precancerous Conditions , Humans , Mouth Neoplasms/genetics , Mouth Neoplasms/metabolism , Mouth Neoplasms/pathology , Carcinoma, Squamous Cell/genetics , Precancerous Conditions/genetics , Precancerous Conditions/metabolism , Precancerous Conditions/pathology , Transcriptome/genetics , Sequence Analysis, RNA
14.
BMC Complement Med Ther ; 23(1): 188, 2023 Jun 08.
Article in English | MEDLINE | ID: mdl-37291549

ABSTRACT

BACKGROUND: Precancerous lesions of gastric cancer (PLGC) refer to a kind of histopathological changes in the gastric mucosa that can progress to gastric cancer. Elian granules (ELG), a Chinese medicinal prescription, have achieved satisfactory results in the treatment of PLGC. However, the exact mechanism underlying the therapeutic effect of ELG remains unclear. Here, this study aims to explore the mechanism of ELG alleviating PLGC in rats. METHODS: The chemical ingredients of ELG were analyzed using ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS). Specific Pathogen Free SD rats were randomly assigned to 3 groups: the control, model, and ELG groups. The 1-Methyl-3-nitro-1-nitrosoguanidine (MNNG) integrated modeling method was adopted to construct the PLGC rat model in groups except for the control group. Meanwhile, normal saline was used as an intervention for the control and model groups, and ELG aqueous solution for the ELG group, lasting 40 weeks. Subsequently, the stomach of rats was harvested for further analysis. Hematoxylin-eosin staining of the gastric tissue was conducted to assess the pathological changes. Immunofluorescence was carried out for the expression of CD68, and CD206 proteins. Real-time quantitative PCR combined with Western blot was conducted to analyze the expression of arginase-1(Arg-1), inducible nitric oxide synthase (iNOS), p65, p-p65, nuclear factor inhibitor protein-α (IκBα), and p-IκBα in gastric antrum tissue. RESULTS: Five chemical ingredients including Curcumol, Curzerenone, Berberine, Ferulic Acid, and 2-Hydroxy-3-Methylanthraquine were identified in ELG. The gastric mucosal glands of rats treated with ELG were orderly arranged, with no intestinal metaplasia and no dysplasia. Furthermore, ELG decreased the percentage of M2-type TAMs marked with CD68 and CD206 proteins, and the ratio of Arg-1 to iNOS in the gastric antrum tissue of rats with PLGC. In addition, ELG could also down-regulate the protein and mRNA expression of p-p65, p65, and p-IκBα, but up-regulate the expression of IκBα mRNA in rats with PLGC. CONCLUSIONS: The results showed that ELG attenuates PLGC in rats by suppressing the M2-type polarization of tumor-associated macrophages (TAMs) through NF-κB signaling pathway.


Subject(s)
Precancerous Conditions , Stomach Neoplasms , Rats , Animals , NF-kappa B/metabolism , NF-KappaB Inhibitor alpha/metabolism , Stomach Neoplasms/metabolism , Tumor-Associated Macrophages/metabolism , Tumor-Associated Macrophages/pathology , Rats, Sprague-Dawley , Chromatography, Liquid , Tandem Mass Spectrometry , Signal Transduction , Precancerous Conditions/drug therapy , Precancerous Conditions/metabolism , Precancerous Conditions/pathology , RNA, Messenger
15.
Phytother Res ; 37(8): 3602-3616, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37086359

ABSTRACT

Kaempferol has been suggested to be an effective anticancer agent in several malignant tumors. However, its function and mechanisms in breast precancerous lesions remain largely elusive. Here, we showed that kaempferol induced excessive mitochondrial fission and mitochondrial damage with activated mitochondrial fission factor (MFF)-mediated dynamin-related protein (DRP) 1 mitochondrial translocation. As a result, the PTEN-induced putative kinase 1 (PINK1)/Parkin signaling pathway was activated, accompanied by excessive mitophagy and reduced mitochondrial mass in cells. We also revealed that kaempferol-induced lethal mitophagy contributed to inhibiting breast precancerous lesion growth in vitro and in vivo. Furthermore, we verified serine/threonine kinase 11 (STK11/LKB1)/AMP-activated protein kinase (AMPK) pathway deficiency in breast precancerous lesions. Moreover, LKB1/AMPK pathway reactivation by kaempferol was required for excessive mitochondrial fission and lethal mitophagy. Taken together, our findings shed new light on the molecular mechanisms related to breast cancer prevention by kaempferol and provide evidence for its potential clinical application.


Subject(s)
Mitophagy , Precancerous Conditions , Humans , Mitophagy/physiology , AMP-Activated Protein Kinases/metabolism , Kaempferols/pharmacology , Protein Serine-Threonine Kinases/metabolism , Mitochondria , Precancerous Conditions/metabolism
16.
Int. j. morphol ; 41(2): 491-500, abr. 2023. ilus, tab
Article in Spanish | LILACS | ID: biblio-1440341

ABSTRACT

Siendo el cáncer gástrico la 3ª causa de muerte por cáncer en Chile, y existiendo estrategias de tamizaje consistentes en pesquisa de lesiones preneoplásicas de la mucosa gástrica, es relevante conocer los aspectos genéticos y moleculares que puedan ser aplicados, en la optimización de dichas estrategias a grupos de mayor riesgo. El objetivo de este manuscrito fue revisar la evidencia actual en los aspectos señalados, y de la inmunohistoquímica de 4 marcadores (p53, CDX2, MUC2 y S100A9) en la mucosa gástrica normal y en las lesiones preneoplásicas de la misma.


SUMMARY: Since gastric cancer is the 3rd leading cause of death from cancer in Chile, and there are screening strategies consisting of screening for preneoplastic lesions of the gastric mucosa, it is important to know certain genetic and molecular aspects that can be applied in optimizing these strategies for higher risk groups. The aim of this manuscript was to review the current evidence on the aforementioned aspects, and on the immunohistochemistry of 4 markers (p53, CDX2, MUC2 and S100A9) in normal gastric mucosa and in its preneoplastic lesions.


Subject(s)
Humans , Precancerous Conditions/pathology , Stomach Neoplasms/pathology , Gastric Mucosa/pathology , Precancerous Conditions/genetics , Precancerous Conditions/metabolism , Stomach Neoplasms/genetics , Stomach Neoplasms/metabolism , Immunohistochemistry , Biomarkers, Tumor , Mass Screening , Risk Factors , Genes, p53 , Mucin-2 , CDX2 Transcription Factor , Gastric Mucosa/metabolism , Metaplasia
17.
Arch Oral Biol ; 147: 105630, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36709626

ABSTRACT

OBJECTIVE: This systematic review aims to investigate possible connections between the oral microbiome and the onset and carcinogenesis of oral epithelial dysplasia (OED). METHODS: A systematic search was performed on PubMed, Embase, Cochrane Database, and SCOPUS by two authors independently, addressing the focused question- "Has oral microbiome dysbiosis been involved in the onset and carcinogenesis of oral epithelial dysplasia?" We used the Newcastle-Ottawa scale to assess the quality of studies included in the review. RESULTS: Out of 580 references screened, ten studies were found eligible for inclusion. All studies were case-control studies, and only qualitative analysis was conducted due to heterogeneous characteristics. The overall risk of bias in the eligible studies was considered as high. Microbiome diversity indices showed inconsistent evidence among studies. A significant increase of phylum Bacteroidetes in OED patients was reported in five studies. Five studies reported an increase of genus Fusobacterium in both the OED and oral squamous cell carcinoma (OSCC) patients and six different studies respectively reported a reduction of genus Streptococcus in both the OED and OSCC groups when compared to normal controls. Other predominant bacteria that were specific to different patient groups varied in each study. CONCLUSIONS: The results of the included studies showed that the composition of the oral microbiome in patients with OED compared to healthy controls and OSCC patients was inconsistent. However, all ten studies showed non-negligible heterogeneity in the type and size of the sample, and the comparability between groups, which strongly limited the external validity of results. Further studies are strongly recommended.


Subject(s)
Carcinoma, Squamous Cell , Head and Neck Neoplasms , Mouth Neoplasms , Precancerous Conditions , Humans , Carcinoma, Squamous Cell/pathology , Mouth Neoplasms/pathology , Precancerous Conditions/metabolism , Dysbiosis/complications , Biomarkers, Tumor/metabolism , Squamous Cell Carcinoma of Head and Neck , Carcinogenesis
18.
J Oral Pathol Med ; 52(1): 9-19, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36380437

ABSTRACT

Myeloid-derived suppressor cells (MDSCs) help establish the tumor microenvironment by suppressing T-cell response in tumor-bearing hosts. Plasmacytoid dendritic cells (pDCs) activate antigen-specific T cells, thereby, maximizing their antitumor effects. IDO1 is associated with both MDSCs and pDCs and plays a major role in the formation of the tumor-mediated immunosuppressive environment. We utilized immunohistochemistry to examine the involvement of IDO1 in oral squamous cell carcinoma (OSCC) and oral potentially malignant disorders (OPMDs, precancerous lesions). We examined the expression of MDSC markers, CD11b and CD33, as well as pDC markers, CD303 and IDO1, in 60 OSCC and 45 precancerous lesion specimens and analyzed their association with clinicopathological parameters. Expression of these biomarkers identifying MDSCs and pDCs was high in precancerous lesions in patients with severe dysplasia and OSCC. While detecting pDCs, high CD303 and IDO1 expression levels were frequently observed in moderately or poorly differentiated OSCCs. CD11b, CD33, and CD303 levels were significantly correlated with the mode of invasion; CD33 was correlated with OSCC invasion depth while the other three markers tended to be highly expressed in superficial cancer cases showing microinvasion. Expression levels of all four biomarkers were significantly associated with the cancerization of OPMDs to OSCCs. We show, for the first time, that the infiltration of MDSCs and pDCs is significantly associated with progression of premalignant lesions to OSCC. This suggests that these cells may act as prognostic biomarkers for premalignant lesion progression and that immunotherapeutic approaches that control each of these immunosuppressive cells may protect against progression to malignancy.


Subject(s)
Carcinoma, Squamous Cell , Head and Neck Neoplasms , Mouth Neoplasms , Myeloid-Derived Suppressor Cells , Precancerous Conditions , Humans , Carcinoma, Squamous Cell/pathology , Squamous Cell Carcinoma of Head and Neck/metabolism , Myeloid-Derived Suppressor Cells/metabolism , Myeloid-Derived Suppressor Cells/pathology , Mouth Neoplasms/pathology , Carcinogenesis/metabolism , Cell Transformation, Neoplastic/metabolism , Biomarkers/metabolism , Precancerous Conditions/metabolism , Head and Neck Neoplasms/metabolism , Dendritic Cells/pathology , Tumor Microenvironment
19.
Dis Esophagus ; 36(3)2023 Feb 24.
Article in English | MEDLINE | ID: mdl-36190180

ABSTRACT

Esophageal adenocarcinoma (EAC) develops in a step-wise manner, from low-grade dysplasia (LGD) to high-grade dysplasia (HGD), and ultimately to invasive EAC. However, there remains diagnostic uncertainty about LGD and its risk of progression to HGD/EAC. The aim is to investigate the role of Ki-67, immune-histochemical marker of proliferation, surface expression in patients with confirmed LGD, and risk stratify progression to HGD/EAC. A retrospective cohort study was conducted. Patients with confirmed LGD and indefinite for dysplasia (IND), with a mean follow-up of ≥1 year, were included. Pathology specimens were stained for Ki-67 and analyzed for evidence of surface expression. Our results reveal that 29% of patients with confirmed LGD who stained positive with Ki-67 progressed to HGD/EAC as opposed to none (0%) of the patients who stained negative, a statistically significant result (P = 0.003). Similarly, specimens from patients with IND were stained and analyzed revealing a nonsignificant trend toward a higher rate of progression for Ki-67 positive cases versus Ki-67 negative, 30% versus 21%, respectively. Ki-67 expression by itself can identify patients with LGD at a high risk of progression.


Subject(s)
Adenocarcinoma , Esophageal Neoplasms , Ki-67 Antigen , Precancerous Conditions , Humans , Adenocarcinoma/genetics , Adenocarcinoma/metabolism , Adenocarcinoma/pathology , Barrett Esophagus/genetics , Barrett Esophagus/metabolism , Barrett Esophagus/pathology , Disease Progression , Esophageal Neoplasms/genetics , Esophageal Neoplasms/metabolism , Esophageal Neoplasms/pathology , Hyperplasia/genetics , Hyperplasia/metabolism , Ki-67 Antigen/genetics , Ki-67 Antigen/metabolism , Precancerous Conditions/genetics , Precancerous Conditions/metabolism , Precancerous Conditions/pathology , Retrospective Studies , Risk Assessment
20.
Nutrients ; 14(22)2022 Nov 20.
Article in English | MEDLINE | ID: mdl-36432602

ABSTRACT

It is hypothesized that esophageal precancerous lesions (EPLs) have a surge requirement for coenzyme I (NAD). The purpose of this study is to clarify the key control points of NAD synthesis in developing EPL by detecting related markers and the gene polymorphism of NAD synthesis and metabolism. This case-control study was conducted in Huai'an, China. In total, 100 healthy controls and 100 EPL cases matched by villages, gender, and age (±2 years) were included. The levels of plasma niacin and nicotinamide, and the protein concentration of NAMPT, NAPRT, and PARP-1 were quantitatively analyzed. PARP-1 gene polymorphism was detected to determine if the cases differed genetically in NAD synthesis. The levels of plasma niacin and nicotinamide and the concentrations of NAMPT were not related to the risk of EPL, but the over-expressions of NAPRT (p = 0.014, 0.001, and 0.016, respectively) and PARP-1 (p for trend = 0.021) were associated with the increased EPL risk. The frequency distribution of APRP-1 genotypes was found to not differ between the two groups, while the EPL group showed an increased frequency of the variant C allele. NAPRT, but not NAMPT, was found to be responsible for the stress of excess NAD synthesis in EPL. Focusing on the development of NAPRT inhibitors may be beneficial to prevent and control ESCC.


Subject(s)
Esophageal Neoplasms , NAD , Nicotinamide Phosphoribosyltransferase , Precancerous Conditions , Humans , Case-Control Studies , NAD/genetics , NAD/metabolism , Niacin/genetics , Niacin/metabolism , Niacinamide , Poly(ADP-ribose) Polymerase Inhibitors , Precancerous Conditions/genetics , Precancerous Conditions/metabolism , Esophageal Neoplasms/genetics , Esophageal Neoplasms/metabolism , Poly(ADP-ribose) Polymerases/genetics , Poly(ADP-ribose) Polymerases/metabolism , Nicotinamide Phosphoribosyltransferase/genetics , Nicotinamide Phosphoribosyltransferase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...