Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.864
Filter
1.
Mol Biol Rep ; 51(1): 749, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38874800

ABSTRACT

Background The incidence of various types of cancers, including leukemia, is on the rise and many challenges in both drug resistance and complications related to chemotherapy appeared. Recently, the development and application of extracellular vesicles (EV) such as exosomes in the management of cancers, especially leukemia, holds great significance. In this article, we extracted exosomes from NALM6 cells and assessed their regulatory effects on proliferation and apoptosis in mesenchymal stem cells (MSCs). Method and result We first verified the exosomes using various techniques, including flow cytometry, transient electron microscopy, dynamic light scattering (DLS), and BCA protein assay. Then MTT analysis and flowcytometry (apoptosis and cell cycle assay) besides gene expressions were employed to determine the state of MSC proliferations. The results indicated that exosome-specific pan markers like CD9, CD63, and CD81 were present. Through DLS, we found out that the mean size of the exosomes was 89.68 nm. The protein content was determined to be 956.292 µg/ml. Analysis of MTT, flow cytometry (cell cycle and apoptosis assay), and RT-qPCR showed that in the dose of 50 µg/ml the proliferation of MSCs was increased significantly (p-value < 0.05). Conclusion All these data showed that exosomes use several signaling pathways to increase the MSCs' proliferation and drug resistance, ultimately leading to high mortalities and morbidities of acute lymphoblastic leukemia.


Subject(s)
Apoptosis , Cell Proliferation , Exosomes , Mesenchymal Stem Cells , Exosomes/metabolism , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/drug effects , Humans , Cell Proliferation/drug effects , Apoptosis/drug effects , Cell Line, Tumor , Tetraspanin 29/metabolism , Tetraspanin 29/genetics , Cell Cycle/drug effects , Cell Cycle/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Tetraspanin 30/metabolism , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics
2.
Blood Cancer Discov ; 5(3): 142-145, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38689559

ABSTRACT

SUMMARY: In Blood Cancer Discovery, Saygin and colleagues report that somatic variants that are recurrent in myeloid malignancies can also occur with high frequency (16%) in adult acute lymphoblastic leukemia (ALL) where they correlate with older age, diagnosis following genotoxic therapy for a prior malignancy and worse outcome to chemotherapy. Mutations in these "myeloid" genes can precede ALL diagnosis and arise in hematopoietic stem or progenitor cells that clonally expand and differentiate into both lymphoblasts and nonmalignant myeloid cells, supporting a role for clonal hematopoiesis as premalignant state outside the context of myeloid malignancies and providing implications for both ALL etiology and therapeutic intervention. See related article by Saygin et al., p. 164 (4).


Subject(s)
Mutation , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Humans , Myeloid Cells/pathology , Myeloid Cells/metabolism , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology
3.
Oncol Rep ; 52(1)2024 Jul.
Article in English | MEDLINE | ID: mdl-38785163

ABSTRACT

Inotuzumab ozogamicin (IO), a novel therapeutic drug for relapsed or refractory acute lymphoblastic leukemia (RR)­(ALL), is a humanized anti­cluster of differentiation (CD) 22 monoclonal antibody conjugated with calicheamicin that causes DNA single­ and double­strand breaks. Although the efficacy of IO is significantly improved compared with that of conventional chemotherapies, the prognosis for RR­ALL remains poor, highlighting the need for more effective treatment strategies. The present study examined the role of DNA damage repair inhibition using the poly (ADP­ribose) polymerase (PARP) inhibitors olaparib or talazoparib on the enhancement of the antitumor effects of IO on B­ALL cells in vitro. The Reh, Philadelphia (Ph)­B­ALL and the SUP­B15 Ph+ B­ALL cell lines were used for experiments. Both cell lines were ~90% CD22+. The half­maximal inhibitory concentration (IC50) values of IO were 5.3 and 49.7 ng/ml for Reh and SUP­B15 cells, respectively. The IC50 values of IO combined with minimally toxic concentrations of olaparib or talazoparib were 0.8 and 2.9 ng/ml for Reh cells, respectively, and 36.1 and 39.6 ng/ml for SUP­B15 cells, respectively. The combination index of IO with olaparib and talazoparib were 0.19 and 0.56 for Reh cells and 0.76 and 0.89 for SUP­B15 cells, demonstrating synergistic effects in all combinations. Moreover, the addition of minimally toxic concentrations of PARP inhibitors augmented IO­induced apoptosis. The alkaline comet assay, which quantitates the amount of DNA strand breaks, was used to investigate the degree to which DNA damage observed 1 h after IO administration was repaired 6 h later, reflecting successful repair of DNA strand breaks. However, DNA strand breaks persisted 6 h after IO administration combined with olaparib or talazoparib, suggesting inhibition of the repair processes by PARP inhibitors. Adding olaparib or talazoparib thus synergized the antitumor effects of IO by inhibiting DNA strand break repair via the inhibition of PARP.


Subject(s)
DNA Repair , Drug Synergism , Inotuzumab Ozogamicin , Phthalazines , Piperazines , Poly(ADP-ribose) Polymerase Inhibitors , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Humans , Phthalazines/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Piperazines/pharmacology , Piperazines/administration & dosage , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , Cell Line, Tumor , DNA Repair/drug effects , Inotuzumab Ozogamicin/pharmacology , Apoptosis/drug effects , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Cell Proliferation/drug effects , Indoles/pharmacology
4.
Hematology ; 29(1): 2356292, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38785187

ABSTRACT

OBJECTIVES: This study aims to investigate the role of excessive Protein Tyrosine Phosphatase Non-Receptor Type 21 (PTPN21) in the proliferation of Acute Lymphoblastic Leukemia (ALL) cells with EGF stimulation. METHODS: PTPN21 was overexpressed in ALL cell lines by lentiviral transfection. Apoptosis was assayed by Annexin V/7-AAD staining. The proliferation and cell cycle of EGF-treated ALL cells were assessed by MTT and Ki-67/7-AAD staining respectively. The phosphorylation of Src tyrosine kinase and mediators of distinct MAPK pathways were assessed by Western blot. RESULTS: Overexpression of PTPN21 had minimal effect on the apoptosis of ALL cells, but significantly promoted the proliferation and cell cycle progression of ALL cells stimulated with EGF. The activity of Src tyrosine kinase and the MAPK pathways was elevated. Inhibition of MAPK pathways by specific inhibitors mitigated this pro-proliferative effect of excessive PTPN21 on EGF-stimulated ALL cells. CONCLUSION: PTPN21 may facilitate ALL progression by promoting cell proliferation via the Src/MAPK signaling pathways.


Subject(s)
Cell Proliferation , Epidermal Growth Factor , MAP Kinase Signaling System , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Protein Tyrosine Phosphatases, Non-Receptor , Humans , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Epidermal Growth Factor/pharmacology , MAP Kinase Signaling System/drug effects , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Protein Tyrosine Phosphatases, Non-Receptor/genetics , Protein Tyrosine Phosphatases, Non-Receptor/metabolism
5.
Expert Rev Hematol ; 17(6): 269-274, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38753450

ABSTRACT

BACKGROUND: Despite advancements in chemotherapy and stem cell transplantation, the recurrence and chemoresistance of childhood acute lymphoblastic leukemia (cALL) remain a significant challenge, thus indicating the need for novel therapeutic targets. RESEARCH DESIGN AND METHODS: The protein levels of YAP1, p-YAP1, TAZ, and Cyr61 of cALL patients and healthy volunteers were measured by western blot analysis. Then the leukemic cell line SUP-B15 was transfected with sh-YAP1 and pcDNA3.1-YAP1 to knockdown or overexpress YAP1. The viability, chemosensitivity, apoptosis, migration, and invasion of SUP-B15 cells were determined by MTT, flow cytometry, and Transwell assay. RESULTS: The cALL patients had higher YAP1, TAZ, and Cyr61 protein expression and lower p-YAP1 protein expression in bone marrow tissues compared with healthy volunteers (p < 0.01). In SUP-B15 cells, YAP1 knockdown upregulated p-YAP1 protein expression (p < 0.01) and downregulated TAZ and Cyr61 protein expression (p < 0.01). In addition, knocking down YAP1 significantly inhibited cell viability, migration, and invasion, and induced apoptosis (p < 0.01). YAP1 knockdown also reduced the IC50 value following treatment with vincristine, daunorubicin, cyclophosphamide, and dexamethasone (p < 0.05). CONCLUSIONS: Disruption of the Hippo pathway attenuates the development of cALL by promoting cell proliferation while suppressing apoptosis and drug sensitivity.


Subject(s)
Apoptosis , Cell Proliferation , Hippo Signaling Pathway , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Protein Serine-Threonine Kinases , Signal Transduction , Transcription Factors , Humans , Apoptosis/drug effects , Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Cell Proliferation/drug effects , Child , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Female , Cell Line, Tumor , Transcription Factors/metabolism , Transcription Factors/genetics , Male , Signal Transduction/drug effects , Child, Preschool , YAP-Signaling Proteins/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Drug Resistance, Neoplasm , Cell Movement , Adolescent
6.
Scand J Clin Lab Invest ; 84(3): 139-146, 2024 May.
Article in English | MEDLINE | ID: mdl-38662870

ABSTRACT

Cell division cycle 42 (CDC42) regulates the progression of leukemia via mediating proliferation and immune evasion of malignant cells. The study aimed to investigate the correlation of CDC42 with clinical features, treatment response, event-free survival (EFS) and overall survival (OS) in adult Philadelphia chromosome negative acute lymphoblastic leukemia (Ph- ALL) patients. CDC42 expression in bone marrow mononuclear cells was detected in 78 adult Ph- ALL patients and 10 donors using real-time reverse transcriptase-polymerase chain reaction. CDC42 was increased in adult Ph- ALL patients compared with donors (p < .001). Besides, elevated CDC42 was linked with pro-B ALL or early-T ALL (p = .038) and white blood cell (WBC) elevation at diagnosis (p = .025). Fifty (64.1%) and 23 (29.5%) patients had complete remission (CR) at 1 month and minimal residual disease (MRD) after CR, respectively. CDC42 was inversely associated with CR at 1 month (p = .034), but not MRD after CR (p = .066). Concerning survival, patients with CDC42 ≥ 3.310 (cut by median value in patients) showed a shortened EFS (p = .006) and OS (p = .036) compared to those with CDC42 < 3.310. In detail, patients with CDC42 ≥ 3.310 and CDC42 < 3.310 had 5-year EFS rate of 29.9% and 45.4%, and 5-year OS rate of 39.4% and 63.6%, correspondingly. Further multivariate Cox's regression analyses revealed that CDC42 ≥ 3.310 was independently related to shorter EFS (hazard ratio = 2.933, p = .005). Elevated CDC42 is related with pro-B ALL or early-T ALL, WBC elevation at diagnosis, unfavorable treatment response and worse survival in adult Ph- ALL patients.


Subject(s)
Neoplasm, Residual , Philadelphia Chromosome , Precursor Cell Lymphoblastic Leukemia-Lymphoma , cdc42 GTP-Binding Protein , Humans , Adult , Female , Male , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/mortality , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , Precursor Cell Lymphoblastic Leukemia-Lymphoma/therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/diagnosis , Middle Aged , cdc42 GTP-Binding Protein/metabolism , cdc42 GTP-Binding Protein/genetics , Adolescent , Aged , Young Adult , Remission Induction , Prognosis , Treatment Outcome , Disease-Free Survival
7.
Curr Opin Genet Dev ; 86: 102191, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38579381

ABSTRACT

To make a multicellular organism, genes need to be transcribed at the right developmental stages and in the right tissues. DNA sequences termed 'enhancers' are crucial to achieve this. Despite concerted efforts, the exact mechanisms of enhancer activity remain elusive. Mixed lineage leukemia (MLL or KMT2A) rearrangements (MLLr), commonly observed in cases of acute lymphoblastic leukemia (ALL) and acute myeloid leukemia, produce novel in-frame fusion proteins. Recent work has shown that the MLL-AF4 fusion protein drives aberrant enhancer activity at key oncogenes in ALL, dependent on the continued presence of MLL-AF4 complex components. As well as providing some general insights into enhancer function, these observations may also provide an explanation for transcriptional heterogeneity observed in MLLr patients.


Subject(s)
Chromatin , Enhancer Elements, Genetic , Histone-Lysine N-Methyltransferase , Myeloid-Lymphoid Leukemia Protein , Oncogene Proteins, Fusion , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Myeloid-Lymphoid Leukemia Protein/genetics , Humans , Enhancer Elements, Genetic/genetics , Histone-Lysine N-Methyltransferase/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , Chromatin/genetics , Oncogene Proteins, Fusion/genetics , Gene Rearrangement/genetics
8.
Leukemia ; 38(6): 1223-1235, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38600316

ABSTRACT

Due to the rarity of TP53 mutations in acute lymphoblastic leukemia (ALL), p53 re-activation by antagonism of the p53-MDM2 interaction represents a potential therapeutic strategy for the majority of ALL. Here, we demonstrate the potent antileukemic activity of the MDM2 antagonist idasanutlin in high-risk and relapsed ex vivo coculture models of TP53 wildtype ALL (n = 40). Insufficient clinical responses to monotherapy MDM2 inhibitors in other cancers prompted us to explore optimal drugs for combination therapy. Utilizing high-throughput combination screening of 1971 FDA-approved and clinically advanced compounds, we identified BCL-xL/BCL-2 inhibitor navitoclax as the most promising idasanutlin combination partner. The idasanutlin-navitoclax combination was synergistically lethal to prognostically-poor, primary-derived and primary patient blasts in ex vivo coculture, and reduced leukemia burden in two very high-risk ALL xenograft models at drug concentrations safely attained in patients; in fact, the navitoclax plasma concentrations were equivalent to those attained in contemporary "low-dose" navitoclax clinical trials. We demonstrate a preferential engagement of cell death over G1 cell cycle arrest, mechanistically implicating MCL-1-binding pro-apoptotic sensitizer NOXA. The proposed combination of two clinical-stage compounds independently under clinical evaluation for ALL is of high clinical relevance and warrants consideration for the treatment of patients with high-risk and relapsed ALL.


Subject(s)
Aniline Compounds , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Proto-Oncogene Proteins c-bcl-2 , Sulfonamides , Tumor Suppressor Protein p53 , Xenograft Model Antitumor Assays , bcl-X Protein , Humans , bcl-X Protein/antagonists & inhibitors , bcl-X Protein/metabolism , Animals , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Mice , Tumor Suppressor Protein p53/metabolism , Aniline Compounds/pharmacology , Aniline Compounds/therapeutic use , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Proto-Oncogene Proteins c-bcl-2/metabolism , Sulfonamides/pharmacology , Apoptosis/drug effects , Proto-Oncogene Proteins c-mdm2/antagonists & inhibitors , Proto-Oncogene Proteins c-mdm2/metabolism , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Drug Synergism , Cell Line, Tumor , Neoplasm Recurrence, Local/drug therapy , Neoplasm Recurrence, Local/pathology , Neoplasm Recurrence, Local/metabolism , Pyrrolidines , para-Aminobenzoates
9.
BMJ Case Rep ; 17(4)2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38569729

ABSTRACT

Involvement of the cervix with acute lymphoblastic leukaemia (ALL) is extremely rare. In this case report, we discuss an unmarried woman in her early 20s, who presented in the emergency with lower abdominal pain and irregular vaginal bleeding for 1 month. Clinical examination and imaging revealed a large cervical mass probably neoplastic with obstructive uropathy. On evaluation, she was diagnosed incidentally with CALLA-positive precursor B cell ALL in peripheral blood flow cytometry. Involvement of B cell ALL in cervical mass was confirmed by histopathological examination of cervical biopsy and immunohistochemistry markers. Her history was not suggestive of signs and symptoms pertaining to leukaemia. Literature is sparse with only a few cases reporting cervical leukaemic infiltration. The present case report is a rarest case where the primary/initial presentation of precursor B cell ALL was seen with cervical involvement and obstructive uropathy mimicking characteristics of advanced cervical malignancy.


Subject(s)
Lymphoma, B-Cell , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Uterine Cervical Neoplasms , Female , Humans , Cervix Uteri/pathology , Precursor Cells, B-Lymphoid/pathology , Lymphoma, B-Cell/pathology , Uterine Cervical Neoplasms/complications , Uterine Cervical Neoplasms/diagnosis , Uterine Cervical Neoplasms/pathology , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/complications , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/diagnosis , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/pathology
10.
Leukemia ; 38(5): 969-980, 2024 May.
Article in English | MEDLINE | ID: mdl-38519798

ABSTRACT

The presence of supernumerary chromosomes is the only abnormality shared by all patients diagnosed with high-hyperdiploid B cell acute lymphoblastic leukemia (HD-ALL). Despite being the most frequently diagnosed pediatric leukemia, the lack of clonal molecular lesions and complete absence of appropriate experimental models have impeded the elucidation of HD-ALL leukemogenesis. Here, we report that for 23 leukemia samples isolated from moribund Eµ-Ret mice, all were characterized by non-random chromosomal gains, involving combinations of trisomy 9, 12, 14, 15, and 17. With a median gain of three chromosomes, leukemia emerged after a prolonged latency from a preleukemic B cell precursor cell population displaying more diverse aneuploidy. Transition from preleukemia to overt disease in Eµ-Ret mice is associated with acquisition of heterogeneous genomic abnormalities affecting the expression of genes implicated in pediatric B-ALL. The development of abnormal centrosomes in parallel with aneuploidy renders both preleukemic and leukemic cells sensitive to inhibitors of centrosome clustering, enabling targeted in vivo depletion of leukemia-propagating cells. This study reveals the Eµ-Ret mouse to be a novel tool for investigating HD-ALL leukemogenesis, including supervision and selection of preleukemic aneuploid clones by the immune system and identification of vulnerabilities that could be targeted to prevent relapse.


Subject(s)
Disease Models, Animal , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma , Animals , Mice , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Aneuploidy , Humans , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , Centrosome/pathology , Diploidy
11.
Cancer Sci ; 115(6): 1924-1935, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38549229

ABSTRACT

In childhood acute lymphoblastic leukemia (ALL), TP53 gene mutation is associated with chemoresistance in a certain population of relapsed cases. To directly verify the association of TP53 gene mutation with chemoresistance of relapsed childhood ALL cases and improve their prognosis, the development of appropriate human leukemia models having TP53 mutation in the intrinsic gene is required. Here, we sought to introduce R248Q hotspot mutation into the intrinsic TP53 gene in an ALL cell line, 697, by applying a prime editing (PE) system, which is a versatile genome editing technology. The PE2 system uses an artificial fusion of nickase Cas9 and reverse-transcriptase to directly place new genetic information into a target site through a reverse transcriptase template in the prime editing guide RNA (pegRNA). Moreover, in the advanced PE3b system, single guide RNA (sgRNA) matching the edited sequence is also introduced to improve editing efficiency. The initially obtained MDM2 inhibitor-resistant PE3b-transfected subline revealed disrupted p53 transactivation activity, reduced p53 target gene expression, and acquired resistance to chemotherapeutic agents and irradiation. Although the majority of the subline acquired the designed R248Q and adjacent silent mutations, the insertion of the palindromic sequence in the scaffold hairpin structure of pegRNA and the overlap of the original genomic DNA sequence were frequently observed. Targeted next-generation sequencing reconfirmed frequent edit errors in both PE2 and PE3b-transfected 697 cells, and it revealed frequent successful edits in HEK293T cells. These observations suggest a requirement for further modification of the PE2 and PE3b systems for accurate editing in leukemic cells.


Subject(s)
Gene Editing , Mutation , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Tumor Suppressor Protein p53 , Humans , Tumor Suppressor Protein p53/genetics , Gene Editing/methods , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , Precursor Cell Lymphoblastic Leukemia-Lymphoma/therapy , Cell Line, Tumor , Drug Resistance, Neoplasm/genetics , CRISPR-Cas Systems/genetics , RNA, Guide, CRISPR-Cas Systems/genetics , Proto-Oncogene Proteins c-mdm2/genetics
12.
Microsc Res Tech ; 87(7): 1615-1626, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38445461

ABSTRACT

Acute lymphoblastic leukemia (ALL) is a life-threatening disease that commonly affects children and is classified into three subtypes: L1, L2, and L3. Traditionally, ALL is diagnosed through morphological analysis, involving the examination of blood and bone marrow smears by pathologists. However, this manual process is time-consuming, laborious, and prone to errors. Moreover, the significant morphological similarity between ALL and various lymphocyte subtypes, such as normal, atypic, and reactive lymphocytes, further complicates the feature extraction and detection process. The aim of this study is to develop an accurate and efficient automatic system to distinguish ALL cells from these similar lymphocyte subtypes without the need for direct feature extraction. First, the contrast of microscopic images is enhanced using histogram equalization, which improves the visibility of important features. Next, a fuzzy C-means clustering algorithm is employed to segment cell nuclei, as they play a crucial role in ALL diagnosis. Finally, a novel convolutional neural network (CNN) with three convolutional layers is utilized to classify the segmented nuclei into six distinct classes. The CNN is trained on a labeled dataset, allowing it to learn the distinguishing features of each class. To evaluate the performance of the proposed model, quantitative metrics are employed, and a comparison is made with three well-known deep networks: VGG-16, DenseNet, and Xception. The results demonstrate that the proposed model outperforms these networks, achieving an approximate accuracy of 97%. Moreover, the model's performance surpasses that of other studies focused on 6-class classification in the context of ALL diagnosis. RESEARCH HIGHLIGHTS: Deep neural networks eliminate the requirement for feature extraction in ALL classification The proposed convolutional neural network achieves an impressive accuracy of approximately 97% in classifying six ALL and lymphocyte subtypes.


Subject(s)
Lymphocytes , Neural Networks, Computer , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Humans , Precursor Cell Lymphoblastic Leukemia-Lymphoma/classification , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , Lymphocytes/pathology , Lymphocytes/cytology , Image Processing, Computer-Assisted/methods , Algorithms , Microscopy/methods
13.
Mod Pathol ; 37(5): 100466, 2024 May.
Article in English | MEDLINE | ID: mdl-38460674

ABSTRACT

This manuscript represents a review of lymphoblastic leukemia/lymphoma (acute lymphoblastic leukemia/lymphoblastic lymphoma), acute leukemias of ambiguous lineage, mixed-phenotype acute leukemias, myeloid/lymphoid neoplasms with eosinophilia and defining gene rearrangements, histiocytic and dendritic neoplasms, and genetic tumor syndromes of the 5th edition of the World Health Organization Classification of Tumors of the Hematopoietic and Lymphoid Tissues. The diagnostic, clinicopathologic, cytogenetic, and molecular genetic features are discussed. The differences in comparison to the 4th revised edition of the World Health Organization classification of hematolymphoid neoplasms are highlighted.


Subject(s)
Precursor Cell Lymphoblastic Leukemia-Lymphoma , World Health Organization , Humans , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , Precursor Cell Lymphoblastic Leukemia-Lymphoma/classification , Eosinophilia/pathology , Eosinophilia/genetics , Histiocytic Disorders, Malignant/genetics , Histiocytic Disorders, Malignant/pathology , Hematologic Neoplasms/genetics , Hematologic Neoplasms/pathology , Hematologic Neoplasms/classification , Phenotype
15.
Blood ; 143(21): 2178-2189, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38394665

ABSTRACT

ABSTRACT: Acute lymphoblastic leukemia (ALL) with fusions of ABL-class tyrosine kinase genes other than BCR::ABL1 occurs in ∼3% of children with ALL. The tyrosine kinase genes involved in this BCR::ABL1-like (Ph-like) subtype include ABL1, PDGFRB, ABL2, and CSF1R, each of which has up to 10 described partner genes. ABL-class ALL resembles BCR::ABL1-positive ALL with a similar gene expression profile, poor response to chemotherapy, and sensitivity to tyrosine kinase inhibitors (TKIs). There is a lack of comprehensive data regarding TKI sensitivity in the heterogeneous group of ABL-class ALL. We observed variability in TKI sensitivity within and among each ABL-class tyrosine kinase gene subgroup. We showed that ALL samples with fusions for any of the 4 tyrosine kinase genes were relatively sensitive to imatinib. In contrast, the PDGFRB-fused ALL samples were less sensitive to dasatinib and bosutinib. Variation in ex vivo TKI response within the subset of samples with the same ABL-class tyrosine kinase gene was not associated with the ALL immunophenotype, 5' fusion partner, presence or absence of Src-homology-2/3 domains, or deletions of IKZF1, PAX5, or CDKN2A/B. In conclusion, the tyrosine kinase gene involved in ABL-class ALL is the main determinant of TKI sensitivity and relevant for specific TKI selection.


Subject(s)
Precursor Cell Lymphoblastic Leukemia-Lymphoma , Protein Kinase Inhibitors , Proto-Oncogene Proteins c-abl , src Homology Domains , Humans , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/pharmacology , Child , Proto-Oncogene Proteins c-abl/genetics , Proto-Oncogene Proteins c-abl/metabolism , Adolescent , Child, Preschool , Female , Male , Imatinib Mesylate/therapeutic use , Imatinib Mesylate/pharmacology , Receptor, Platelet-Derived Growth Factor beta/genetics , Receptor, Platelet-Derived Growth Factor beta/metabolism , Dasatinib/therapeutic use , Dasatinib/pharmacology , Oncogene Proteins, Fusion/genetics
17.
Indian J Pathol Microbiol ; 67(1): 185-188, 2024.
Article in English | MEDLINE | ID: mdl-38358218

ABSTRACT

Juvenile xanthogranuloma is a benign self-limiting lesion commonly described in infants and young children. It most commonly involves the skin presenting as single or multiple yellowish-brown papules. Clinical scenario with the classic histomorphology showing histiocytic aggregates in the dermis with xanthomatous cytoplasm, toutan type giant cells, immunohistochemistry with positive CD68, CD163, factor XIIIa and negative CD1a and S-100 help in diagnosis. However, diagnosis becomes challenging with predominant systemic bone marrow involvement in post-B-lymphoblastic leukemia settings.


Subject(s)
Precursor B-Cell Lymphoblastic Leukemia-Lymphoma , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Xanthogranuloma, Juvenile , Xanthomatosis , Infant , Child , Humans , Child, Preschool , Bone Marrow/pathology , Skin/pathology , Xanthogranuloma, Juvenile/diagnosis , Xanthogranuloma, Juvenile/pathology , Histiocytes/pathology , Xanthomatosis/diagnosis , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology
18.
Sci Rep ; 14(1): 4000, 2024 02 18.
Article in English | MEDLINE | ID: mdl-38369625

ABSTRACT

Autophagy is activated in response to a variety of stress conditions including anti-cancer therapies, and tumors cells often depend on autophagy for survival. In this study, we have evaluated inhibition of autophagy as therapeutic strategy in acute lymphoblastic leukemia (ALL) in children, both as a single treatment and in combination with glucocorticoid (GC) Dexamethasone (Dexa). Analysis of proteomics and RNA-seq of ALL cell lines and primary samples identified an upregulation of Vps34 and ATG14 proteins and autophagy and lysosomal pathway enrichment in a genetic subgroup with a recurrent t(12;21) translocation. Cells from this sugbroup were also significantly more sensitive to the selective autophagy or lysosomal inhibitors than cells with other genetic rearrangements. Further, combination of Dexa with either lysosomal or autophagy inhibitors was either synergistic or additive in killing leukemic cells across various genetic and lineage backgrounds, for both cell lines and primary samples, as assessed using viability assays and SynergyFinder as well as apoptotic caspase 3/7-based live-cell assays. Our data demonstrate that targeting autophagy represents a promising strategy for the treatment of pediatric ALL, both as a selective modality for the t(12;21) pre-B-ALL subgroup, and in combination treatments to sensitize to GC-induced cytotoxicity.


Subject(s)
Precursor B-Cell Lymphoblastic Leukemia-Lymphoma , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Child , Humans , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , Autophagy , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Cell Line , Glucocorticoids/therapeutic use , Cell Line, Tumor , Apoptosis
SELECTION OF CITATIONS
SEARCH DETAIL
...