Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 782
Filter
2.
Cell Death Dis ; 15(5): 328, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38734740

ABSTRACT

We created valrubicin-loaded immunoliposomes (Val-ILs) using the antitumor prodrug valrubicin, a hydrophobic analog of daunorubicin. Being lipophilic, valrubicin readily incorporated Val-lLs that were loaded with specific antibodies. Val-ILs injected intravenously rapidly reached the bone marrow and spleen, indicating their potential to effectively target cancer cells in these areas. Following the transplantation of human pediatric B-cell acute lymphoblastic leukemia (B-ALL), T-cell acute lymphoblastic leukemia (T-ALL), or acute myeloid leukemia (AML) in immunodeficient NSG mice, we generated patient-derived xenograft (PDX) models, which were treated with Val-ILs loaded with antibodies to target CD19, CD7 or CD33. Only a small amount of valrubicin incorporated into Val-ILs was needed to induce leukemia cell death in vivo, suggesting that this approach could be used to efficiently treat acute leukemia cells. We also demonstrated that Val-ILs could reduce the risk of contamination of CD34+ hematopoietic stem cells by acute leukemia cells during autologous peripheral blood stem cell transplantation, which is a significant advantage for clinical applications. Using EL4 lymphoma cells on immunocompetent C57BL/6 mice, we also highlighted the potential of Val-ILs to target immunosuppressive cell populations in the spleen, which could be valuable in impairing cancer cell expansion, particularly in lymphoma cases. The most efficient Val-ILs were found to be those loaded with CD11b or CD223 antibodies, which, respectively, target the myeloid-derived suppressor cells (MDSC) or the lymphocyte-activation gene 3 (LAG-3 or CD223) on T4 lymphocytes. This study provides a promising preclinical demonstration of the effectiveness and ease of preparation of Val-ILs as a novel nanoparticle technology. In the context of hematological cancers, Val-ILs have the potential to be used as a precise and effective therapy based on targeted vesicle-mediated cell death.


Subject(s)
Liposomes , Animals , Humans , Mice , Xenograft Model Antitumor Assays , Cell Death/drug effects , Hematologic Neoplasms/drug therapy , Hematologic Neoplasms/pathology , Hematologic Neoplasms/therapy , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/pathology , Leukemia, Myeloid, Acute/immunology , Cell Line, Tumor , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/pathology
3.
Zhongguo Dang Dai Er Ke Za Zhi ; 26(5): 469-475, 2024 May 15.
Article in Chinese | MEDLINE | ID: mdl-38802906

ABSTRACT

OBJECTIVES: To investigate the prognosis of childhood T-lymphoblastic lymphoma (T-LBL) treated with acute lymphoblastic leukemia (ALL) regimen and related influencing factors. METHODS: A retrospective analysis was performed for the prognostic characteristics of 29 children with T-LBL who were treated with ALL regimen (ALL-2009 or CCCG-ALL-2015 regimen) from May 2010 to May 2022. RESULTS: The 29 children with T-LBL had a 5-year overall survival (OS) rate of 84%±7% and an event-free survival (EFS) rate of 81%±8%. The children with B systemic symptoms (unexplained fever >38°C for more than 3 days; night sweats; weight loss >10% within 6 months) at initial diagnosis had a lower 5-year EFS rate compared to the children without B symptoms (P<0.05). The children with platelet count >400×109/L and involvement of both mediastinum and lymph nodes at initial diagnosis had lower 5-year OS rates (P<0.05). There were no significant differences in 5-year OS and EFS rates between the children treated with CCCG-ALL-2015 regimen and those treated with ALL-2009 regimen (P>0.05). Compared with the ALL-2009 regimen, the CCCG-ALL-2015 regimen reduced the frequency of high-dose methotrexate chemotherapy and the incidence rate of severe infections (P<0.05). CONCLUSIONS: The ALL regimen is safe and effective in children with T-LBL. Children with B systemic symptoms, platelet count >400×109/L, and involvement of both mediastinum and lymph nodes at initial diagnosis tend to have a poor prognosis. Reduction in the frequency of high-dose methotrexate chemotherapy can reduce the incidence rate of severe infections, but it does not affect prognosis.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Humans , Male , Female , Child , Child, Preschool , Prognosis , Retrospective Studies , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/mortality , Adolescent , Infant , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/mortality
4.
Blood ; 143(21): 2166-2177, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38437728

ABSTRACT

ABSTRACT: T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological malignancy. Current treatments, based on intensive chemotherapy regimens provide overall survival rates of ∼85% in children and <50% in adults, calling the search of new therapeutic options. We previously reported that targeting the T-cell receptor (TCR) in T-ALL with anti-CD3 (αCD3) monoclonal antibodies (mAbs) enforces a molecular program akin to thymic negative selection, a major developmental checkpoint in normal T-cell development; induces leukemic cell death; and impairs leukemia progression to ultimately improve host survival. However, αCD3 monotherapy resulted in relapse. To find out actionable targets able to re-enforce leukemic cells' vulnerability to αCD3 mAbs, including the clinically relevant teplizumab, we identified the molecular program induced by αCD3 mAbs in patient-derived xenografts derived from T-ALL cases. Using large-scale transcriptomic analysis, we found prominent expression of tumor necrosis factor α (TNFα), lymphotoxin α (LTα), and multiple components of the "TNFα via NF-κB signaling" pathway in anti-CD3-treated T-ALL. We show in vivo that etanercept, a sink for TNFα/LTα, enhances αCD3 antileukemic properties, indicating that TNF/TNF receptor (TNFR) survival pathways interferes with TCR-induced leukemic cell death. However, suppression of TNF-mediated survival and switch to TNFR-mediated cell death through inhibition of cellular inhibitor of apoptosis protein-1/2 (cIAP1/2) with the second mitochondrial-derived activator of caspases (SMAC) mimetic birinapant synergizes with αCD3 to impair leukemia expansion in a receptor-interacting serine/threonine-protein kinase 1-dependent manner and improve mice survival. Thus, our results advocate the use of either TNFα/LTα inhibitors, or birinapant/other SMAC mimetics to improve anti-CD3 immunotherapy in T-ALL.


Subject(s)
CD3 Complex , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Tumor Necrosis Factor-alpha , Humans , Animals , Mice , CD3 Complex/immunology , CD3 Complex/antagonists & inhibitors , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/therapy , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/immunology , Immunotherapy/methods , Signal Transduction/drug effects , Xenograft Model Antitumor Assays , Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Monoclonal, Humanized/pharmacology , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use
5.
Blood ; 143(20): 2053-2058, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38457359

ABSTRACT

ABSTRACT: Defining prognostic variables in T-lymphoblastic lymphoma (T-LL) remains a challenge. AALL1231 was a Children's Oncology Group phase 3 clinical trial for newly diagnosed patients with T acute lymphoblastic leukemia or T-LL, randomizing children and young adults to a modified augmented Berlin-Frankfurt-Münster backbone to receive standard therapy (arm A) or with addition of bortezomib (arm B). Optional bone marrow samples to assess minimal residual disease (MRD) at the end of induction (EOI) were collected in T-LL analyzed to assess the correlation of MRD at the EOI to event-free survival (EFS). Eighty-six (41%) of the 209 patients with T-LL accrued to this trial submitted samples for MRD assessment. Patients with MRD <0.1% (n = 75) at EOI had a superior 4-year EFS vs those with MRD ≥0.1% (n = 11) (89.0% ± 4.4% vs 63.6% ± 17.2%; P = .025). Overall survival did not significantly differ between the 2 groups. Cox regression for EFS using arm A as a reference demonstrated that MRD EOI ≥0.1% was associated with a greater risk of inferior outcome (hazard ratio, 3.73; 95% confidence interval, 1.12-12.40; P = .032), which was independent of treatment arm assignment. Consideration to incorporate MRD at EOI into future trials will help establish its value in defining risk groups. CT# NCT02112916.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols , Neoplasm, Residual , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Humans , Child , Female , Male , Adolescent , Child, Preschool , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/mortality , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/therapy , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Bortezomib/administration & dosage , Bortezomib/therapeutic use , Young Adult , Disease-Free Survival , Adult , Infant , Prognosis
6.
Cytotherapy ; 26(5): 466-471, 2024 May.
Article in English | MEDLINE | ID: mdl-38430078

ABSTRACT

BACKGROUND AIMS: Daratumumab, a human IgG monoclonal antibody targeting CD38, is a promising treatment for pediatric patients with relapsed or refractory T-cell acute lymphoblastic leukemia (T-ALL). We describe a case of delayed engraftment following a mismatched, unrelated donor hematopoietic stem cell transplant (HSCT) in a 14-year-old female with relapsed T-ALL, treated with daratumumab and chemotherapy. By Day 28 post-HSCT, the patient had no neutrophil engraftment but full donor myeloid chimerism. METHODS: We developed two novel, semi-quantitative, antibody-based assays to measure the patient's bound and plasma daratumumab levels to determine if prolonged drug exposure may have contributed to her slow engraftment. RESULTS: Daratumumab levels were significantly elevated more than 30 days after the patient's final infusion, and levels inversely correlated with her white blood cell counts. To clear daratumumab, the patient underwent several rounds of plasmapheresis and subsequently engrafted. CONCLUSIONS: This is the first report of both delayed daratumumab clearance and delayed stem cell engraftment following daratumumab treatment in a pediatric patient. Further investigation is needed to elucidate the optimal dosing of daratumumab for treatment of acute leukemias in pediatric populations as well as daratumumab's potential effects on hematopoietic stem cells and stem cell engraftment following allogenic HSCT.


Subject(s)
Antibodies, Monoclonal , Hematopoietic Stem Cell Transplantation , Transplantation, Homologous , Humans , Hematopoietic Stem Cell Transplantation/methods , Female , Antibodies, Monoclonal/therapeutic use , Adolescent , Transplantation, Homologous/methods , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/therapy , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Graft Survival/drug effects
7.
J Pediatr Hematol Oncol ; 46(3): e241-e243, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38447104

ABSTRACT

Patients undergoing therapy for T cell acute lymphoblastic leukemia are at risk of infections during their treatment course. Cat scratch disease caused by Bartonella hensalae can masquerade as leukemic relapse and cause systemic infection. Obtaining a thorough exposure history may aid clinicians in making the diagnosis.


Subject(s)
Bartonella henselae , Cat-Scratch Disease , Lymphadenopathy , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Humans , Cat-Scratch Disease/complications , Cat-Scratch Disease/diagnosis , Cat-Scratch Disease/drug therapy , Lymphadenopathy/etiology , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/complications , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , T-Lymphocytes
8.
Exp Hematol ; 132: 104176, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38320689

ABSTRACT

The overall survival rate of patients with T-cell acute lymphoblastic leukemia (T-ALL) is now 90%, although patients with relapsed T-ALL face poor prognosis. The ubiquitin-proteasome system maintains normal protein homeostasis, and aberrations in this pathway are associated with T-ALL. Here we demonstrate the in vitro and in vivo activity of ixazomib, a second-generation orally available, reversible, and selective proteasome inhibitor against pediatric T-ALL cell lines and patient-derived xenografts (PDXs) grown orthotopically in immunodeficient NOD.Cg-PrkdcscidIL2rgtm1Wjl/SzJAusb (NSG) mice. Ixazomib was highly potent in vitro, with half-maximal inhibitory concentration (IC50) values in the low nanomolar range. As a monotherapy, ixazomib significantly extended mouse event-free survival of five out of eight T-ALL PDXs in vivo.


Subject(s)
Boron Compounds , Glycine/analogs & derivatives , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Humans , Child , Animals , Mice , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Heterografts , Proteasome Inhibitors/pharmacology , Mice, Inbred NOD , T-Lymphocytes , Mice, SCID
9.
Medicine (Baltimore) ; 103(7): e36976, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38363891

ABSTRACT

BACKGROUND: Williams-Beuren syndrome (WBS) is a rare genetic disorder caused by hemizygous microdeletion of contiguous genes on chromosome 7q11.23. Although the phenotype features extensive heterogeneity in severity and performance, WBS is not considered to be a predisposing factor for cancer development. Currently, hematologic cancers, mainly Burkitt lymphoma, are rarely reported in patients with WBS. Here in, we report a unique case of T-cell acute lymphoblastic leukemia in a male child with WBS. METHODS: This retrospective study analyzed the clinical data of this case receiving chemotherapy were analyzed. This is a retrospective study. RESULTS: The patient, who exhibited a typical WBS phenotype and presented with hemorrhagic spots. Chromosomal genome-wide chip analysis (CMA) revealed abnormalities on chromosomes 7 and 9. The fusion gene STIL-TAL1 and mutations in BCL11B, NOTCH1, and USP7 have also been found and all been associated with the occurrence of T-cell leukemia. The patient responded well to the chemotherapy. CONCLUSION: To the best of our knowledge, this is the first reported case of WBS in T-cell acute lymphoblastic leukemia. We want to emphasize that the occurrence of leukemia in this patient might be related to the loss of 7q11.23 and microdeletion of 9p21.3 (including 3 TSGs), but the relationship between WBS and malignancy remains unclear. Further studies are required to clarify the relationship between WBS and malignancy.


Subject(s)
Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Williams Syndrome , Child , Humans , Male , Williams Syndrome/complications , Williams Syndrome/genetics , Retrospective Studies , Chromosome Deletion , Phenotype , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , T-Lymphocytes , Ubiquitin-Specific Peptidase 7/genetics , Repressor Proteins/genetics , Tumor Suppressor Proteins/genetics
10.
Int J Hematol ; 119(3): 327-333, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38302839

ABSTRACT

Therapy for relapsed or refractory (r/r) T-cell acute lymphoblastic leukemia (T-ALL) and T-cell lymphoblastic lymphoma (T-LBL) in children is challenging, and new treatment methods are needed. We retrospectively analyzed eight patients with r/r T-ALL (five patients) and T-LBL (three patients) who were treated with nelarabine (NEL) plus etoposide, cyclophosphamide, and intrathecal therapy, administered 3 days apart. Five patients achieved a complete response, and the other three achieved a partial response (PR). All patients underwent hematopoietic stem cell transplantation (HSCT) after two cycles of treatment, except for one patient who received one cycle. Three patients who had previously received HSCT were treated with reduced-intensity conditioning regimens, including fludarabine, melphalan, and NEL; one survived for over 5 years after the second HSCT. Grade 2 neuropathy occurred in one patient, but other severe toxicities commonly associated with NEL were not observed during NEL administration in combination with chemotherapy. The 2-year overall survival and event-free survival rates were 60.0% and 36.5%, respectively. The addition of NEL to reinduction chemotherapy was useful in achieving remission and did not lead to excessive toxicity. In addition, a conditioning regimen, including NEL, appeared to be effective in patients who had previously undergone HSCT.


Subject(s)
Arabinonucleosides , Hematopoietic Stem Cell Transplantation , Lymphoma , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Humans , Child , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Salvage Therapy , Retrospective Studies , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , T-Lymphocytes , Hematopoietic Stem Cell Transplantation/methods
11.
Anticancer Res ; 44(3): 1183-1192, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38423665

ABSTRACT

BACKGROUND/AIM: The renin-angiotensin system (RAS) regulates blood pressure. The RAS is also related to cell growth, and its activation has been reported in various cancer cells. Therefore, we investigated the effects of RAS inhibitors on the in vitro growth of leukemia cell lines. MATERIALS AND METHODS: THP-1, MV4-11, and TMD7 cells derived from acute myeloid leukemia, K-562 cells from chronic myeloid leukemia, and Jurkat and KOPT-K1 cells from T-lymphoblastic leukemia (T-ALL) with NOTCH1 mutations were used. We used four RAS inhibitors: the renin inhibitor aliskiren, angiotensin-converting enzyme 1 inhibitor captopril, angiotensin II type 1 receptor antagonist azilsartan, and angiotensin II type 2 receptor antagonist PD123319. Cells were cultured with the inhibitors and cell growth was assessed using a colorimetric assay. The expression of signaling proteins was assessed using immunoblotting. RESULTS: Treatment with aliskiren, azilsartan, or PD123319 suppressed the growth of all cell lines. Captopril treatment suppressed the growth of K-562, KOPT-K1, and MV4-11 cells. Flow cytometric analysis revealed that the growth suppression was due to the induction of apoptosis. Their suppressive effects on normal lymphocytes were milder than those on leukemia cells. Treatment with these inhibitors decreased MYC expression, induced caspase3 and PARP cleavage, and suppressed mTOR signaling. The treatment also suppressed NOTCH1 signaling in T-ALL cells. CONCLUSION: RAS inhibitors can be repurposed as molecular-targeted drugs for leukemia. However, the concentrations of the inhibitors were much higher than those in the plasma of patients with hypertension. Therefore, further investigation is required for their clinical use.


Subject(s)
Amides , Fumarates , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Renin-Angiotensin System , Humans , Captopril/pharmacology , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Antihypertensive Agents/therapeutic use , Enzyme Inhibitors/pharmacology
13.
Biomolecules ; 14(1)2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38254706

ABSTRACT

Acute T-lymphoblastic leukemia (T-ALL) is a type of leukemia that can occur in both pediatric and adult populations. Compared to acute B-cell lymphoblastic leukemia (B-ALL), patients with T-cell T-ALL have a poorer therapeutic efficacy. In this study, a novel anti-CD7 antibody-drug conjugate (ADC, J87-Dxd) was successfully generated and used for T-ALL treatment. Firstly, to obtain anti-CD7 mAbs, we expressed and purified the CD7 protein extracellular domain. Utilizing hybridoma technology, we obtained three anti-CD7 mAbs (J87, G73 and A15) with a high affinity for CD7. Both the results of immunofluorescence and Biacore assay indicated that J87 (KD = 1.54 × 10-10 M) had the highest affinity among the three anti-CD7 mAbs. In addition, an internalization assay showed the internalization level of J87 to be higher than that of the other two mAbs. Next, we successfully generated the anti-CD7 ADC (J87-Dxd) by conjugating DXd to J87 via a cleavable maleimide-GGFG peptide linker. J87-Dxd also possessed the ability to recognize and bind CD7. Using J87-Dxd to treat T-ALL cells (Jurkat and CCRF-CEM), we observed that J87-Dxd bound to CD7 was internalized into T-ALL cells. Moreover, J87-Dxd treatment significantly induced the apoptosis of Jurkat and CCRF-CEM cells. The IC50 (half-maximal inhibitory concentration) value of J87-Dxd against CCRF-CEM obtained by CCK-8 assay was 6.3 nM. Finally, to assess the antitumor efficacy of a J87-Dxd in vivo, we established T-ALL mouse models and treated mice with J87-Dxd or J87. The results showed that on day 24 after tumor inoculation, all mice treated with J87 or PBS died, whereas the survival rate of mice treated with J87-Dxd was 80%. H&E staining showed no significant organic changes in the heart, liver, spleen, lungs and kidneys of all mice. In summary, we demonstrated that the novel anti-CD7 ADC (J87-Dxd) had a potent and selective effect against CD7-expressing T-All cells both in vitro and in vivo, and could thus be expected to be further developed as a new drug for the treatment of T-ALL or other CD7-expression tumors.


Subject(s)
Burkitt Lymphoma , Immunoconjugates , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Adult , Animals , Child , Humans , Mice , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , Immunoconjugates/pharmacology , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Antigens, CD7/immunology , Antigens, CD7/therapeutic use
14.
Blood Adv ; 8(1): 23-36, 2024 01 09.
Article in English | MEDLINE | ID: mdl-37389830

ABSTRACT

ABSTRACT: T-cell acute lymphoblastic leukemia or lymphoblastic lymphoma (T-ALL/LBL) is a rare hematologic malignancy most commonly affecting adolescent and young adult males. Outcomes are dismal for patients who relapse, thus, improvement in treatment is needed. Nelarabine, a prodrug of the deoxyguanosine analog 9-ß-arabinofuranosylguanine, is uniquely toxic to T lymphoblasts, compared with B lymphoblasts and normal lymphocytes, and has been developed for the treatment of T-ALL/LBL. Based on phase 1 and 2 trials in children and adults, single-agent nelarabine is approved for treatment of patients with relapsed or refractory T-ALL/LBL, with the major adverse effect being central and peripheral neurotoxicity. Since its approval in 2005, nelarabine has been studied in combination with other chemotherapy agents for relapsed disease and is also being studied as a component of initial treatment in pediatric and adult patients. Here, we review current data on nelarabine and present our approach to the use of nelarabine in the treatment of patients with T-ALL/LBL.


Subject(s)
Antineoplastic Agents , Lymphoma, T-Cell , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Male , Adolescent , Young Adult , Humans , Child , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Antineoplastic Agents/therapeutic use , Recurrence , Lymphoma, T-Cell/drug therapy , T-Lymphocytes
16.
Indian J Pediatr ; 91(2): 168-175, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37642889

ABSTRACT

Acute lymphoblastic leukemia (ALL) is the most common malignancy in children. The T-cell subtype (T-ALL) accounts for 10-15% of pediatric ALL cases and has been historically associated with outcomes inferior to those of B-cell ALL (B-ALL). The prognosis of T-ALL has significantly improved with contemporary intensive pediatric regimens. However, most children with relapsed T-ALL have dismal outcomes and fewer therapeutic salvage options than those available for B-ALL. After demonstrating efficacy in relapsed T-ALL, nelarabine is being increasingly incorporated into frontline T-ALL regimens. The development of genomic sequencing has led to the identification of new T-ALL subgroups and potential targeted therapeutic approaches which could improve patients' outcomes and reduce the toxicity associated with current therapy. Immunotherapy and cellular therapy regimens are also under early investigation in T-cell malignancies. This review outlines the clinical and biological characteristics of T-ALL and provides an overview of novel treatment options for refractory and relapsed T-ALL.


Subject(s)
Precursor Cell Lymphoblastic Leukemia-Lymphoma , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Humans , Child , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Prognosis , Immunotherapy
17.
Clin Cancer Res ; 30(1): 94-105, 2024 01 05.
Article in English | MEDLINE | ID: mdl-37889114

ABSTRACT

PURPOSE: To assess the impact of PHF6 alterations on clinical outcome and therapeutical actionability in T-cell acute lymphoblastic leukemia (T-ALL). EXPERIMENTAL DESIGN: We described PHF6 alterations in an adult cohort of T-ALL from the French trial Group for Research on Adult Acute Lymphoblastic Leukemia (GRAALL)-2003/2005 and retrospectively analyzed clinical outcomes between PHF6-altered (PHF6ALT) and wild-type patients. We also used EPIC and chromatin immunoprecipitation sequencing data of patient samples to analyze the epigenetic landscape of PHF6ALT T-ALLs. We consecutively evaluated 5-azacitidine efficacy, alone or combined with venetoclax, in PHF6ALT T-ALL. RESULTS: We show that PHF6 alterations account for 47% of cases in our cohort and demonstrate that PHF6ALT T-ALL presented significantly better clinical outcomes. Integrative analysis of DNA methylation and histone marks shows that PHF6ALT are characterized by DNA hypermethylation and H3K27me3 loss at promoters physiologically bivalent in thymocytes. Using patient-derived xenografts, we show that PHF6ALT T-ALL respond to the 5-azacytidine alone. Finally, synergism with the BCL2-inhibitor venetoclax was demonstrated in refractory/relapsing (R/R) PHF6ALT T-ALL using fresh samples. Importantly, we report three cases of R/R PHF6ALT patients who were successfully treated with this combination. CONCLUSIONS: Overall, our study supports the use of PHF6 alterations as a biomarker of sensitivity to 5-azacytidine and venetoclax combination in R/R T-ALL.


Subject(s)
Leukemia, Myeloid, Acute , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Adult , Humans , Azacitidine/pharmacology , Azacitidine/therapeutic use , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Retrospective Studies , Transcription Factors/genetics , Epigenesis, Genetic , Leukemia, Myeloid, Acute/genetics , Repressor Proteins/genetics
18.
Blood ; 143(4): 320-335, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-37801708

ABSTRACT

ABSTRACT: T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive cancer with resistant clonal propagation in recurrence. We performed high-throughput droplet-based 5' single-cell RNA with paired T-cell receptor (TCR) sequencing of paired diagnosis-relapse (Dx_Rel) T-ALL samples to dissect the clonal diversities. Two leukemic evolutionary patterns, "clonal shift" and "clonal drift" were unveiled. Targeted single-cell DNA sequencing of paired Dx_Rel T-ALL samples further corroborated the existence of the 2 contrasting clonal evolution patterns, revealing that dynamic transcriptional variation might cause the mutationally static clones to evolve chemotherapy resistance. Analysis of commonly enriched drifted gene signatures showed expression of the RNA-binding protein MSI2 was significantly upregulated in the persistent TCR clonotypes at relapse. Integrated in vitro and in vivo functional studies suggested that MSI2 contributed to the proliferation of T-ALL and promoted chemotherapy resistance through the posttranscriptional regulation of MYC, pinpointing MSI2 as an informative biomarker and novel therapeutic target in T-ALL.


Subject(s)
Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , RNA-Binding Proteins , Humans , Clonal Evolution/genetics , Drug Resistance, Neoplasm/genetics , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Receptors, Antigen, T-Cell/genetics , Recurrence , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , T-Lymphocytes/metabolism
19.
J Oncol Pharm Pract ; 30(3): 594-596, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38105625

ABSTRACT

INTRODUCTION: Nelarabine is now increasingly being used for the treatment of relapsed T-cell acute lymphoblastic leukemia/lymphoma, and about 18% of patients experience ≥ grade 3 toxicity. Despite the increasing use of this drug, there are no guidelines for managing its neurotoxicity. We would like to share our experience with one such case. CASE REPORT: A sixteen-year-old girl with T-lymphoblastic lymphoma received Nelarabine as part of her relapse treatment. Three weeks post-treatment, patient presented with worsening encephalopathy, bulbar palsy, and seizures. MANAGEMENT AND OUTCOME: After a detailed evaluation, Nelarabine neurotoxicity was strongly considered and was managed with a combination of steroids, intravenous immunoglobulin, and aminophylline, with almost complete recovery starting at 72 hours of treatment initiation. DISCUSSION: Despite the increasing use of this drug, guidelines for the management of the neurological adverse effects of Nelarabine are lacking. The above-mentioned combination of drugs worked for our patient, but larger numbers are needed to validate this as an approved treatment regimen.


Subject(s)
Arabinonucleosides , Neurotoxicity Syndromes , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Humans , Arabinonucleosides/adverse effects , Arabinonucleosides/therapeutic use , Female , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Neurotoxicity Syndromes/etiology , Adolescent , Antineoplastic Agents/adverse effects , Antineoplastic Agents/therapeutic use
20.
Eur J Pharmacol ; 963: 176268, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38096965

ABSTRACT

BACKGROUND: T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive and heterogeneous hematologic malignancy. Chemotherapy resistance and refractory relapses are the most important challenges in T-ALL. PI3K/Akt/mTOR pathway has been implicated in regulating cell survival, T-ALL development and resistance to chemotherapy. We explored the effects of AZD5363 (a potent pan-Akt inhibitor) alone and in combination with autophagy inhibitor hydroxycholoroquine sulfate (HCQ) in cultured CCRF-CEM, Jurkat and PF382 cells and a T-ALL xenograft mouse model. METHODS: A xenograft mouse model was used to investigate the effect of AZD5363 on T-ALL progression. MTT assay, flow cytometry, siRNA, transmission electron microscopy and western blotting were performed in cultured CCRF-CEM, Jurkat and PF382 cells. The interaction between AZD5363 and HCQ was explored by molecular docking. RESULTS: AZD5363 delayed T-ALL progression and increased the expression of cleaved caspase-3 and LC3B-II in mice. AZD5363 decreased cells viability by arresting cell cycle in the G1 phase and inducing apoptosis, and, significantly increased the number of autophagosomes (p < 0.01). The increased expression of cleaved caspase-3 and LC3B-II, and phosphorylation of Akt and mTOR were significantly, inhibited by AZD5363. HCQ blocked AZD5363-induced autophagy and enhanced AZD5363-induced cell death (p < 0.01). CONCLUSIONS: AZD5363 suppressed T-ALL progression and its anti-leukemia activity was enhanced by HCQ in T-ALL cells, which might provide a potential therapeutic strategy for human T-ALL.


Subject(s)
Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Proto-Oncogene Proteins c-akt , Humans , Mice , Animals , Proto-Oncogene Proteins c-akt/metabolism , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Caspase 3 , Phosphatidylinositol 3-Kinases , Molecular Docking Simulation , Cell Line, Tumor , TOR Serine-Threonine Kinases , T-Lymphocytes/metabolism , Apoptosis , Autophagy , Cell Proliferation
SELECTION OF CITATIONS
SEARCH DETAIL
...