Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.286
Filter
1.
PLoS One ; 19(6): e0303211, 2024.
Article in English | MEDLINE | ID: mdl-38837991

ABSTRACT

INTRODUCTION: Mental fatigue is an early and enduring symptom in persons with autoimmune disease particularly multiple sclerosis (MS). Neuromodulation has emerged as a potential treatment although optimal cortical targets have yet to be determined. We aimed to examine cortical hemodynamic responses within bilateral dorsolateral prefrontal cortex (dlPFC) and frontopolar areas during single and dual cognitive tasks in persons with MS-related fatigue compared to matched controls. METHODS: We recruited persons (15 MS and 12 age- and sex-matched controls) who did not have physical or cognitive impairment and were free from depressive symptoms. Functional near infrared spectroscopy (fNIRS) registered hemodynamic responses during the tasks. We calculated oxyhemoglobin peak, time-to-peak, coherence between channels (a potential marker of neurovascular coupling) and functional connectivity (z-score). RESULTS: In MS, dlPFC demonstrated disrupted hemodynamic coherence during both single and dual tasks, as evidenced by non-significant and negative correlations between fNIRS channels. In MS, reduced coherence occurred in left dorsolateral PFC during the single task but occurred bilaterally as the task became more challenging. Functional connectivity was lower during dual compared to single tasks in the right dorsolateral PFC in both groups. Lower z-score was related to greater feelings of fatigue. Peak and time-to-peak hemodynamic response did not differ between groups or tasks. CONCLUSIONS: Hemodynamic responses were inconsistent and disrupted in people with MS experiencing mental fatigue, which worsened as the task became more challenging. Our findings point to dlPFC, but not frontopolar areas, as a potential target for neuromodulation to treat cognitive fatigue.


Subject(s)
Cognition , Dorsolateral Prefrontal Cortex , Hemodynamics , Multiple Sclerosis , Spectroscopy, Near-Infrared , Humans , Female , Male , Adult , Multiple Sclerosis/physiopathology , Multiple Sclerosis/complications , Dorsolateral Prefrontal Cortex/physiopathology , Dorsolateral Prefrontal Cortex/diagnostic imaging , Cognition/physiology , Middle Aged , Fatigue/physiopathology , Case-Control Studies , Mental Fatigue/physiopathology , Prefrontal Cortex/physiopathology , Prefrontal Cortex/diagnostic imaging
2.
Sci Rep ; 14(1): 12985, 2024 06 06.
Article in English | MEDLINE | ID: mdl-38839828

ABSTRACT

One third of people with psychosis become antipsychotic treatment-resistant and the underlying mechanisms remain unclear. We investigated whether altered cognitive control function is a factor underlying development of treatment resistance. We studied 50 people with early psychosis at a baseline visit (mean < 2 years illness duration) and follow-up visit (1 year later), when 35 were categorized at treatment-responsive and 15 as treatment-resistant. Participants completed an emotion-yoked reward learning task that requires cognitive control whilst undergoing fMRI and MR spectroscopy to measure glutamate levels from Anterior Cingulate Cortex (ACC). Changes in cognitive control related activity (in prefrontal cortex and ACC) over time were compared between treatment-resistant and treatment-responsive groups and related to glutamate. Compared to treatment-responsive, treatment-resistant participants showed blunted activity in right amygdala (decision phase) and left pallidum (feedback phase) at baseline which increased over time and was accompanied by a decrease in medial Prefrontal Cortex (mPFC) activity (feedback phase) over time. Treatment-responsive participants showed a negative relationship between mPFC activity and glutamate levels at follow-up, no such relationship existed in treatment-resistant participants. Reduced activity in right amygdala and left pallidum at baseline was predictive of treatment resistance at follow-up (67% sensitivity, 94% specificity). The findings suggest that deterioration in mPFC function over time, a key cognitive control region needed to compensate for an initial dysfunction within a social-emotional network, is a factor underlying development of treatment resistance in early psychosis. An uncoupling between glutamate and cognitive control related mPFC function requires further investigation that may present a future target for interventions.


Subject(s)
Cognition , Magnetic Resonance Imaging , Prefrontal Cortex , Psychotic Disorders , Humans , Prefrontal Cortex/metabolism , Prefrontal Cortex/physiopathology , Prefrontal Cortex/diagnostic imaging , Male , Female , Psychotic Disorders/metabolism , Psychotic Disorders/drug therapy , Psychotic Disorders/physiopathology , Adult , Young Adult , Glutamic Acid/metabolism , Antipsychotic Agents/therapeutic use , Antipsychotic Agents/pharmacology , Gyrus Cinguli/metabolism , Gyrus Cinguli/diagnostic imaging , Gyrus Cinguli/physiopathology
3.
Sci Rep ; 14(1): 12101, 2024 05 27.
Article in English | MEDLINE | ID: mdl-38802558

ABSTRACT

Anxiety is among the most fundamental mammalian behaviors. Despite the physiological and pathological importance, its underlying neural mechanisms remain poorly understood. Here, we recorded the activity of olfactory bulb (OB) and medial prefrontal cortex (mPFC) of rats, which are critical structures to brain's emotional processing network, while exploring different anxiogenic environments. Our results show that presence in anxiogenic contexts increases the OB and mPFC regional theta activities. Also, these local activity changes are associated with enhanced OB-mPFC theta power- and phase-based functional connectivity as well as OB-to-mPFC information transfer. Interestingly, these effects are more prominent in the unsafe zones of the anxiogenic environments, compared to safer zones. This consistent trend of changes in diverse behavioral environments as well as local and long-range neural activity features suggest that the dynamics of OB-mPFC circuit theta oscillations might underlie different types of anxiety behaviors, with possible implications for anxiety disorders.


Subject(s)
Anxiety , Olfactory Bulb , Prefrontal Cortex , Theta Rhythm , Prefrontal Cortex/physiology , Prefrontal Cortex/physiopathology , Animals , Anxiety/physiopathology , Theta Rhythm/physiology , Olfactory Bulb/physiology , Olfactory Bulb/physiopathology , Male , Rats , Rats, Sprague-Dawley , Behavior, Animal/physiology
4.
BMC Psychiatry ; 24(1): 362, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38745267

ABSTRACT

BACKGROUND: Obsessive-compulsive disorder (OCD) is characterized by persistent, unwanted thoughts and repetitive actions. Such repetitive thoughts and/or behaviors may be reinforced either by reducing anxiety or by avoiding a potential threat or harm, and thus may be rewarding to the individual. The possible involvement of the reward system in the symptomatology of OCD is supported by studies showing altered reward processing in reward-related regions, such as the ventral striatum (VS) and the orbitofrontal cortex (OFC), in adults with OCD. However, it is not clear whether this also applies to adolescents with OCD. METHODS: Using functional magnetic resonance imaging, two sessions were conducted focusing on the anticipation and receipt of monetary reward (1) or loss (2), each contrasted to a verbal (control) condition. In each session, adolescents with OCD (n1=31/n2=26) were compared with typically developing (TD) controls (n1=33/ n2=31), all aged 10-19 years, during the anticipation and feedback phase of an adapted Monetary Incentive Delay task. RESULTS: Data revealed a hyperactivation of the VS, but not the OFC, when anticipating both monetary reward and loss in the OCD compared to the TD group. CONCLUSIONS: These findings suggest that aberrant neural reward and loss processing in OCD is associated with greater motivation to gain or maintain a reward but not with the actual receipt. The greater degree of reward 'wanting' may contribute to adolescents with OCD repeating certain actions more and more frequently, which then become habits (i.e., OCD symptomatology).


Subject(s)
Anticipation, Psychological , Magnetic Resonance Imaging , Obsessive-Compulsive Disorder , Reward , Ventral Striatum , Humans , Adolescent , Obsessive-Compulsive Disorder/physiopathology , Obsessive-Compulsive Disorder/psychology , Obsessive-Compulsive Disorder/diagnostic imaging , Male , Female , Anticipation, Psychological/physiology , Ventral Striatum/physiopathology , Ventral Striatum/diagnostic imaging , Young Adult , Child , Prefrontal Cortex/physiopathology , Prefrontal Cortex/diagnostic imaging , Motivation/physiology
5.
Cereb Cortex ; 34(5)2024 May 02.
Article in English | MEDLINE | ID: mdl-38752979

ABSTRACT

Spontaneous and conversational laughter are important socio-emotional communicative signals. Neuroimaging findings suggest that non-autistic people engage in mentalizing to understand the meaning behind conversational laughter. Autistic people may thus face specific challenges in processing conversational laughter, due to their mentalizing difficulties. Using fMRI, we explored neural differences during implicit processing of these two types of laughter. Autistic and non-autistic adults passively listened to funny words, followed by spontaneous laughter, conversational laughter, or noise-vocoded vocalizations. Behaviourally, words plus spontaneous laughter were rated as funnier than words plus conversational laughter, and the groups did not differ. However, neuroimaging results showed that non-autistic adults exhibited greater medial prefrontal cortex activation while listening to words plus conversational laughter, than words plus genuine laughter, while autistic adults showed no difference in medial prefrontal cortex activity between these two laughter types. Our findings suggest a crucial role for the medial prefrontal cortex in understanding socio-emotionally ambiguous laughter via mentalizing. Our study also highlights the possibility that autistic people may face challenges in understanding the essence of the laughter we frequently encounter in everyday life, especially in processing conversational laughter that carries complex meaning and social ambiguity, potentially leading to social vulnerability. Therefore, we advocate for clearer communication with autistic people.


Subject(s)
Autistic Disorder , Brain Mapping , Brain , Laughter , Magnetic Resonance Imaging , Humans , Laughter/physiology , Laughter/psychology , Male , Female , Adult , Autistic Disorder/physiopathology , Autistic Disorder/diagnostic imaging , Autistic Disorder/psychology , Young Adult , Brain/diagnostic imaging , Brain/physiopathology , Brain/physiology , Prefrontal Cortex/diagnostic imaging , Prefrontal Cortex/physiopathology , Prefrontal Cortex/physiology , Acoustic Stimulation
6.
PLoS Biol ; 22(5): e3002195, 2024 May.
Article in English | MEDLINE | ID: mdl-38754078

ABSTRACT

People tend to intervene in others' injustices by either punishing the transgressor or helping the victim. Injustice events often occur under stressful circumstances. However, how acute stress affects a third party's intervention in injustice events remains open. Here, we show a stress-induced shift in third parties' willingness to engage in help instead of punishment by acting on emotional salience and central-executive and theory-of-mind networks. Acute stress decreased the third party's willingness to punish the violator and the severity of the punishment and increased their willingness to help the victim. Computational modeling revealed a shift in preference of justice recovery from punishment the offender toward help the victim under stress. This finding is consistent with the increased dorsolateral prefrontal engagement observed with higher amygdala activity and greater connectivity with the ventromedial prefrontal cortex in the stress group. A brain connectivity theory-of-mind network predicted stress-induced justice recovery in punishment. Our findings suggest a neurocomputational mechanism of how acute stress reshapes third parties' decisions by reallocating neural resources in emotional, executive, and mentalizing networks to inhibit punishment bias and decrease punishment severity.


Subject(s)
Punishment , Stress, Psychological , Humans , Punishment/psychology , Male , Stress, Psychological/physiopathology , Stress, Psychological/psychology , Female , Adult , Young Adult , Prefrontal Cortex/physiology , Prefrontal Cortex/physiopathology , Emotions/physiology , Social Justice , Brain/physiology , Magnetic Resonance Imaging
7.
Article in English | MEDLINE | ID: mdl-38748531

ABSTRACT

Brain-heart interactions (BHI) are critical for generating and processing emotions, including anxiety. Understanding specific neural correlates would be instrumental for greater comprehension and potential therapeutic interventions of anxiety disorders. While prior work has implicated the pontine structure as a central processor in cardiac regulation in anxiety, the distributed nature of anxiety processing across the cortex remains elusive. To address this, we performed a whole-brain-heart analysis using the full frequency directed transfer function to study resting-state spectral differences in BHI between high and low anxiety groups undergoing fMRI scans. Our findings revealed a hemispheric asymmetry in low-frequency interplay (0.05 Hz - 0.15 Hz) characterized by ascending BHI to the left insula and descending BHI from the right insula. Furthermore, we provide evidence supporting the "pacemaker hypothesis", highlighting the pons' function in regulating cardiac activity. Higher frequency interplay (0.2 Hz - 0.4Hz) demonstrate a preference for ascending interactions, particularly towards ventral prefrontal cortical activity in high anxiety groups, suggesting the heart's role in triggering a cognitive response to regulate anxiety. These findings highlight the impact of anxiety on BHI, contributing to a better understanding of its effect on the resting-state fMRI signal, with further implications for potential therapeutic interventions in treating anxiety disorders.


Subject(s)
Anxiety , Brain , Magnetic Resonance Imaging , Humans , Male , Female , Adult , Anxiety/psychology , Anxiety/physiopathology , Young Adult , Brain/diagnostic imaging , Brain/physiopathology , Heart/diagnostic imaging , Heart Rate/physiology , Functional Laterality/physiology , Prefrontal Cortex/diagnostic imaging , Prefrontal Cortex/physiopathology , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/physiopathology , Anxiety Disorders/diagnostic imaging , Anxiety Disorders/physiopathology , Anxiety Disorders/psychology
8.
Transl Psychiatry ; 14(1): 218, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38806461

ABSTRACT

Recent research shows that videogame training enhances neuronal plasticity and cognitive improvements in healthy individuals. As patients with schizophrenia exhibit reduced neuronal plasticity linked to cognitive deficits and symptoms, we investigated whether videogame-related cognitive improvements and plasticity changes extend to this population. In a training study, patients with schizophrenia and healthy controls were randomly assigned to 3D or 2D platformer videogame training or E-book reading (active control) for 8 weeks, 30 min daily. After training, both videogame conditions showed significant increases in sustained attention compared to the control condition, correlated with increased functional connectivity in a hippocampal-prefrontal network. Notably, patients trained with videogames mostly improved in negative symptoms, general psychopathology, and perceived mental health recovery. Videogames, incorporating initiative, goal setting and gratification, offer a training approach closer to real life than current psychiatric treatments. Our results provide initial evidence that they may represent a possible adjunct therapeutic intervention for complex mental disorders.


Subject(s)
Attention , Hippocampus , Magnetic Resonance Imaging , Neuronal Plasticity , Prefrontal Cortex , Schizophrenia , Video Games , Humans , Schizophrenia/physiopathology , Schizophrenia/rehabilitation , Hippocampus/physiopathology , Male , Female , Adult , Prefrontal Cortex/physiopathology , Attention/physiology , Neuronal Plasticity/physiology , Middle Aged , Schizophrenic Psychology
9.
Eur Heart J ; 45(19): 1753-1764, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38753456

ABSTRACT

BACKGROUND AND AIMS: Chronic stress associates with cardiovascular disease, but mechanisms remain incompletely defined. Advanced imaging was used to identify stress-related neural imaging phenotypes associated with atherosclerosis. METHODS: Twenty-seven individuals with post-traumatic stress disorder (PTSD), 45 trauma-exposed controls without PTSD, and 22 healthy controls underwent 18F-fluorodeoxyglucose positron emission tomography/magnetic resonance imaging (18F-FDG PET/MRI). Atherosclerotic inflammation and burden were assessed using 18F-FDG PET (as maximal target-to-background ratio, TBR max) and MRI, respectively. Inflammation was assessed using high-sensitivity C-reactive protein (hsCRP) and leucopoietic imaging (18F-FDG PET uptake in spleen and bone marrow). Stress-associated neural network activity (SNA) was assessed on 18F-FDG PET as amygdala relative to ventromedial prefrontal cortex (vmPFC) activity. MRI diffusion tensor imaging assessed the axonal integrity (AI) of the uncinate fasciculus (major white matter tract connecting vmPFC and amygdala). RESULTS: Median age was 37 years old and 54% of participants were female. There were no significant differences in atherosclerotic inflammation between participants with PTSD and controls; adjusted mean difference in TBR max (95% confidence interval) of the aorta 0.020 (-0.098, 0.138), and of the carotids 0.014 (-0.091, 0.119). Participants with PTSD had higher hsCRP, spleen activity, and aorta atherosclerotic burden (normalized wall index). Participants with PTSD also had higher SNA and lower AI. Across the cohort, carotid atherosclerotic burden (standard deviation of wall thickness) associated positively with SNA and negatively with AI independent of Framingham risk score. CONCLUSIONS: In this study of limited size, participants with PTSD did not have higher atherosclerotic inflammation than controls. Notably, impaired cortico-limbic interactions (higher amygdala relative to vmPFC activity or disruption of their intercommunication) associated with carotid atherosclerotic burden. Larger studies are needed to refine these findings.


Subject(s)
Carotid Artery Diseases , Positron-Emission Tomography , Stress Disorders, Post-Traumatic , Humans , Female , Male , Adult , Stress Disorders, Post-Traumatic/physiopathology , Stress Disorders, Post-Traumatic/diagnostic imaging , Carotid Artery Diseases/physiopathology , Carotid Artery Diseases/diagnostic imaging , Fluorodeoxyglucose F18 , Magnetic Resonance Imaging , Middle Aged , Prefrontal Cortex/diagnostic imaging , Prefrontal Cortex/physiopathology , Amygdala/diagnostic imaging , Amygdala/physiopathology , Radiopharmaceuticals , Case-Control Studies , Stress, Psychological/physiopathology , Stress, Psychological/complications
10.
J Pharmacol Exp Ther ; 389(3): 268-276, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38702195

ABSTRACT

The prefrontal cortex (PFC) has justifiably become a significant focus of chronic pain research. Collectively, decades of rodent and human research have provided strong rationale for studying the dysfunction of the PFC as a contributing factor in the development and persistence of chronic pain and as a key supraspinal mechanism for pain-induced comorbidities such as anxiety, depression, and cognitive decline. Chronic pain alters the structure, chemistry, and connectivity of PFC in both humans and rodents. In this review, we broadly summarize the complexities of reported changes within both rodent and human PFC caused by pain and offer insight into potential pharmacological and nonpharmacological approaches for targeting PFC to treat chronic pain and pain-associated comorbidities. SIGNIFICANCE STATEMENT: Chronic pain is a significant unresolved medical problem causing detrimental changes to physiological, psychological, and behavioral aspects of life. Drawbacks of currently approved pain therapeutics include incomplete efficacy and potential for abuse producing a critical need for novel approaches to treat pain and comorbid disorders. This review provides insight into how manipulation of prefrontal cortex circuits could address this unmet need of more efficacious and safer pain therapeutics.


Subject(s)
Prefrontal Cortex , Prefrontal Cortex/physiopathology , Prefrontal Cortex/metabolism , Humans , Animals , Chronic Pain/physiopathology , Chronic Pain/therapy , Pain/physiopathology , Pain/drug therapy
11.
J Clin Psychiatry ; 85(2)2024 May 22.
Article in English | MEDLINE | ID: mdl-38780528

ABSTRACT

Objective: This secondary analysis investigated the relationship of anxious arousal, as measured by the Tension Anxiety subscale of the Profile of Mood States (TA-POMS), to treatment outcome across diagnoses for each phase of the study. Sequential treatment phases of virtual reality (VR) mindfulness followed by left dorsolateral prefrontal cortex (dlPFC) accelerated transcranial magnetic stimulation (accel-TMS) and then dorsomedial prefrontal cortex (dmPFC) accel-TMS were used to treat dysphoria across diagnoses in an open trial from September 2021 to August 2023.Methods: The change in the TA-POMS subscale was compared to the percent change in primary clinician scale scores using a bivariate analysis. Baseline TA-POMS subscales were compared to treatment response using linear regression models to assess anxious arousal's impact on treatment outcome for the 3 phases. Significance was defined as P < .05, 2-tailed.Results: Twenty-three participants were enrolled in VR mindfulness, 19 in left dlPFC accel-TMS, and 12 in dmPFC accel TMS. Although the change in TA-POMS scores did not significantly correlate with the percent change in primary clinician scale ratings for the VR phase, they did for both the dlPFC (P = .041) and the dmPFC (P = .003) accel-TMS treatment phases. Importantly, baseline anxious arousal levels as measured by TA-POMS were not predictive of treatment outcome in any treatment phase.Conclusion: The outcome of accel-TMS treatment was not adversely affected by anxious arousal and similarly improved along with primary rating scales.Trial Registration: ClinicalTrials.gov identifier: NCT05061745.


Subject(s)
Arousal , Mindfulness , Transcranial Magnetic Stimulation , Humans , Transcranial Magnetic Stimulation/methods , Male , Female , Adult , Mindfulness/methods , Arousal/physiology , Middle Aged , Anxiety/therapy , Virtual Reality , Treatment Outcome , Prefrontal Cortex/physiopathology , Dorsolateral Prefrontal Cortex , Young Adult
12.
PLoS One ; 19(4): e0300243, 2024.
Article in English | MEDLINE | ID: mdl-38662740

ABSTRACT

Gait impairments negatively affect the quality of life of people with Parkinson's disease (PwPD). Aerobic exercise (AE) is an alternative to alleviate these impairments and its combination with transcranial direct current stimulation (tDCS) has demonstrated synergistic effects. However, the effect of multitarget tDCS application (i.e., motor, and prefrontal cortices simultaneously) combined with physical exercise on gait impairments is still little known. Thus, the proposed randomized clinical trial will verify the acute effects of AE combined with tDCS applied on motor and prefrontal cortices separately and simultaneously on gait (spatial-temporal and cortical activity parameters) in PwPD. Twenty-four PwPD in Hoehn & Yahr stages I-III will be recruited for this crossover study. PwPD will practice AE on treadmill simultaneously with the application of anodal tDCS during four intervention sessions on different days (∼ one week of interval). Active tDCS will be applied to the primary motor cortex, prefrontal cortex, and both areas simultaneously (multitarget), with an intensity of 2 mA for 20 min. For sham, the stimulation will remain at 2 mA for 10 s. The AE will last a total of 30 min, consisting of warm-up, main part (20 min with application of tDCS), and recovery. Exercise intensity will be controlled by heart rate. Spatial-temporal and cortical activity parameters will be acquired before and after each session during overground walking, walking with obstacle avoidance, and walking with a cognitive dual task at self-preferred velocity. An accelerometer will be positioned on the fifth lumbar vertebra to obtain the spatial-temporal parameters (i.e., step length, duration, velocity, and swing phase duration). Prefrontal cortex activity will be recorded from a portable functional near-infrared spectroscopy system and oxygenated and deoxygenated hemoglobin concentrations will be analyzed. Two-way ANOVAs with repeated measures for stimulation and moment will be performed. The findings of the study may contribute to improving gait in PwPD. Trial registration: Brazilian Clinical Trials Registry (RBR-738zkp7).


Subject(s)
Exercise , Gait , Parkinson Disease , Transcranial Direct Current Stimulation , Aged , Female , Humans , Male , Middle Aged , Cross-Over Studies , Exercise/physiology , Exercise Test , Exercise Therapy/methods , Gait/physiology , Motor Cortex/physiopathology , Parkinson Disease/therapy , Parkinson Disease/physiopathology , Prefrontal Cortex/physiopathology , Prefrontal Cortex/physiology , Quality of Life , Randomized Controlled Trials as Topic , Transcranial Direct Current Stimulation/methods
13.
J Affect Disord ; 356: 499-506, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38574869

ABSTRACT

BACKGROUND: Suicide is one of the most lethal complications of late-life depression (LLD), and habenular dysfunction may be involved in depression-related suicidality and may serve as a potential target for alleviating suicidal ideation. This study aimed to investigate abnormal functional connectivity of the habenula in LLD patients with suicidal ideation. METHODS: One hundred twenty-seven patients with LLD (51 with suicidal ideation (LLD-S) and 76 without suicidal ideation (LLD-NS)) and 75 healthy controls (HCs) were recruited. The static functional connectivity (sFC) and dynamic functional connectivity (dFC) between the habenula and the whole brain were compared among the three groups, and correlation and moderation analyses were applied to investigate whether suicidal ideation moderated the relationships of habenular FC with depressive symptoms and cognitive impairment. RESULTS: The dFC between the right habenula and the left orbitofrontal cortex (OFC) increased in the following order: LLD-S > LLD-NS > control. No significant difference in the habenular sFC was found among the LLD-S, LLD-NS and control groups. The dFC between the right habenula and the left OFC was positively associated with global cognitive function and visuospatial skills, and the association between this dFC and visuospatial skills was moderated by suicidal ideation in patients with LLD. CONCLUSION: The increased variability in dFC between the right habenula and left OFC was more pronounced in the LLD-S group than in the LLD-NS group, and the association between habenular-OFC dFC and visuospatial skills was moderated by suicidal ideation in patients with LLD.


Subject(s)
Habenula , Magnetic Resonance Imaging , Suicidal Ideation , Humans , Habenula/physiopathology , Female , Male , Aged , Middle Aged , Prefrontal Cortex/physiopathology , Prefrontal Cortex/diagnostic imaging , Depression/physiopathology , Depression/psychology , Case-Control Studies , Depressive Disorder/physiopathology , Depressive Disorder/psychology
14.
J Affect Disord ; 356: 257-266, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38588725

ABSTRACT

BACKGROUND: Nature therapies are gaining attention as non-pharmacological treatments for depressive and anxiety disorders, but research on their effectiveness in patients is limited. This study investigates the mood-improving effects of visual stimulation with natural environmental images in patients with depressive and anxiety disorders. METHODS: We conducted a randomized crossover comparison trial involving 60 right-handed adult participants with depressive or anxiety disorders and receiving outpatient treatment. Visual stimuli of natural environments consisted of green-themed nature images, while the control stimuli featured urban scenes dominated by buildings. The stimulation lasted for 3 min, during which orbital prefrontal brain activity was measured using a 2-channel Near-infrared Spectroscopy (NIRS) system, and heart rate variability was assessed using fingertip accelerated plethysmography. RESULTS: Mood enhancement effects were observed in both the depressive and anxiety disorder groups following visual stimulation with nature images. In the depression group, orbital prefrontal oxygenated hemoglobin concentration significantly increased after visual stimulation with nature images, while there were no significant changes in the anxiety group. However, in the anxiety group, a correlation was found between reduced orbital prefrontal oxygenated hemoglobin in response to nature images and increased mood-enhancement. Furthermore, the severity of depressive symptoms did not significantly affect the intervention effects, whereas heightened anxiety symptoms was associated with a smaller mood enhancement effect. DISCUSSION: Our study demonstrates the benefits of nature image stimulation for patients with depressive and anxiety disorders. Differential orbital prefrontal brain activity impacts notwithstanding, both conditions exhibited mood enhancement, affirming the value of nature image stimulation.


Subject(s)
Affect , Anxiety Disorders , Cross-Over Studies , Heart Rate , Photic Stimulation , Prefrontal Cortex , Spectroscopy, Near-Infrared , Humans , Female , Male , Adult , Affect/physiology , Anxiety Disorders/therapy , Anxiety Disorders/physiopathology , Prefrontal Cortex/physiopathology , Heart Rate/physiology , Depressive Disorder/therapy , Depressive Disorder/physiopathology , Middle Aged , Nature , Environment , Young Adult
15.
J Affect Disord ; 356: 88-96, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38588729

ABSTRACT

OBJECTIVE: Subthreshold depression is an essential precursor and risk factor for major depressive disorder, and its accurate identification and timely intervention are important for reducing the prevalence of major depressive disorder. Therefore, we used functional near-infrared spectroscopic imaging (fNIRS) to explore the characteristics of the brain neural activity of college students with subthreshold depression in the verbal fluency task. METHODS: A total of 72 subthreshold depressed college students (SDs) and 67 healthy college students (HCs) were recruited, and all subjects were subjected to a verbal fluency task (VFT) while a 53-channel fNIRS device was used to collect the subjects' cerebral blood oxygenation signals. RESULTS: The results of the independent samples t-test showed that the mean oxyhemoglobin in the right dorsolateral prefrontal (ch34, ch42, ch45) and Broca's area (ch51, ch53) of SDs was lower than that of HCs. The peak oxygenated hemoglobin of SDs was lower in the right dorsolateral prefrontal (ch34) and Broca's area (ch51, ch53).The brain functional connectivity strength was lower than that of HCs. Correlation analysis showed that the left DLPFC and Broca's area were significantly negatively correlated with the depression level. CONCLUSION: SDs showed abnormally low, inadequate levels of brain activation and weak frontotemporal brain functional connectivity. The right DLPFC has a higher sensitivity for the differentiation of depressive symptoms and is suitable as a biomarker for the presence of depressive symptoms. Dysfunction in Broca's area can be used both as a marker of depressive symptoms and as a biomarker, indicating the severity of depressive symptoms.


Subject(s)
Depression , Oxyhemoglobins , Spectroscopy, Near-Infrared , Humans , Oxyhemoglobins/metabolism , Male , Female , Young Adult , Adult , Depression/physiopathology , Depression/metabolism , Broca Area/physiopathology , Dorsolateral Prefrontal Cortex/physiopathology , Dorsolateral Prefrontal Cortex/metabolism , Prefrontal Cortex/physiopathology , Prefrontal Cortex/metabolism , Prefrontal Cortex/diagnostic imaging
16.
Neuroimage ; 292: 120620, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38641257

ABSTRACT

Social pain, a multifaceted emotional response triggered by interpersonal rejection or criticism, profoundly impacts mental well-being and social interactions. While prior research has implicated the right ventrolateral prefrontal cortex (rVLPFC) in mitigating social pain, the precise neural mechanisms and downstream effects on subsequent social attitudes remain elusive. This study employed transcranial magnetic stimulation (TMS) integrated with fMRI recordings during a social pain task to elucidate these aspects. Eighty participants underwent either active TMS targeting the rVLPFC (n = 41) or control stimulation at the vertex (n = 39). Our results revealed that TMS-induced rVLPFC facilitation significantly reduced self-reported social pain, confirming the causal role of the rVLPFC in social pain relief. Functional connectivity analyses demonstrated enhanced interactions between the rVLPFC and the dorsolateral prefrontal cortex, emphasizing the collaborative engagement of prefrontal regions in emotion regulation. Significantly, we observed that negative social feedback led to negative social attitudes, whereas rVLPFC activation countered this detrimental effect, showcasing the potential of the rVLPFC as a protective buffer against adverse social interactions. Moreover, our study uncovered the impact role of the hippocampus in subsequent social attitudes, a relationship particularly pronounced during excitatory TMS over the rVLPFC. These findings offer promising avenues for improving mental health within the intricate dynamics of social interactions. By advancing our comprehension of the neural mechanisms underlying social pain relief, this research introduces novel intervention strategies for individuals grappling with social distress. Empowering individuals to modulate rVLPFC activation may facilitate reshaping social attitudes and successful reintegration into communal life.


Subject(s)
Magnetic Resonance Imaging , Prefrontal Cortex , Transcranial Magnetic Stimulation , Humans , Transcranial Magnetic Stimulation/methods , Male , Female , Young Adult , Prefrontal Cortex/physiology , Prefrontal Cortex/diagnostic imaging , Prefrontal Cortex/physiopathology , Adult , Attitude , Social Interaction , Pain/physiopathology , Pain/psychology , Brain Mapping/methods , Dorsolateral Prefrontal Cortex/physiology , Dorsolateral Prefrontal Cortex/diagnostic imaging
17.
Schizophr Res ; 267: 451-461, 2024 May.
Article in English | MEDLINE | ID: mdl-38643726

ABSTRACT

The methylazoxymethanol acetate (MAM) rodent model is used to study aspects of schizophrenia. However, numerous studies that have employed this model have used only males, resulting in a dearth of knowledge on sex differences in brain function and behaviour. The purpose of this study was to determine whether differences exist between male and female MAM rats in neuronal oscillatory function within and between the prefrontal cortex (PFC), ventral hippocampus (vHIP) and thalamus, behaviour, and in proteins linked to schizophrenia neuropathology. We showed that female MAM animals exhibited region-specific alterations in theta power, elevated low and high gamma power in all regions, and elevated PFC-thalamus high gamma coherence. Male MAM rats had elevated beta and low gamma power in PFC, and elevated vHIP-thalamus coherence. MAM females displayed impaired reversal learning whereas MAM males showed impairments in spatial memory. Glycogen synthase kinase-3 (GSK-3) was altered in the thalamus, with female MAM rats displaying elevated GSK-3α phosphorylation. Male MAM rats showed higher expression and phosphorylation GSK-3α, and higher expression of GSK-ß. Sex-specific changes in phosphorylated Tau levels were observed in a region-specific manner. These findings demonstrate there are notable sex differences in behaviour, oscillatory network function, and GSK-3 signaling in MAM rats, thus highlighting the importance of inclusion of both sexes when using this model to study schizophrenia.


Subject(s)
Disease Models, Animal , Methylazoxymethanol Acetate , Schizophrenia , Sex Characteristics , Animals , Methylazoxymethanol Acetate/pharmacology , Schizophrenia/physiopathology , Schizophrenia/chemically induced , Schizophrenia/metabolism , Female , Male , Rats , Prefrontal Cortex/drug effects , Prefrontal Cortex/physiopathology , Prefrontal Cortex/metabolism , Glycogen Synthase Kinase 3/metabolism , Hippocampus/drug effects , Hippocampus/metabolism , Hippocampus/physiopathology , Thalamus/drug effects , Thalamus/physiopathology , Thalamus/metabolism , Phosphorylation/drug effects , tau Proteins/metabolism , Neurons/drug effects , Neurons/metabolism , Neurons/physiology , Neurons/pathology , Rats, Sprague-Dawley
18.
Article in English | MEDLINE | ID: mdl-38623965

ABSTRACT

OBJECTIVES: Generativity, the desire and action to improve the well-being of younger generations, is associated with purpose in life among older adults. However, the neurobehavioral factors supporting the relationship between generativity and purpose in life remain unknown. This study aims to identify the functional neuroanatomy of generativity and mechanisms linking generativity with purpose in life in at-risk older adults. METHODS: Fifty-eight older adults (mean age = 70.8, SD = 5.03, 45 females) with a family history of Alzheimer's disease (AD) were recruited from the PREVENT-AD cohort. Participants underwent brain imaging and completed questionnaires assessing generativity, social support, and purpose in life. Mediation models examined whether social support mediated the association between generativity and purpose in life. Seed-to-voxel analyses investigated the association between generativity and resting-state functional connectivity (rsFC) to the ventromedial prefrontal cortex (vmPFC) and ventral striatum (VS), and whether this rsFC moderated the relationship between generativity and purpose in life. RESULTS: Affectionate social support mediated the association between generative desire and purpose in life. Generative desire was associated with rsFC between VS and precuneus, and, vmPFC and right dorsolateral prefrontal cortex (rdlPFC). The vmPFC-rdlPFC rsFC moderated the association between generative desire and purpose in life. DISCUSSION: These findings provide insight into how the brain supports complex social behavior and, separately, purpose in life in at-risk aging. Affectionate social support may be a putative target process to enhance purpose in life in older adults. This knowledge contributes to future developments of personalized interventions that promote healthy aging.


Subject(s)
Alzheimer Disease , Magnetic Resonance Imaging , Social Support , Humans , Female , Male , Aged , Alzheimer Disease/psychology , Alzheimer Disease/physiopathology , Prefrontal Cortex/physiopathology , Prefrontal Cortex/diagnostic imaging , Ventral Striatum/diagnostic imaging , Ventral Striatum/physiopathology , Aging/physiology , Aging/psychology
19.
Cortex ; 175: 66-80, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38641540

ABSTRACT

Humans perceive their personal memories as fundamentally true, and although memory is prone to inaccuracies, flagrant memory errors are rare. Some patients with damage to the ventromedial prefrontal cortex (vmPFC) recall and act upon patently erroneous memories (spontaneous confabulations). Clinical observations suggest these memories carry a strong sense of confidence, a function ascribed to vmPFC in studies of memory and decision making. However, most studies of the underlying mechanisms of memory overconfidence do not directly probe personal recollections and resort instead to laboratory-based tasks and contrived rating scales. We analyzed naturalistic word use of patients with focal vmPFC damage (N = 18) and matched healthy controls (N = 23) while they recalled autobiographical memories using the Linguistic Inquiry and Word Count (LIWC) method. We found that patients with spontaneous confabulation (N = 7) tended to over-use words related to the categories of 'certainty' and of 'swearwords' compared to both non-confabulating vmPFC patients (N = 11) and control participants. Certainty related expressions among confabulating patients were at normal levels during erroneous memories and were over-expressed during accurate memories, contrary to our predictions. We found no elevation in expressions of affect (positive or negative), temporality or drive as would be predicted by some models of confabulation. Thus, erroneous memories may be associated with subjectively lower certainty, but still exceed patients' report criterion because of a global proclivity for overconfidence. This may be compounded by disinhibition reflected by elevated use of swearwords. These findings demonstrate that analysis of naturalistic expressions of memory content can illuminate global meta-mnemonic contributions to memory accuracy complementing indirect laboratory-based correlates of behavior. Memory accuracy is the result of complex interactions among multiple meta-mnemonic processes such as monitoring, report criteria, and control processes which may be shared across decision-making domains.


Subject(s)
Memory, Episodic , Mental Recall , Prefrontal Cortex , Humans , Male , Female , Middle Aged , Mental Recall/physiology , Prefrontal Cortex/physiopathology , Adult , Aged , Neuropsychological Tests , Memory Disorders/physiopathology , Memory Disorders/psychology , Narration
20.
Brain ; 147(6): 2230-2244, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38584499

ABSTRACT

Despite a theory that an imbalance in goal-directed versus habitual systems serve as building blocks of compulsions, research has yet to delineate how this occurs during arbitration between the two systems in obsessive-compulsive disorder. Inspired by a brain model in which the inferior frontal cortex selectively gates the putamen to guide goal-directed or habitual actions, this study aimed to examine whether disruptions in the arbitration process via the fronto-striatal circuit would underlie imbalanced decision-making and compulsions in patients. Thirty patients with obsessive-compulsive disorder [mean (standard deviation) age = 26.93 (6.23) years, 12 females (40%)] and 30 healthy controls [mean (standard deviation) age = 24.97 (4.72) years, 17 females (57%)] underwent functional MRI scans while performing the two-step Markov decision task, which was designed to dissociate goal-directed behaviour from habitual behaviour. We employed a neurocomputational model to account for an uncertainty-based arbitration process, in which a prefrontal arbitrator (i.e. inferior frontal gyrus) allocates behavioural control to a more reliable strategy by selectively gating the putamen. We analysed group differences in the neural estimates of uncertainty of each strategy. We also compared the psychophysiological interaction effects of system preference (goal-directed versus habitual) on fronto-striatal coupling between groups. We examined the correlation between compulsivity score and the neural activity and connectivity involved in the arbitration process. The computational model captured the subjects' preferences between the strategies. Compared with healthy controls, patients had a stronger preference for the habitual system (t = -2.88, P = 0.006), which was attributed to a more uncertain goal-directed system (t = 2.72, P = 0.009). Before the allocation of controls, patients exhibited hypoactivity in the inferior frontal gyrus compared with healthy controls when this region tracked the inverse of uncertainty (i.e. reliability) of goal-directed behaviour (P = 0.001, family-wise error rate corrected). When reorienting behaviours to reach specific goals, patients exhibited weaker right ipsilateral ventrolateral prefronto-putamen coupling than healthy controls (P = 0.001, family-wise error rate corrected). This hypoconnectivity was correlated with more severe compulsivity (r = -0.57, P = 0.002). Our findings suggest that the attenuated top-down control of the putamen by the prefrontal arbitrator underlies compulsivity in obsessive-compulsive disorder. Enhancing fronto-striatal connectivity may be a potential neurotherapeutic approach for compulsivity and adaptive decision-making.


Subject(s)
Decision Making , Goals , Magnetic Resonance Imaging , Obsessive-Compulsive Disorder , Humans , Female , Adult , Male , Magnetic Resonance Imaging/methods , Obsessive-Compulsive Disorder/physiopathology , Obsessive-Compulsive Disorder/diagnostic imaging , Obsessive-Compulsive Disorder/psychology , Uncertainty , Decision Making/physiology , Young Adult , Models, Neurological , Compulsive Behavior/physiopathology , Prefrontal Cortex/physiopathology , Prefrontal Cortex/diagnostic imaging , Putamen/physiopathology , Putamen/diagnostic imaging , Brain/physiopathology , Brain/diagnostic imaging , Computer Simulation
SELECTION OF CITATIONS
SEARCH DETAIL
...