Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 872
Filter
1.
Int J Mol Sci ; 25(9)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38731855

ABSTRACT

The thermo- and pain-sensitive Transient Receptor Potential Melastatin 3 and 8 (TRPM3 and TRPM8) ion channels are functionally associated in the lipid rafts of the plasma membrane. We have already described that cholesterol and sphingomyelin depletion, or inhibition of sphingolipid biosynthesis decreased the TRPM8 but not the TRPM3 channel opening on cultured sensory neurons. We aimed to test the effects of lipid raft disruptors on channel activation on TRPM3- and TRPM8-expressing HEK293T cells in vitro, as well as their potential analgesic actions in TRPM3 and TRPM8 channel activation involving acute pain models in mice. CHO cell viability was examined after lipid raft disruptor treatments and their effects on channel activation on channel expressing HEK293T cells by measurement of cytoplasmic Ca2+ concentration were monitored. The effects of treatments were investigated in Pregnenolone-Sulphate-CIM-0216-evoked and icilin-induced acute nocifensive pain models in mice. Cholesterol depletion decreased CHO cell viability. Sphingomyelinase and methyl-beta-cyclodextrin reduced the duration of icilin-evoked nocifensive behavior, while lipid raft disruptors did not inhibit the activity of recombinant TRPM3 and TRPM8. We conclude that depletion of sphingomyelin or cholesterol from rafts can modulate the function of native TRPM8 receptors. Furthermore, sphingolipid cleavage provided superiority over cholesterol depletion, and this method can open novel possibilities in the management of different pain conditions.


Subject(s)
Cricetulus , Disease Models, Animal , Sphingomyelin Phosphodiesterase , TRPM Cation Channels , beta-Cyclodextrins , Animals , Sphingomyelin Phosphodiesterase/metabolism , TRPM Cation Channels/metabolism , TRPM Cation Channels/genetics , Mice , Humans , CHO Cells , beta-Cyclodextrins/pharmacology , HEK293 Cells , Membrane Microdomains/metabolism , Membrane Microdomains/drug effects , Pain/drug therapy , Pain/metabolism , Cholesterol/metabolism , Male , Analgesics/pharmacology , Analgesics/therapeutic use , Pregnenolone/pharmacology , Cell Survival/drug effects
2.
Cell Mol Life Sci ; 81(1): 235, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38795169

ABSTRACT

N-methyl-D-aspartate receptors (NMDARs emerging from GRIN genes) are tetrameric receptors that form diverse channel compositions in neurons, typically consisting of two GluN1 subunits combined with two GluN2(A-D) subunits. During prenatal stages, the predominant channels are di-heteromers with two GluN1 and two GluN2B subunits due to the high abundance of GluN2B subunits. Postnatally, the expression of GluN2A subunits increases, giving rise to additional subtypes, including GluN2A-containing di-heteromers and tri-heteromers with GluN1, GluN2A, and GluN2B subunits. The latter  emerge as the major receptor subtype at mature synapses in the hippocampus. Despite extensive research on purely di-heteromeric receptors containing two identical GRIN variants, the impact of a single variant on the function of other channel forms, notably tri-heteromers, is lagging. In this study, we systematically investigated the effects of two de novo GRIN2B variants (G689C and G689S) in pure, mixed di- and tri-heteromers. Our findings reveal that incorporating a single variant in mixed di-heteromers or tri-heteromers exerts a dominant negative effect on glutamate potency, although 'mixed' channels show improved potency compared to pure variant-containing di-heteromers. We show that a single variant within a receptor complex does not impair the response of all receptor subtypes to the positive allosteric modulator pregnenolone-sulfate (PS), whereas spermine completely fails to potentiate tri-heteromers containing GluN2A and -2B-subunits. We examined PS on primary cultured hippocampal neurons transfected with the variants, and observed a positive impact over current amplitudes and synaptic activity. Together, our study supports previous observations showing that mixed di-heteromers exhibit improved glutamate potency and extend these findings towards the exploration of the effect of Loss-of-Function variants over tri-heteromers. Notably, we provide an initial and crucial demonstration of the beneficial effects of GRIN2B-relevant potentiators on tri-heteromers. Our results underscore the significance of studying how different variants affect distinct receptor subtypes, as these effects cannot be inferred solely from observations made on pure di-heteromers. Overall, this study contributes to ongoing efforts to understand the pathophysiology of GRINopathies and provides insights into potential treatment strategies.


Subject(s)
Pregnenolone , Receptors, N-Methyl-D-Aspartate , Receptors, N-Methyl-D-Aspartate/genetics , Receptors, N-Methyl-D-Aspartate/metabolism , Pregnenolone/pharmacology , Pregnenolone/metabolism , Humans , Animals , HEK293 Cells , Hippocampus/metabolism , Loss of Function Mutation , Protein Multimerization , Neurons/metabolism , Protein Subunits/metabolism , Protein Subunits/genetics
3.
Cell Physiol Biochem ; 58(2): 172-181, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38643508

ABSTRACT

BACKGROUND/AIMS: Extracellular acidic conditions impair cellular activities; however, some cancer cells drive cellular signaling to adapt to the acidic environment. It remains unclear how ovarian cancer cells sense changes in extracellular pH. This study was aimed at characterizing acid-inducible currents in an ovarian cancer cell line and evaluating the involvement of these currents in cell viability. METHODS: The biophysical and pharmacological properties of membrane currents in OV2944, a mouse ovarian cancer cell line, were studied using the whole-cell configuration of the patch-clamp technique. Viability of this cell type in acidic medium was evaluated using the MTT assay. RESULTS: OV2944 had significant acid-sensitive outwardly rectifying (ASOR) Cl- currents at a pH50 of 5.3. The ASOR current was blocked by pregnenolone sulfate (PS), a steroid ion channel modulator that blocks the ASOR channel as one of its targets. The viability of the cells was reduced after exposure to an acidic medium (pH 5.3) but was slightly restored upon PS administration. CONCLUSION: These results offer first evidence for the presence of ASOR Cl- channel in ovarian cancer cells and indicate its involvement in cell viability under acidic environment.


Subject(s)
Cell Survival , Ovarian Neoplasms , Pregnenolone , Animals , Female , Mice , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Cell Line, Tumor , Pregnenolone/pharmacology , Hydrogen-Ion Concentration , Cell Survival/drug effects , Chloride Channels/metabolism , Chloride Channels/antagonists & inhibitors , Patch-Clamp Techniques , Membrane Potentials/drug effects
4.
Sci Rep ; 14(1): 6782, 2024 03 21.
Article in English | MEDLINE | ID: mdl-38514798

ABSTRACT

Pregnenolone sulfate is a steroid metabolite of the steroidogenesis precursor, pregnenolone, with similar functional properties, including immunosuppression. We recently reported an elevation in serum levels of pregnenolone sulfate in children with malaria, contributing to an immunosuppressed state. Yet, the molecular mechanisms in which this steroid exerts its immunoregulatory functions are lacking. In this study, we examined the effects of pregnenolone sulfate on T cell viability, proliferation and transcriptome. We observed a pregnenolone sulfate dose-dependent induction of T cell death and reduction in proliferation. RNA sequencing analysis of pregnenolone sulfate-treated T cells for 2 and 24 h revealed the downregulation of pro-inflammatory genes and the upregulation of the steroid nuclear receptor superfamily, NR4A, as early-response genes. We also report a strong activation of the integrated stress response mediated by the upregulation of EIF2AK3. These results contribute to the knowledge on transcriptional regulation driving the immunoregulatory effects of pregnenolone sulfate on T cells.


Subject(s)
Pregnenolone , Steroids , Child , Humans , Pregnenolone/pharmacology , Pregnenolone/metabolism , Up-Regulation , T-Lymphocytes/metabolism
5.
Neuroscience ; 541: 118-132, 2024 Mar 16.
Article in English | MEDLINE | ID: mdl-38301739

ABSTRACT

Aggression is a social behavior that is critical for survival and reproduction. In adults, circulating gonadal hormones, such as androgens, act on neural circuits to modulate aggressive interactions, especially in reproductive contexts. In many species, individuals also demonstrate aggression before reaching gonadal maturation. Adult male song sparrows, Melospiza melodia, breed seasonally but maintain territories year-round. Juvenile (hatch-year) males aggressively compete for territory ownership during their first winter when circulating testosterone is low. Here, we characterized the relationship between the steroid milieu and aggressive behavior in free-living juvenile male song sparrows in winter. We investigated the effect of a 10 min simulated territorial intrusion (STI) on behavior and steroid levels in blood, 10 microdissected brain regions, and four peripheral tissues (liver, pectoral muscle, adrenal glands, and testes). Using liquid chromatography-tandem mass spectrometry (LC-MS/MS), we quantified 12 steroids: pregnenolone, progesterone, corticosterone, 11-dehydrocorticosterone, dehydroepiandrosterone, androstenedione, testosterone, 5α-dihydrotestosterone, 17ß-estradiol, 17α-estradiol, estrone, and estriol. We found that juvenile males are robustly aggressive, like adult males. An STI increases progesterone and corticosterone levels in blood and brain and increases 11-dehydrocorticosterone levels in blood only. Pregnenolone, androgens, and estrogens are generally non-detectable and are not affected by an STI. In peripheral tissues, steroid concentrations are very high in the adrenals. These data suggest that adrenal steroids, such as progesterone and corticosterone, might promote juvenile aggression and that juvenile and adult songbirds might rely on distinct neuroendocrine mechanisms to support similar aggressive behaviors.


Subject(s)
Songbirds , Humans , Animals , Male , Songbirds/physiology , Corticosterone , Progesterone/pharmacology , Chromatography, Liquid , Tandem Mass Spectrometry , Testosterone , Androgens , Aggression/physiology , Estradiol/pharmacology , Pregnenolone/pharmacology
6.
Front Immunol ; 14: 1229703, 2023.
Article in English | MEDLINE | ID: mdl-38022565

ABSTRACT

Pregnenolone (P5) is synthesized as the first bioactive steroid in the mitochondria from cholesterol. Clusters of differentiation 4 (CD4+) and Clusters of differentiation 8 (CD8+) immune cells synthesize P5 de novo; P5, in turn, play important role in immune homeostasis and regulation. However, P5's biochemical mode of action in immune cells is still emerging. We envisage that revealing the complete spectrum of P5 target proteins in immune cells would have multifold applications, not only in basic understanding of steroids biochemistry in immune cells but also in developing new therapeutic applications. We employed a CLICK-enabled probe to capture P5-binding proteins in live T helper cell type 2 (Th2) cells. Subsequently, using high-throughput quantitative proteomics, we identified the P5 interactome in CD4+ Th2 cells. Our study revealed P5's mode of action in CD4+ immune cells. We identified novel proteins from mitochondrial and endoplasmic reticulum membranes to be the primary mediators of P5's biochemistry in CD4+ and to concur with our earlier finding in CD8+ immune cells. Applying advanced computational algorithms and molecular simulations, we were able to generate near-native maps of P5-protein key molecular interactions. We showed bonds and interactions between key amino acids and P5, which revealed the importance of ionic bond, hydrophobic interactions, and water channels. We point out that our results can lead to designing of novel molecular therapeutics strategies.


Subject(s)
Pregnenolone , Th2 Cells , Pregnenolone/metabolism , Pregnenolone/pharmacology , Th2 Cells/metabolism , Molecular Dynamics Simulation , Steroids , Carrier Proteins/metabolism
7.
J Steroid Biochem Mol Biol ; 234: 106388, 2023 11.
Article in English | MEDLINE | ID: mdl-37652364

ABSTRACT

Starting with pregnenolone, a 20-carbonyl group was converted into an amino group through a series of chemical reactions. This amino group was further converted into selenocyanoalkylamide, leading to the synthesis of six pregnenolone selenocyanoalkylamide derivatives. These compounds were then screened for antitumor activity in vitro, yielding promising results. Compounds 4b-4f show higher inhibitory activity than the positive control abiraterone and 2-methoxyestradiol, with IC50 values lower than 10 µmol/L against breast, ovarian, and cervical cancer cell lines that closely related to human hormone expression levels. The Annexin V assay of compound 4f revealed that compounds inhibited tumor cell proliferation primarily through the induction of programmed apoptosis. The zebrafish test results indicated that compound 4d had significant inhibitory activity against MCF-7 cell xenografts in vivo. Moreover, the antibacterial test indicated that compounds 4a and 4d-4e had better inhibitory activity against methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus (VRE) than the positive controls vancomycin and ampicillin. These results suggest that these compounds may hold promise as novel antitumor agents or antimicrobial agents for further study.


Subject(s)
Antineoplastic Agents , Methicillin-Resistant Staphylococcus aureus , Animals , Humans , Vancomycin , Pregnenolone/pharmacology , Zebrafish , Anti-Bacterial Agents/pharmacology
8.
Br J Pharmacol ; 180(19): 2482-2499, 2023 10.
Article in English | MEDLINE | ID: mdl-37194503

ABSTRACT

BACKGROUND AND PURPOSE: GABAA receptors are regulated by numerous classes of allosteric modulators. However, regulation of receptor macroscopic desensitisation remains largely unexplored and may offer new therapeutic opportunities. Here, we report the emerging potential for modulating desensitisation with analogues of the endogenous inhibitory neurosteroid, pregnenolone sulfate. EXPERIMENTAL APPROACH: New pregnenolone sulfate analogues were synthesised incorporating various heterocyclic substitutions located at the C-21 position on ring D. The pharmacological profiles of these compounds were assessed using electrophysiology and recombinant GABAA receptors together with mutagenesis, molecular dynamics simulations, structural modelling and kinetic simulations. KEY RESULTS: All seven analogues retained a negative allosteric modulatory capability whilst exhibiting diverse potencies. Interestingly, we observed differential effects on GABA current decay by compounds incorporating either a six- (compound 5) or five-membered heterocyclic ring (compound 6) on C-21, which was independent of their potencies as inhibitors. We propose that differences in molecular charges, and the targeted binding of analogues to specific states of the GABAA receptor, are the most likely cause of the distinctive functional profiles. CONCLUSIONS AND IMPLICATIONS: Our findings reveal that heterocyclic addition to inhibitory neurosteroids not only affected their potency and macroscopic efficacy but also affected innate receptor mechanisms that underlie desensitisation. Acute modulation of macroscopic desensitisation will determine the degree and duration of GABA inhibition, which are vital for the integration of neural circuit activity. Discovery of this form of modulation could present an opportunity for next-generation GABAA receptor drug design and development.


Subject(s)
Pregnenolone , Receptors, GABA-A , Receptors, GABA-A/metabolism , Pregnenolone/pharmacology , Pregnenolone/metabolism , gamma-Aminobutyric Acid/pharmacology
9.
Neuropharmacology ; 233: 109530, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37037282

ABSTRACT

Neurosteroids are important endogenous modulators of GABAA receptor-mediated neurotransmission within the CNS and play a vital role in maintaining normal healthy brain function. Research has mainly focussed on neurosteroids such as allopregnanolone and tetrahydro-deoxycorticosterone (THDOC) which are allosteric potentiators of GABAA receptors, whilst the sulphated steroids, including pregnenolone sulphate (PS), which inhibit GABAA receptor function, have been relatively neglected. Importantly, a full description of PS effects on inhibitory synaptic transmission, at concentrations that are expected to inhibit postsynaptic GABAA receptors, is lacking. Here, we address this deficit by recording inhibitory postsynaptic currents (IPSCs) from rat hippocampal neurons both in culture and in acute brain slices and explore the impact of PS at micromolar concentrations. We reveal that PS inhibits postsynaptic GABAA receptors, evident from reductions in IPSC amplitude and decay time. Concurrently, PS also causes an increase in synaptic GABA release which we discover is due to the activation of presynaptic TRPM3 receptors located close to presynaptic GABA release sites. Pharmacological blockade of TRPM3 receptors uncovers a PS-evoked reduction in IPSC frequency. This second presynaptic effect is caused by PS activation of inwardly-rectifying Kir2.3 channels on interneurons, which act to depress synaptic GABA release. Overall, we provide a comprehensive characterisation of pre- and postsynaptic modulation by PS of inhibitory synaptic transmission onto hippocampal neurons which elucidates the diverse mechanisms by which this understudied neurosteroid can modulate brain function.


Subject(s)
Neurosteroids , TRPM Cation Channels , Rats , Animals , Receptors, GABA-A/metabolism , Neurosteroids/pharmacology , Synaptic Transmission , Pregnenolone/pharmacology , Hippocampus , Inhibitory Postsynaptic Potentials , gamma-Aminobutyric Acid/pharmacology
10.
Neurochem Int ; 163: 105489, 2023 02.
Article in English | MEDLINE | ID: mdl-36657722

ABSTRACT

BACKGROUND: Pregnenolone is a precursor of various steroid hormones involved in osteoblast proliferation, microtubules polymerization and cell survival protection. Previous reports focused on the effects of pregnenolone metabolites on stem cell proliferation and differentiation; however, the effects of pregnenolone itself has not been well explored. The present study aimed to investigate the role of pregnenolone on NSC proliferation and to determine the doses required for NSC differentiation as well as the various genes involved in its mechanism of action. METHODS: NSCs were isolated from the embryonic cortex of E14 mice, incubated for 5 days, and then treated with pregnenolone doses of 2, 5, 10, 15 and 20 µM for another 5 days. The number of neurospheres and neurosphere derived cells were then counted. Flow cytometry was used to evaluate the differentiation of NSCs into oligodendrocytes, astrocytes, and neurons. The expression level of Notch1, Pax6 and Sox10 genes were also measured by Real Time PCR after 5 days of treatment. RESULTS: Our data suggest that treatment with 10 µM pregnenolone is optimal for NSC proliferation. In fact, this concentration caused the highest increase in the number of neurospheres and neurosphere derived cells, compared to the control group. In addition, treatment with low doses of pregnenolone (5 and 10 µM) caused a significant increase in NSC differentiation towards immature (Olig2+) and mature (MBP+) oligodendrocyte cell populations, compared to controls. However, NSC differentiation into neurons (beta III tubulin + cells) increased in all treatment groups, with the highest and most significant increase obtained at 15 µM concentration. It is worth noting that pregnenolone at the highest concentration of 15 µM decreased the number of astrocytes (GFAP+). Furthermore, there was an increase of Sox10 expression with low pregnenolone doses, leading to oligodendrogenesis, whereas Notch1 and Pax6 gene expression increased in pregnenolone groups with more neurogenesis. CONCLUSION: Pregnenolone regulates NSCs proliferation in vitro. Treatment with low doses of pregnenolone caused an increase in the differentiation of NSCs into mature oligodendrocytes while higher doses increased the differentiation of NSCs into neurons. Oligodendrogenesis was accompanied by Sox10 while neurogenesis occurred together with Notch1 and Pax6 expression.


Subject(s)
Neural Stem Cells , PAX6 Transcription Factor , Pregnenolone , SOXE Transcription Factors , Animals , Mice , Cell Differentiation/physiology , Cell Proliferation , Cells, Cultured , Neural Stem Cells/metabolism , Neurogenesis/physiology , Neurons/metabolism , PAX6 Transcription Factor/metabolism , SOXE Transcription Factors/metabolism , Tubulin/metabolism , Pregnenolone/pharmacology , Receptor, Notch1/metabolism
11.
J Steroid Biochem Mol Biol ; 225: 106202, 2023 01.
Article in English | MEDLINE | ID: mdl-36241036

ABSTRACT

Human 3ß-hydroxysteroid dehydrogenase type I (HSD3B1) and rat type IV (HSD3B4) in placentas catalyze the conversion of pregnenolone to progesterone, which plays a key role in maintaining pregnancy. Many phenolic compounds potentially inhibit HSD3B in placentas as endocrine disruptors. In this study, the effects of 16 phenolic compounds on the activity of human HSD3B1 and rat HSD3B4 were determined and the structure-activity relationship was compared. HSD3B1 in human placental microsomes and HSD3B4 in rat placental microsomes were used to measure their activities and pregnenolone and NAD+ were used as substrates. Of the 16 phenolic compounds, 4-nonylphenol, pentabromophenol, and 2-bromophenol resulted in residual human HSD3B1 activity lower than 50 % and 4-nonylphenol and pentabromophenol resulted in residual rat HSD3B4 activity lower than 50 %. 4-Nonylphenol, pentabromophenol, and 2-bromophenol were mixed inhibitors of human HSD3B1, with Ki values of 2.31, 3.58 and 4.86 µM, respectively, while 4-nonylphenol and pentabromophenol were noncompetitive inhibitors of rat HSD3B4 with Ki values of 20.86 and 141.8 µM. Molecular docking showed that 4-nonylphenol, pentabromophenol, and 2-bromophenol docked to the active sites of human HSD3B1 and rat HSD3B4, and the shift of residue S125 in human HSD3B1 to T125 in rat HSD3B4 could explain the species-dependent difference in their inhibitory potency and mode of action. This study demonstrates that 4-nonylphenol, pentabromophenol, and 2-bromophenol are mixed inhibitors of human placental HSD3B1, while 4-nonylphenol and pentabromophenol are noncompetitive inhibitors of rat HSD3B4, possibly blocking the placental steroidogenesis.


Subject(s)
Multienzyme Complexes , Placenta , Humans , Female , Pregnancy , Rats , Animals , Molecular Docking Simulation , Multienzyme Complexes/chemistry , Multienzyme Complexes/pharmacology , Pregnenolone/pharmacology , 3-Hydroxysteroid Dehydrogenases
12.
Psychopharmacology (Berl) ; 240(1): 101-114, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36445398

ABSTRACT

RATIONALE: Chronic alcohol intake down-regulates GABAergic transmission and reduces levels of neuroactive steroids. These changes are associated with greater stress dysregulation and high alcohol craving which in turn increases relapse risk. OBJECTIVES: This study tested whether potentiation of the neurosteroid system with pregnenolone (PREG), a precursor to neuroactive steroids and known to increase GABAergic transmission, will normalize chronic alcohol-related stress adaptations in the hypothalamic-pituitary-adrenal (HPA) axis and autonomic responses and reduce alcohol craving to significantly impact relapse risk. METHODS: Forty-three treatment-seeking individuals with alcohol use disorder (AUD) were randomized to placebo (PBO) or supraphysiologic pregnenolone doses of 300 mg or 500 mg treatment using a parallel-between subject design as part of a larger 8-week pilot clinical trial. In week 2, they participated in a 3-day laboratory experiment where on each day they self-administered the assigned study drug in the laboratory and were then exposed to 5-min personalized guided imagery provocation of stress, alcohol, or neutral/relaxing cues, one condition per day on separate days, in a random, counterbalanced order. Repeated assessments of alcohol craving, anxiety, HPA axis, heart rate (HR), systolic (SBP), and diastolic blood pressure (DBP) and serum pregnenolone levels were made on each day. RESULTS: Pregnenolone levels were significantly increased in the PREG groups versus PBO. PREG treatment decreased stress- and alcohol cue- induced craving and dose-specifically reduced stress-induced anxiety in the 300 mg/day group. Both PREG doses compared to PBO also normalized CORT/ACTH and increased stress-induced HR, stress- and cue-induced SBP, and in the 300 mg PREG group cue-induced DBP responses relative to neutral condition. CONCLUSIONS: Findings indicate that pregnenolone decreases stress- and alcohol cue-provoked craving and normalizes HPA axis and autonomic arousal in individuals with AUD, thereby supporting the need for further assessment of pregnenolone in the treatment of AUD.


Subject(s)
Alcoholism , Neurosteroids , Humans , Alcoholism/drug therapy , Craving , Hypothalamo-Hypophyseal System , Pregnenolone/pharmacology , Neurosteroids/pharmacology , Pituitary-Adrenal System , Anxiety/drug therapy , Alcohol Drinking , Ethanol/pharmacology , Arousal , Recurrence , Cues
13.
Chem Biol Interact ; 369: 110292, 2023 Jan 05.
Article in English | MEDLINE | ID: mdl-36470526

ABSTRACT

Many insecticides and fungicides are endocrine-disrupting compounds, which possibly interfere with the placental endocrine system. In the placenta, 3ß-hydroxysteroid dehydrogenase/Δ5,4-isomerase type 1 (HSD3B1) is the major steroidogenic enzyme, which makes progesterone from pregnenolone to support the placental stability. In this study, we screened 12 classes of insecticides and fungicides to inhibit placental HSD3B1 activity and compared them to the rat homolog type 4 (HSD3B4) isoform. Human HSD3B1 activity and rat HSD3B4 activity were measured in the presence of 200 nM pregnenolone and 0.2 mM NAD+ and 100 µM of test chemical. Triclosan, triflumizole, dichlone, and oxine at 100 µM significantly inhibited human HSD3B1 activity with the residual activity being less than 50% of the control. Further study showed that the half-maximal inhibitory concentration (IC50) values of triclosan, triflumizole, dichlone, and oxine were 85.53 ± 9.14, 73.75 ± 3.42, 2.54 ± 0.40, and 102.93 ± 6.10 µM, respectively. In the presence of pregnenolone, triclosan, triflumizole, and dichlone were mixed inhibitors of HSD3B1, while oxine was a noncompetitive inhibitor. In the presence of NAD+, triclosan exhibited competitive inhibition while triflumizole possessed uncompetitive inhibition. Docking analysis showed that triclosan bound NAD+-binding site, while triflumizole, dichlone, and oxine mostly bound steroid-binding site. When the effect of these insecticides on rat placental HSD3B4 activity was screened in the presence of 200 nM pregnenolone, atrazine, triclosan, triflumizole, oxine, cyprodinil, and diphenyltin at 100 µM significantly inhibited rat HSD3B4 activity, with IC50 values of triclosan, triflumizole, oxine, and cyprodinil were 82.99 ± 6.48, 35.45 ± 2.73, 105.59 ± 12.04, and 43.37 ± 3.00 µM, respectively. The mode action analysis showed that triflumizole and cyprodinil were almost competitive inhibitors, while triclosan and oxine were almost noncompetitive inhibitors of rat HSD3B4. Docking analysis showed that triclosan and oxine bound cofactor NAD+ binding residues more than steroid-binding residues of rat HSD3B4 while triflumizole and cyprodinil bound most pregnenolone-interactive residues. In conclusion, some insecticides such as triclosan, triflumizole, and oxine can effectively inhibit both human and rat placental HSD3B activity and they have unique mode action due to the structure difference.


Subject(s)
Fungicides, Industrial , Insecticides , Triclosan , Humans , Pregnancy , Female , Rats , Animals , Placenta , Insecticides/toxicity , Insecticides/metabolism , Fungicides, Industrial/pharmacology , NAD/metabolism , Triclosan/metabolism , Triclosan/pharmacology , Isomerases/metabolism , Isomerases/pharmacology , Pregnenolone/metabolism , Pregnenolone/pharmacology , Multienzyme Complexes
14.
J Steroid Biochem Mol Biol ; 225: 106203, 2023 01.
Article in English | MEDLINE | ID: mdl-36228841

ABSTRACT

Straightforward access to steroidal selenocyanates in a single assembly step from steroids remains a significant challenge. However, the development of novel method for the synthesis of steroidal selenocyanates and further investigation of their bioactivities have largely lagged behind. In this work, selenocyano groups were directly introduced into the 17- or 21-position of pregnenolone, the 2-position of estradiol, and the 16-position of estrone. A total of 16 estrogen selenocyanate derivatives with diverse structures were synthesized, and the tumor cell lines closely related to the expression level of estrogen were used to investigate the inhibitory activity of the target products on tumor cell proliferation in vitro. The results revealed that the 17-selenocyano-substituted pregnenolone selenocyanate derivatives 1b-3b exhibit obvious inhibitory activity against the tested tumor cell lines. Additionally, the 2-selenocyano-substituted estradiol derivatives and 16-selenocyano-substituted estrone derivatives exhibit selective inhibitory on HeLa cell lines. Among them, 2-selenocyano-3-methoxyestradiol-17-benzoate (7e) displayed an IC50 value of 4.1 µM against HeLa cells and induced programmed apoptosis in HeLa cancer cells. Furthermore, compound 7e could significantly inhibit the growth of human cervical cancer xenografts in zebrafish in vivo. This approach provides new insights for future steroid antitumor drug design.


Subject(s)
Antineoplastic Agents , Estrone , Animals , Humans , HeLa Cells , Zebrafish , Cell Line, Tumor , Cell Proliferation , Antineoplastic Agents/chemistry , Estrogens/pharmacology , Estradiol/pharmacology , Pregnenolone/pharmacology , Oxidative Stress , Drug Screening Assays, Antitumor , Structure-Activity Relationship
15.
Toxicology ; 480: 153334, 2022 10.
Article in English | MEDLINE | ID: mdl-36122607

ABSTRACT

Placenta contains 3ß-hydroxysteroid dehydrogenase/steroid Δ5,4-isomerase (HSD3B), which catalyzes pregnenolone to progesterone for maintaining pregnancy. Perfluoroalkyl carbonic acids (PFC) are subclass of perfluoroalkyl substances containing 4-14 carbons (C4-C14) in the carbon backbone and are potential endocrine disruptors. Whether PFC inhibit HSD3B and structure-activity relationship (SAR) remains unclear. Herein, we screened 11 PFC for inhibiting human type I HSD3B (HSD3B1) and rat type IV HSD3B (HSD3B4) activities and determined SAR and mode of inhibition. HSD3B was measured by converting pregnenolone to progesterone assisted by NAD+ in placental microsomes. Of the 11 PFC, C9-C14 significantly inhibited human HSD3B1 activity at 100 µM. Half-maximal inhibitory concentration (IC50) values of C9-C14 compounds were 363.56 ± 12.14, 12.78 ± 0.69, 6.54 ± 0.65, 20.88 ± 0.41, 118.35 ± 0.16, and 149.26 ± 21.67 µM, respectively. We determined Ki values and mode of inhibition of three most potent PFC (C10-C12), and found that they were mixed inhibitors against pregnenolone, with Ki values of 5.57 ± 4.37, 2.04 ± 2.26, and 9.93 ± 7.71, respectively. Docking analysis showed that they bound steroid-binding site. Effects of PFC on rat placental HSD3B4 were performed. Of the 11 PFC, C10-C12 significantly inhibited rat HSD3B4 activity at 100 µM. IC50 values of C10-C12 compounds were 45.85 ± 1.49, 36.08 ± 1.50, and 88.74 ± 1.99 µM, respectively. Ki values and inhibition modes of the three most potent PFC (C10-C12) were studied. It was found that they were mixed inhibitors against pregnenolone, with Ki values of 48.16 ± 20.44, 36.28 ± 53.07, and 91.79 ± 21.75 µM, respectively. Docking analysis showed that they bound steroid-binding site of rat HSD3B4. In conclusion, PFC showed significant SAR differences. The potency of inhibiting HSD3B activity increased from C9 to C11, and then declined. Human HSD3B1 was more sensitive to the inhibition of rat HSD3B4.


Subject(s)
Endocrine Disruptors , Fluorocarbons , 3-Hydroxysteroid Dehydrogenases/metabolism , Animals , Carbon/metabolism , Carbonic Acid , Endocrine Disruptors/metabolism , Female , Fluorocarbons/metabolism , Fluorocarbons/toxicity , Humans , Isomerases/metabolism , Isomerases/pharmacology , Multienzyme Complexes , NAD/metabolism , Placenta/metabolism , Pregnancy , Pregnenolone/metabolism , Pregnenolone/pharmacology , Progesterone , Rats , Structure-Activity Relationship
16.
Steroids ; 185: 109059, 2022 09.
Article in English | MEDLINE | ID: mdl-35679910

ABSTRACT

Breast cancer (BCa) is very common malignancy and globally, has become the second leading cause of cancer death among women. For the treatment of BCa, estrogen receptors-alpha (ERα) has proven to be a therapeutic target. In continuation of our previous reported dihydropyrimidine-based pregnenolone derivatives, we modified at C-3 hydroxyl group. Structural architecture of estrogen receptors (ER) with excellent ER binding affinity was used for modification. MTT assay was used to evaluate the synthesized steroidal analogs for their antiproliferative activities against ER-positive MCF-7, ER-negative MDA-MB-231 (ER-) breast cancer cells and non-cancerous HEK-293 cells. Structure activity relationship (SAR) studies revealed that diethanolamine containing pregnenolone derivatives showed significant cytotoxicity against ER + MCF-7 and also showed good binding affinity with ERα and are relatively safe against HEK-293 cell model. Docking studies demonstrated that high binding affinity of diethanolamine analogs is due to their binding interaction with key amino acid residues present in the binding site of Erα.


Subject(s)
Breast Neoplasms , Estrogen Receptor alpha , Breast Neoplasms/metabolism , Cell Proliferation , Estrogen Receptor alpha/metabolism , Female , HEK293 Cells , Humans , MCF-7 Cells , Pregnenolone/pharmacology , Pregnenolone/therapeutic use , Receptors, Estrogen/metabolism
17.
Hum Mol Genet ; 31(16): 2738-2750, 2022 08 23.
Article in English | MEDLINE | ID: mdl-35348691

ABSTRACT

Mutations in the X-linked cyclin-dependent kinase-like 5 (CDKL5) cause CDKL5 deficiency disorder (CDD), a neurodevelopmental disease characterized by severe infantile seizures and intellectual disability. The absence of CDKL5 in mice causes defective spine maturation that can at least partially explain the cognitive impairment in CDKL5 patients and CDD mouse models. The molecular basis for such defect may depend on the capacity of CDKL5 to regulate microtubule (MT) dynamics through its association with the MT-plus end tracking protein CLIP170 (cytoplasmic linker protein 170). Indeed, we here demonstrate that the absence of CDKL5 causes CLIP170 to be mainly in a closed inactive conformation that impedes its binding to MTs. Previously, the synthetic pregnenolone analogue, pregnenolone-methyl-ether (PME), was found to have a positive effect on CDKL5-related cellular and neuronal defects in vitro. Here, we show that PME induces the open active conformation of CLIP170 and promotes the entry of MTs into dendritic spines in vitro. Furthermore, the administration of PME to symptomatic Cdkl5-knock-out mice improved hippocampal-dependent behavior and restored spine maturation and the localization of MT-related proteins in the synaptic compartment. The positive effect on cognitive deficits persisted for 1 week after treatment withdrawal. Altogether, our results suggest that CDKL5 regulates spine maturation and cognitive processes through its control of CLIP170 and MT dynamics, which may represent a novel target for the development of disease-modifying therapies.


Subject(s)
Epileptic Syndromes , Microtubule-Associated Proteins , Neoplasm Proteins , Pregnenolone , Animals , Epileptic Syndromes/genetics , Ethers/metabolism , Hippocampus/metabolism , Mice , Microtubule-Associated Proteins/genetics , Microtubules/metabolism , Neoplasm Proteins/genetics , Pregnenolone/pharmacology , Protein Serine-Threonine Kinases/genetics
18.
Mol Pharmacol ; 101(2): 68-77, 2022 02.
Article in English | MEDLINE | ID: mdl-34853153

ABSTRACT

The GABAA receptor is inhibited by the endogenous sulfated steroids pregnenolone sulfate (PS) and dehydroepiandrosterone sulfate (DHEAS). It has been proposed in previous work that these steroids act by enhancing desensitization of the receptor. Here, we have investigated the modulatory effects of the steroids on the human α1ß3γ2L GABAA receptor. Using electrophysiology and quantitative model-based data analysis, we show that exposure to the steroid promotes occupancy of a nonconducting state that retains high affinity to the transmitter but whose properties differ from those of the classic, transmitter-induced desensitized state. From the analysis of the inhibitory actions of two combined steroids, we infer that PS and DHEAS act through shared or overlapping binding sites. SIGNIFICANCE STATEMENT: Previous work has proposed that sulfated neurosteroids inhibit the GABAA receptor by enhancing the rate of entry into the desensitized state. This study shows that the inhibitory steroids pregnenolone sulfate and dehydroepiandrosterone sulfate act through a common interaction site by stabilizing a distinct nonconducting state.


Subject(s)
Dehydroepiandrosterone Sulfate/pharmacology , GABA Antagonists/pharmacology , Pregnenolone/pharmacology , Receptors, GABA-A/metabolism , Animals , Dehydroepiandrosterone Sulfate/chemistry , Dose-Response Relationship, Drug , Female , GABA Antagonists/chemistry , Humans , Neurosteroids/chemistry , Neurosteroids/pharmacology , Pregnenolone/chemistry , Protein Stability , Receptors, GABA-A/chemistry , Xenopus laevis
19.
J Exp Zool A Ecol Integr Physiol ; 337(4): 293-302, 2022 04.
Article in English | MEDLINE | ID: mdl-34905660

ABSTRACT

Exposure to maternally derived steroids during embryonic development can elicit phenotypic effects in the resulting offspring. Studies of maternal steroid effects, especially rich in mammals and birds, have offered exciting insights into the evolution of maternal effects in vertebrates. To extend this literature, we quantified levels of steroids in the eggs of four neotropical dendrobatid frogs that lay terrestrial clutches, a reproductive strategy that has evolved multiple times in amphibians. Building on our observational results, we then manipulated levels of pregnenolone and progesterone in eggs of one species and examined how this affected steroid levels during development. Eggs of all four species had detectable steroids levels, with progestogens being more abundant than androgens and glucocorticoids. Estrogens could not be detected. Immersion of frog eggs in a solution containing pregnenolone and progesterone resulted in elevated levels of both steroids early in development, but levels declined and were similar to those in unmanipulated eggs by the end of development. Treated eggs also exhibited a transient increase in levels of steroids that can be produced from pregnenolone and progesterone. Overall, our findings demonstrate that frog eggs contain steroids similar to what has been observed in other egg-laying vertebrates. During development, steroid levels are dynamic, further suggesting developing embryos regulate exposure to maternal steroids. These results set the stage for investigating the causes and consequences of maternal steroid effects in frogs.


Subject(s)
Egg Yolk , Progesterone , Animals , Anura , Mammals , Maternal Inheritance , Pregnenolone/pharmacology , Steroids
20.
Int J Mol Sci ; 24(1)2022 Dec 21.
Article in English | MEDLINE | ID: mdl-36613509

ABSTRACT

CDKL5 deficiency disorder (CDD) is an X-linked neurodevelopmental disorder characterised by early-onset drug-resistant epilepsy and impaired cognitive and motor skills. CDD is caused by mutations in cyclin-dependent kinase-like 5 (CDKL5), which plays a well-known role in regulating excitatory neurotransmission, while its effect on neuronal inhibition has been poorly investigated. We explored the potential role of CDKL5 in the inhibitory compartment in Cdkl5-KO male mice and primary hippocampal neurons and found that CDKL5 interacts with gephyrin and collybistin, two crucial organisers of the inhibitory postsynaptic sites. Through molecular and electrophysiological approaches, we demonstrated that CDKL5 loss causes a reduced number of gephyrin puncta and surface exposed γ2 subunit-containing GABAA receptors, impacting the frequency of miniature inhibitory postsynaptic currents, which we ascribe to a postsynaptic function of CDKL5. In line with previous data showing that CDKL5 loss impacts microtubule (MT) dynamics, we showed that treatment with pregnenolone-methyl-ether (PME), which promotes MT dynamics, rescues the above defects. The impact of CDKL5 deficiency on inhibitory neurotransmission might explain the presence of drug-resistant epilepsy and cognitive defects in CDD patients. Moreover, our results may pave the way for drug-based therapies that could bypass the need for CDKL5 and provide effective therapeutic strategies for CDD patients.


Subject(s)
Neurosteroids , Spasms, Infantile , Male , Mice , Animals , Neurosteroids/therapeutic use , Pregnenolone/pharmacology , Spasms, Infantile/genetics , Ethers , Mice, Knockout , Protein Serine-Threonine Kinases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...