Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.602
Filter
1.
Front Endocrinol (Lausanne) ; 15: 1378635, 2024.
Article in English | MEDLINE | ID: mdl-38737550

ABSTRACT

Objective: The objective of this study is to investigate the factors that influence the live birth rate (LBR) of the first single euploid frozen-thawed blastocyst transfer (FBT) cycles after preimplantation genetic testing for structural rearrangements (PGT-SR) in couples with balanced chromosomal translocations (BCT). Design: Single center, retrospective and observational study. Methods: A total of 336 PGT-SR and the first single euploid FBT cycles between July 2016 and December 2022 were included in this study. The patients were divided into two groups according to the live birth outcomes. The parameters of the study population, controlled ovarian stimulation cycles, and FBT cycles were analyzed. Multivariable binary logistic regression was performed to find the factors that affected the LBR. Results: The percentage of blastocysts at developmental stage Day 5 compared to Day 6 (51.8% vs. 30.8%; P<0.001) and with morphology ≥BB compared to

Subject(s)
Cryopreservation , Embryo Transfer , Live Birth , Pregnancy Rate , Preimplantation Diagnosis , Translocation, Genetic , Humans , Female , Pregnancy , Retrospective Studies , Adult , Embryo Transfer/methods , Male , Preimplantation Diagnosis/methods , Birth Rate , Fertilization in Vitro/methods , Pregnancy Outcome , Blastocyst , Ovulation Induction/methods
2.
Reprod Biol Endocrinol ; 22(1): 61, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38783347

ABSTRACT

BACKGROUND: Prospective observational studies have demonstrated that the machine learning (ML) -guided noninvasive chromosome screening (NICS) grading system, which we called the noninvasive chromosome screening-artificial intelligence (NICS-AI) grading system, can be used embryo selection. The current prospective interventional clinical study was conducted to investigate whether this NICS-AI grading system can be used as a powerful tool for embryo selection. METHODS: Patients who visited our centre between October 2018 and December 2021 were recruited. Grade A and B embryos with a high probability of euploidy were transferred in the NICS group. The patients in the control group selected the embryos according to the traditional morphological grading. Finally, 90 patients in the NICS group and 161 patients in the control group were compared statistically for their clinical outcomes. RESULTS: In the NICS group, the clinical pregnancy rate (70.0% vs. 54.0%, p < 0.001), the ongoing pregnancy rate (58.9% vs. 44.7%, p = 0.001), and the live birth rate (56.7% vs. 42.9%, p = 0.001) were significantly higher than those of the control group. When the female was ≥ 35 years old, the clinical pregnancy rate (67.7% vs. 32.1%, p < 0.001), ongoing pregnancy rate (56.5% vs. 25.0%, p = 0.001), and live birth rate (54.8% vs. 25.0%, p = 0.001) in the NICS group were significantly higher than those of the control group. Regardless of whether the patients had a previous record of early spontaneous abortion or not, the live birth rate of the NICS group was higher than that of the control group (61.0% vs. 46.9%; 57.9% vs. 34.8%; 33.3% vs. 0%) but the differences were not statistically significant. CONCLUSIONS: NICS-AI was able to improve embryo utilisation rate, and the live birth rate, especially for those ≥ 35 years old, with transfer of Grade A embryos being preferred, followed by Grade B embryos. NICS-AI can be used as an effective tool for embryo selection in the future.


Subject(s)
Machine Learning , Pregnancy Rate , Humans , Female , Pregnancy , Adult , Prospective Studies , Single Embryo Transfer/methods , Preimplantation Diagnosis/methods , Embryo Transfer/methods , Infertility, Female/therapy , Infertility, Female/genetics , Infertility, Female/diagnosis , Treatment Outcome , Infertility/therapy , Infertility/diagnosis , Infertility/genetics
3.
Reprod Biol Endocrinol ; 22(1): 58, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38778410

ABSTRACT

BACKGROUND: The best method for selecting embryos ploidy is preimplantation genetic testing for aneuploidies (PGT-A). However, it takes more labour, money, and experience. As such, more approachable, non- invasive techniques were still needed. Analyses driven by artificial intelligence have been presented recently to automate and objectify picture assessments. METHODS: In present retrospective study, a total of 3448 biopsied blastocysts from 979 Time-lapse (TL)-PGT cycles were retrospectively analyzed. The "intelligent data analysis (iDA) Score" as a deep learning algorithm was used in TL incubators and assigned each blastocyst with a score between 1.0 and 9.9. RESULTS: Significant differences were observed in iDAScore among blastocysts with different ploidy. Additionally, multivariate logistic regression analysis showed that higher scores were significantly correlated with euploidy (p < 0.001). The Area Under the Curve (AUC) of iDAScore alone for predicting euploidy embryo is 0.612, but rose to 0.688 by adding clinical and embryonic characteristics. CONCLUSIONS: This study provided additional information to strengthen the clinical applicability of iDAScore. This may provide a non-invasive and inexpensive alternative for patients who have no available blastocyst for biopsy or who are economically disadvantaged. However, the accuracy of embryo ploidy is still dependent on the results of next-generation sequencing technology (NGS) analysis.


Subject(s)
Aneuploidy , Blastocyst , Deep Learning , Preimplantation Diagnosis , Humans , Retrospective Studies , Female , Preimplantation Diagnosis/methods , Adult , Pregnancy , Blastocyst/cytology , Genetic Testing/methods , Fertilization in Vitro/methods
4.
Taiwan J Obstet Gynecol ; 63(3): 375-380, 2024 May.
Article in English | MEDLINE | ID: mdl-38802201

ABSTRACT

OBJECTIVES: α-thalassemia is an autosomal recessive monogenic blood disorder, affecting up to 5% of the world's population. The occurrence rate of the disease in Vietnam varies up to up to 51.5%, with high rate of mutation carriers, of couples consisting of two carriers at risk of bearing a child with fetal Hb Bart, which can develop into hydrops fetalis syndrome, threatening the well-being of the mother and the child. Our study aims to facilitate birth of healthy/asymptomatic children of α-thalassemia carrier couples who received reproductive service at our centre during the period of 2019-2022. MATERIALS AND METHODS: 89 couples at risks of having α-thalassemia offsprings requested IVF procedures and PGD at Post Hospital during 2019-2022 were recruited for investigation. Couple and additional family members' peripheral blood samples of couples and additional family members were subjected to haemoglobin electrophoresis, DNA extraction for α-thalassemia gene mutation detection and STRs linkage analysis. Data were observed and analysed on GeneMarker software. RESULTS: 91 cycles of PGD for α-thalassemia were carried out for 89 couples. α-thalassemia large deletion (--SEA/αα) was the most common mutation identified in 88 couples, in which 4 cases also carried ß-thalassemia point mutations. Combining results of PGS and PGD, 278/424 amplified embryos were transferable (HBA-mutation free or carriers of single heterozygous HBA mutation, without chromosomal abnormality). 64/89 couples have been transferred with the embryos (prioritizing mutation free ones over carriers), resulting in the birth of 36 α-thalassemia disease-free children, 17 ongoing pregnancies, and 11 with miscarriages. CONCLUSION: Successful application of microsatellite-based method in PGD facilitated the birth of 36 healthy children and 17 ongoing pregnancies for 53/64 couples with embryo-transferred. All resulted clinical births displayed confirmation results in line with the PGD results, thus demonstrating the feasibility and credibility of the use of STR markers in PGD.


Subject(s)
Microsatellite Repeats , Preimplantation Diagnosis , alpha-Thalassemia , Humans , Preimplantation Diagnosis/methods , alpha-Thalassemia/genetics , alpha-Thalassemia/diagnosis , Female , Microsatellite Repeats/genetics , Pregnancy , Male , Adult , Vietnam , Heterozygote , Mutation , Fertilization in Vitro/methods
5.
Front Endocrinol (Lausanne) ; 15: 1363851, 2024.
Article in English | MEDLINE | ID: mdl-38596225

ABSTRACT

Objective: To explore the effect of varying numbers of embryo washings prior to blastocyst formation in non-invasive preimplantation chromosome screening (NICS) on the accuracy of NICS results. Methods: In this study, 68 blastocysts from preimplantation genetic testing (PGT)-assisted pregnancy were collected at our institution. On the fourth day of embryo culture, the embryos were transferred to a new medium for blastocyst culture and were washed either three times (NICS1 group) or ten times (NICS2 group). A trophectoderm (TE) biopsy was performed on the blastocysts, and the corresponding embryo culture media were collected for whole genome amplification (WGA) and high-throughput sequencing. Results: The success rate of WGA was 100% (TE biopsy), 76.7% (NICS1 group), and 89.5% (NICS2 group). The success rate of WGA in embryo medium on days 5 and 6 of culture was 75.0% (33/44) and 100% (24/24), respectively. Using TE as the gold standard, the karyotype concordance rate between the results of the NICS1 and NICS2 groups' embryo culture medium samples and TE results was 43.5% (10/23) and 73.5% (25/34), respectively. The sensitivity and specificity of detecting chromosomal abnormalities were higher in the NICS2 group than in the NICS1 group when TE was used (83.3% vs 60.0%; 62.5% vs 30.8%, respectively). The false-positive rate and false-negative rate (i.e., misdiagnosis rate and missed diagnosis rate, respectively) were lower in the NICS2 group than in the NICS1 group (37.5% vs 69.2%; 16.7% vs 40.0%, respectively). Conclusion: The NICS yielded favorable results after ten washings of the embryos. These findings provide a novel method for lowering the amount of cell-free DNA contamination from non-embryonic sources in the medium used for embryo development, optimizing the sampling procedure and improving the accuracy of the NICS test.


Subject(s)
Preimplantation Diagnosis , Pregnancy , Female , Humans , Preimplantation Diagnosis/methods , Genetic Testing/methods , Blastocyst , Chromosome Aberrations , Chromosomes
6.
Zhonghua Fu Chan Ke Za Zhi ; 59(4): 288-298, 2024 Apr 25.
Article in Chinese | MEDLINE | ID: mdl-38644275

ABSTRACT

Objective: To explore the related factors influencing the detection rate of mosaic embryo and the pregnancy outcomes of mosaic embryo transfer in preimplantation genetic testing for aneuploidy (PGT-A) based on next generation sequencing (NGS) technology. Methods: A retrospective study was performed to analyze the clinical data of patients in 745 PGT-A cycles from January 2019 to May 2023 at Chongqing Health Center for Women and Children, including 2 850 blastocysts. The biopsy cells were tested using NGS technology, and the embryos were divided into three groups based on the test results, namely euploid embryos, aneuploid embryos and mosaic embryos. The influence of population characteristics and laboratory-related parameters on the detection rate of mosaic embryo were analyzed, and the pregnancy outcomes of 98 mosaic embryo transfer cycles and 486 euploid embryo transfer cycles were compared during the same period, including clinical pregnancy rate and live birth rate. Results: Among the embryos tested (n=2 850), the number and proportion of euploid embryos, aneuploid embryos and mosaic embryos were 1 489 (52.2%, 1 489/2 850), 917 (32.2%, 917/2 850) and 444 (15.6%, 444/2 850), respectively. Among mosaic embryos, 245 (55.2%, 245/444) were segmental mosaic embryos, 118 (26.6%, 118/444) were whole-chromosome mosaic embryos, and 81 (18.2%, 81/444) were complex mosaic embryos. NGS technology was performed in 4 genetic testing institutions and the detection rate of mosaic embryo fluctuated from 13.5% to 27.0%. The distributions of female age, level of anti-Müllerian hormone, PGT-A indications, ovulation-inducing treatments, gonadotropin (Gn) dosage, Gn days, inner cell mass grade, trophectoderm cell grade, genetic testing institutions and developmental stage of blastocyst were significantly different among the three groups (all P<0.05). Multi-factor analysis showed that the trophectoderm cell grade and genetic testing institutions were significantly related to the detection rate of mosaic embryo; compared with the trophectoderm cell graded as A, the detection rate of mosaic embryo was significantly increased in the trophectoderm cell graded as B-(OR=1.59, 95%CI: 1.04-2.44, P=0.033); compared with genetic testing institution a, the detection rate of mosaic embryo was significantly higher (OR=2.89, 95%CI: 2.10-3.98, P<0.001) in the testing institution c. The clinical pregnancy rate and live birth rate with mosaic embryos transfer were significantly lower than those of euploid embryos transfer (clinical pregnancy rate: 51.0% vs 65.2%, P=0.008; live birth rate: 39.4% vs 53.2%, P=0.017). After adjustment for age, PGT-A indications, trophectoderm cell grade and days of embryo culture in vitro, the clinical pregnancy rate and live birth rate with mosaic embryos transfer were significantly lower than those of euploid embryos transfer (clinical pregnancy rate: OR=0.52, 95%CI: 0.32-0.83, P=0.007; live birth rate: OR=0.50, 95%CI: 0.31-0.83, P=0.007). Conclusions: The trophectoderm cell grade and genetic testing institutions are related to the detection rate of mosaic embryo. Compared with euploid embryos transfer, the clinical pregnancy rate and live birth rate with mosaic embryos transfer are significantly reduced. For infertile couple without euploid embryos, transplantable mosaic embryos could be recommended according to the mosaic ratio and mosaic type in genetic counseling to obtain the optimal pregnancy outcome.


Subject(s)
Aneuploidy , Blastocyst , Embryo Transfer , Fertilization in Vitro , Genetic Testing , Mosaicism , Pregnancy Outcome , Pregnancy Rate , Preimplantation Diagnosis , Humans , Female , Pregnancy , Embryo Transfer/methods , Retrospective Studies , Preimplantation Diagnosis/methods , Genetic Testing/methods , Adult , Blastocyst/cytology , High-Throughput Nucleotide Sequencing , Live Birth
7.
Reprod Biomed Online ; 48(6): 103761, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38603981

ABSTRACT

RESEARCH QUESTION: How does first-trimester aneuploidy screening perform in pregnancies achieved through IVF with preimplantation genetic testing for aneuploidy (PGT-A) in a medical setting? DESIGN: This retrospective cohort study was undertaken in a single tertiary care centre between January 2013 and June 2022. In total, 20,237 women had prenatal follow-up at the study centre and were included in the study. The women were divided into three groups: singleton pregnancies conceived through the transfer of a PGT-A-screened euploid embryo (n = 510); singleton pregnancies conceived through IVF without PGT-A (n = 3291); and singleton pregnancies conceived naturally (n = 16,436). RESULTS: The conventional combined screening test for pregnancies conceived through IVF with PGT-A had specificity of 91%; sensitivity could not be calculated as there were no cases of fetal aneuploidy in this group. In 89.1% of pregnancies conceived through IVF with PGT-A with high risk for trisomy 21, 18 or 13, the result was related to advanced maternal age (>35 years at time of screening). CONCLUSIONS: The current screening strategy for trisomies 21, 18 and 13 can generate unnecessary tests in pregnancies achieved through IVF with PGT-A. A new protocol is needed for these patients, with greater weight given to ultrasound markers.


Subject(s)
Aneuploidy , Fertilization in Vitro , Genetic Testing , Preimplantation Diagnosis , Humans , Female , Pregnancy , Preimplantation Diagnosis/methods , Retrospective Studies , Adult , Genetic Testing/methods , Prenatal Diagnosis/methods
8.
J Assist Reprod Genet ; 41(5): 1261-1271, 2024 May.
Article in English | MEDLINE | ID: mdl-38642269

ABSTRACT

PURPOSE: Various screening techniques have been developed for preimplantation genetic testing for aneuploidy (PGT-A) to reduce implantation failure and miscarriages in women undergoing in vitro fertilisation (IVF) treatment. Among these methods, the Oxford nanopore technology (ONT) has already been tested in several tissues. However, no studies have applied ONT to polar bodies, a cellular material that is less restrictively regulated for PGT-A in some countries. METHODS: We performed rapid short nanopore sequencing on pooled first and second polar bodies of 102 oocytes from women undergoing IVF treatment to screen for aneuploidy. An automated analysis pipeline was developed with the expectation of three chromatids per chromosome. The results were compared to those obtained by array-based comparative genomic hybridisation (aCGH). RESULTS: ONT and aCGH were consistent for 96% (98/102) of sample ploidy classification. Of those samples, 36 were classified as euploid, while 62 were classified as aneuploid. The four discordant samples were assessed as euploid using aCGH but classified as aneuploid using ONT. The concordance of the ploidy classification (euploid, gain, or loss) per chromosome was 92.5% (2169 of 2346 of analysed chromosomes) using aCGH and ONT and increased to 97.7% (2113/2162) without the eight samples assessed as highly complex aneuploid using ONT. CONCLUSION: The automated detection of the ploidy classification per chromosome and shorter duplications or deletions depending on the sequencing depth demonstrates an advantage of the ONT method over standard, commercial aCGH methods, which do not consider the presence of three chromatids in pooled polar bodies.


Subject(s)
Aneuploidy , Comparative Genomic Hybridization , Fertilization in Vitro , Nanopore Sequencing , Polar Bodies , Preimplantation Diagnosis , Humans , Female , Nanopore Sequencing/methods , Fertilization in Vitro/methods , Comparative Genomic Hybridization/methods , Preimplantation Diagnosis/methods , Pregnancy , Adult , Oocytes/growth & development , Genetic Testing/methods
9.
Arch Gynecol Obstet ; 309(6): 2897-2906, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38649499

ABSTRACT

PURPOSE: Before blastocyst development, embryos undergo morphological and metabolic changes crucial for their subsequent growth. This study aimed to investigate the relationship between morula compaction and blastocyst formation and the subsequent chromosomal status of the embryos. METHODS: This retrospective cohort study evaluated embryo development (n = 371) using time-lapse imaging; 94 blastocysts underwent preimplantation genetic testing for aneuploidy (PGT-A). RESULTS: The embryos were classified as fully (Group 1, n = 194) or partially (Group 2, n = 177) compacted. Group 1 had significantly higher proportions of good- and average-quality blastocysts than Group 2 (21.6% vs. 3.4%, p = 0.001; 47.9% vs. 26.6%, p = 0.001, respectively). The time from the morula stage to the beginning and completion of compaction and blastocyst formation was significantly shorter in Group 1 than in Group 2 (78.6 vs. 82.4 h, p = 0.001; 87.0 vs. 92.2 h, p = 0.001; 100.2 vs. 103.7 h, p = 0.017, respectively). Group 1 embryos had larger surface areas than Group 2 embryos at various time points following blastocyst formation. Group 1 blastocysts had significantly higher average expansion rates than Group 2 blastocysts (653.6 vs. 499.2 µm2/h, p = 0.001). PGT-A revealed a higher proportion of euploid embryos in Group 1 than in Group 2 (47.2% vs. 36.6%, p = 0.303). CONCLUSION: Time-lapse microscopy uncovered a positive relationship between compaction and blastocyst quality and its association with embryo ploidy. Hence, compaction evaluation should be prioritized before blastocyst selection for transfer or cryopreservation.


Subject(s)
Blastocyst , Morula , Time-Lapse Imaging , Retrospective Studies , Humans , Female , Adult , Embryonic Development , Aneuploidy , Pregnancy , Embryo Transfer/methods , Preimplantation Diagnosis/methods , Embryo Culture Techniques , Cohort Studies
10.
J Assist Reprod Genet ; 41(5): 1173-1179, 2024 May.
Article in English | MEDLINE | ID: mdl-38557804

ABSTRACT

PURPOSE: To evaluate whether a second biopsy, following a first diagnostic failure on blastocysts tested for preimplantation genetic testing for monogenic diseases (PGT-M), allows to obtain genetic diagnosis and to what extent this procedure can influence clinical pregnancy and live birth rates compared to the PGT-M process with a successful genetic diagnosis from the first biopsy. METHODS: Embryos from women who underwent PGT-M in an infertility centre and who had been transferred after two biopsies for genetic analysis (n = 27) were matched in a 1:1 ratio accordingly to women's age (± 1 year) and fertility status (fertile vs infertile), as well as with the study period, with embryos who were transferred after receiving a conclusive PGT result straight after the first biopsy (n = 27). The main evaluated outcome was clinical pregnancy rate following embryo transfers in which healthy embryos were transferred after only one biopsy and those in which an embryo was transferred after being re-biopsied. Live birth rate was the secondary outcome. RESULTS: Clinical pregnancy rate was 52% (95% CI: 34-69) following the transfer of a single-biopsy blastocyst and 30% (95% CI: 16-48) following the transfer of a re-biopsied blastocyst. The likelihood to have a healthy baby was 33% (95% CI: 19-52) following the transfer of a blastocyst biopsied once and 22% (95% CI: 11-41) following the transfer of a re-biopsied blastocyst. CONCLUSIONS: The re-biopsy intervention seems to considerably reduce the pregnancy potential of a blastocyst. However, a greater sample size is necessary to clarify this issue definitively.


Subject(s)
Blastocyst , Embryo Transfer , Genetic Testing , Live Birth , Pregnancy Rate , Preimplantation Diagnosis , Humans , Female , Preimplantation Diagnosis/methods , Pregnancy , Adult , Embryo Transfer/methods , Biopsy , Genetic Testing/methods , Blastocyst/pathology , Case-Control Studies , Live Birth/genetics , Live Birth/epidemiology , Fertilization in Vitro/methods , Birth Rate , Pregnancy Outcome/genetics
11.
Circ Genom Precis Med ; 17(2): e004416, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38516780

ABSTRACT

BACKGROUND: Preimplantation genetic testing (PGT) is a reproductive technology that selects embryos without (familial) genetic variants. PGT has been applied in inherited cardiac disease and is included in the latest American Heart Association/American College of Cardiology guidelines. However, guidelines selecting eligible couples who will have the strongest risk reduction most from PGT are lacking. We developed an objective decision model to select eligibility for PGT and compared its results with those from a multidisciplinary team. METHODS: All couples with an inherited cardiac disease referred to the national PGT center were included. A multidisciplinary team approved or rejected the indication based on clinical and genetic information. We developed a decision model based on published risk prediction models and literature, to evaluate the severity of the cardiac phenotype and the penetrance of the familial variant in referred patients. The outcomes of the model and the multidisciplinary team were compared in a blinded fashion. RESULTS: Eighty-three couples were referred for PGT (1997-2022), comprising 19 different genes for 8 different inherited cardiac diseases (cardiomyopathies and arrhythmias). Using our model and proposed cutoff values, a definitive decision was reached for 76 (92%) couples, aligning with 95% of the multidisciplinary team decisions. In a prospective cohort of 11 couples, we showed the clinical applicability of the model to select couples most eligible for PGT. CONCLUSIONS: The number of PGT requests for inherited cardiac diseases increases rapidly, without the availability of specific guidelines. We propose a 2-step decision model that helps select couples with the highest risk reduction for cardiac disease in their offspring after PGT.


Subject(s)
Clinical Decision-Making , Genetic Diseases, Inborn , Genetic Testing , Heart Diseases , Preimplantation Diagnosis , Referral and Consultation , Female , Humans , Genetic Testing/methods , Heart Diseases/congenital , Heart Diseases/diagnosis , Heart Diseases/genetics , Heart Diseases/prevention & control , Preimplantation Diagnosis/methods , Male , Clinical Decision-Making/methods , Arrhythmias, Cardiac/diagnosis , Arrhythmias, Cardiac/genetics , Cardiomyopathies/diagnosis , Cardiomyopathies/genetics , Risk Management , Genetic Diseases, Inborn/diagnosis , Genetic Diseases, Inborn/genetics , Genetic Diseases, Inborn/prevention & control , Heterozygote , Prospective Studies , Family Characteristics
12.
Syst Biol Reprod Med ; 70(1): 52-58, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38426509

ABSTRACT

The aim of this study was to non-invasively investigate euploid embryos using methods other than pre-implantation genetic testing for aneuploidy. The study focused on direct cleavage (DC) observed during early embryo development. We also investigated the relationship between the mode of early embryo division and embryo ploidy. Embryos were divided into the normal cleavage (NC) and DC groups, and the DC group was further subdivided into the DC-First (DC-F) and DC-Second (DC-S) groups, depending on whether DC was observed at the first or second cleavage, respectively. The acquisition rates of euploid embryos and embryos appropriate for transfer were compared between the groups. Our results revealed that the timing of the first division did not differ between blastocyst grades or in embryos with varying degrees of ploidy. Further, the timing of the first cleavage did not affect the acquisition rate of embryos appropriate for transfer and euploid embryo formation rate did not significantly differ between the DC and NC groups. We also noted that for embryos appropriate for transfer, euploidy acquisition rate did not differ significantly between the DC and NC groups. Further, the euploidy acquisition rate of embryos did not differ between the DC-F and DC-S groups. However, the acquisition rate of embryos appropriate for transfer, including those with low mosaicism, was significantly higher in the DC-S group than in the DC-F group. These findings indicated that the number of good-quality blastocysts formed was significantly higher in the NC group than in the DC group and the acquisition rate of embryos appropriate for transfer, including those with low mosaicism, was significantly higher in the DC-S group than in the DC-F group.


Subject(s)
Preimplantation Diagnosis , Pregnancy , Female , Humans , Preimplantation Diagnosis/methods , Retrospective Studies , Embryo Implantation , Embryonic Development , Aneuploidy , Genetic Testing , Blastocyst , Mosaicism
13.
Clin Chem ; 70(5): 747-758, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38451051

ABSTRACT

BACKGROUND: Preimplantation genetic testing for aneuploidy (PGT-A) using polar body (PB) biopsy offers a clinical benefit by reducing the number of embryo transfers and miscarriage rates but is currently not cost-efficient. Nanopore sequencing technology opens possibilities by providing cost-efficient and fast sequencing results with uncomplicated sample preparation work flows. METHODS: In this comparative experimental study, 102 pooled PB samples (99 passing QC) from 20 patients were analyzed for aneuploidy using nanopore sequencing technology and compared with array comparative genomic hybridization (aCGH) results generated as part of the clinical routine. Samples were sequenced on a Nanopore MinION machine. Whole-chromosome copy-numbers were called by custom bioinformatic analysis software. Automatically called results were compared to aCGH results. RESULTS: Overall, 96/99 samples were consistently detected as euploid or aneuploid in both methods (concordance = 97.0%, sensitivity = 0.957, specificity = 1.0, positive predictive value = 1.0, negative predictive value = 0.906). On the chromosomal level, concordance reached 98.7%. Chromosomal aneuploidies analyzed in this trial covered all 23 chromosomes with 98 trisomies, and 97 monosomies in 70 aCGH samples.The whole nanopore work flow is feasible in under 5 h (for one sample) with a maximum time of 16 h (for 12 samples), enabling fresh PB-euploid embryo transfer. A material cost of US$ 165 (EUR 150)/sample possibly enables cost-efficient aneuploidy screening. CONCLUSIONS: This is the first study systematically comparing nanopore sequencing with standard methods for the detection of PB aneuploidy. High concordance rates confirmed the feasibility of nanopore technology for this application. Additionally, the fast and cost-efficient work flow reveals the clinical utility of this technology, making it clinically attractive for PB PGT-A.


Subject(s)
Aneuploidy , Nanopore Sequencing , Polar Bodies , Preimplantation Diagnosis , Humans , Preimplantation Diagnosis/methods , Nanopore Sequencing/methods , Female , Genetic Testing/methods , Comparative Genomic Hybridization/methods , Pregnancy
14.
Hum Reprod ; 39(5): 981-991, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38438132

ABSTRACT

STUDY QUESTION: Which assited reproductive technology (ART) interventions in high-income countries are cost-effective and which are not? SUMMARY ANSWER: Among all ART interventions assessed in economic evaluations, most high-cost interventions, including preimplantation genetic testing for aneuploidy (PGT-A) for a general population and ICSI for unexplained infertility, are unlikely to be cost-effective owing to minimal or no increase in effectiveness. WHAT IS KNOWN ALREADY: Approaches to reduce costs in order to increase access have been identified as a research priority for future infertility research. There has been an increasing number of ART interventions implemented in routine clinical practice globally, before robust assessments of evidence on economic evaluations. The extent of clinical effectiveness of some studied comparisons has been evaluated in high-quality research, allowing more informative decision making around cost-effectiveness. STUDY DESIGN, SIZE, DURATION: We performed a systematic review and searched seven databases (MEDLINE, PUBMED, EMBASE, COCHRANE, ECONLIT, SCOPUS, and CINAHL) for studies examining ART interventions for infertility together with an economic evaluation component (cost-effectiveness, cost-benefit, cost-utility, or cost-minimization assessment), in high-income countries, published since January 2011. The last search was 22 June 2022. PARTICIPANTS/MATERIALS, SETTING, METHODS: Two independent reviewers assessed publications and included those fulfilling the eligibility criteria. Studies were examined to assess the cost-effectiveness of the studied intervention, as well as the reporting quality of the study. The chosen outcome measure and payer perspective were also noted. Completeness of reporting was assessed against the Consolidated Health Economic Evaluation Reporting Standard. Results are presented and summarized based on the intervention studied. MAIN RESULTS AND THE ROLE OF CHANCE: The review included 40 studies which were conducted in 11 high-income countries. Most studies (n = 34) included a cost-effectiveness analysis. ART interventions included medication or strategies for controlled ovarian stimulation (n = 15), IVF (n = 9), PGT-A (n = 7), single embryo transfer (n = 5), ICSI (n = 3), and freeze-all embryo transfer (n = 1). Live birth was the mostly commonly reported primary outcome (n = 27), and quality-adjusted life years was reported in three studies. The health funder perspective was used in 85% (n = 34) of studies. None of the included studies measured patient preference for treatment. It remains uncertain whether PGT-A improves pregnancy rates compared to IVF cycles managed without PGT-A, and therefore cost-effectiveness could not be demonstrated for this intervention. Similarly, ICSI in non-male factor infertility appears not to be clinically effective compared to standard fertilization in an IVF cycle and is therefore not cost-effective. Interventions such as use of biosimilars or HMG for ovarian stimulation are cheaper but compromise clinical effectiveness. LIMITATIONS, REASONS FOR CAUTION: Lack of both preference-based and standardized outcomes limits the comparability of results across studies. The selection of efficacy evidence offered for some interventions for economic evaluations is not always based on high-quality randomized trials and systematic reviews. In addition, there is insufficient knowledge of the willingness to pay thresholds of individuals and state funders for treatment of infertility. There is variable quality of reporting scores, which might increase uncertainty around the cost-effectiveness results. WIDER IMPLICATIONS OF THE FINDINGS: Investment in strategies to help infertile people who utilize ART is justifiable at both personal and population levels. This systematic review may assist ART funders decide how to best invest to maximize the likelihood of delivery of a healthy child. STUDY FUNDING/COMPETING INTEREST(S): There was no funding for this study. E.C. and R.W. receive salary support from the National Health and Medical Research Council (NHMRC) through their fellowship scheme (EC GNT1159536, RW 2021/GNT2009767). M.D.-T. reports consulting fees from King Fahad Medical School. All other authors have no competing interests to declare. REGISTRATION NUMBER: Prospero CRD42021261537.


Subject(s)
Cost-Benefit Analysis , Developed Countries , Reproductive Techniques, Assisted , Humans , Reproductive Techniques, Assisted/economics , Female , Pregnancy , Developed Countries/economics , Infertility/therapy , Infertility/economics , Sperm Injections, Intracytoplasmic/economics , Sperm Injections, Intracytoplasmic/methods , Preimplantation Diagnosis/economics , Preimplantation Diagnosis/methods , Pregnancy Rate
15.
J Assist Reprod Genet ; 41(5): 1245-1259, 2024 May.
Article in English | MEDLINE | ID: mdl-38470552

ABSTRACT

BACKGROUND: Preimplantation genetic testing for monogenic disorders (PGT-M) is now widely used as an effective strategy to prevent various monogenic or chromosomal diseases. MATERIAL AND METHODS: In this retrospective study, couples with a family history of hereditary neurological diseases or metabolic diseases dominated by nervous system phenotypes and/or carrying the pathogenic genes underwent PGT-M to prevent children from inheriting disease-causing gene mutations from their parents and developing known genetic diseases. After PGT-M, unaffected (i.e., normal) embryos after genetic detection were transferred into the uterus of their corresponding mothers. RESULTS: A total of 43 carrier couples with the following hereditary neurological diseases or metabolic diseases dominated by nervous system phenotypes underwent PGT-M: Duchenne muscular dystrophy (13 families); methylmalonic acidemia (7 families); spinal muscular atrophy (5 families); infantile neuroaxonal dystrophy and intellectual developmental disorder (3 families each); Cockayne syndrome (2 families); Menkes disease, spinocerebellar ataxia, glycine encephalopathy with epilepsy, Charcot-Marie-Tooth disease, mucopolysaccharidosis, Aicardi-Goutieres syndrome, adrenoleukodystrophy, phenylketonuria, amyotrophic lateral sclerosis, and Dravet syndrome (1 family each). After 53 PGT-M cycles, the final transferable embryo rate was 12.45%, the clinical pregnancy rate was 74.19%, and the live birth rate was 89.47%; a total of 18 unaffected (i.e., healthy) children were born to these families. CONCLUSIONS: This study highlights the importance of PGT-M in preventing children born with hereditary neurological diseases or metabolic diseases dominated by nervous system phenotypes.


Subject(s)
Genetic Testing , Metabolic Diseases , Preimplantation Diagnosis , Humans , Preimplantation Diagnosis/methods , Female , Pregnancy , Genetic Testing/methods , Metabolic Diseases/genetics , Metabolic Diseases/pathology , Retrospective Studies , Male , Nervous System Diseases/genetics , Phenotype , Adult , Child , Embryo Transfer , Mutation/genetics
16.
Reprod Biol Endocrinol ; 22(1): 23, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38350949

ABSTRACT

BACKGROUND: Recurrent implantation failure (RIF) represents a vague clinical condition with an unclear diagnostic challenge that lacks solid scientific underpinning. Although euploid embryos have demonstrated consistent implantation capabilities across various age groups, a unanimous agreement regarding the advantages of preimplantation genetic testing for aneuploidy (PGT-A) in managing RIF is absent. The ongoing discussion about whether chromosomal aneuploidy in embryos significantly contributes to recurrent implantation failure remains unsettled. Despite active discussions in recent times, a universally accepted characterization of recurrent implantation failure remains elusive. We aimed in this study to measure the reproductive performance of vitrified-warmed euploid embryos transferred to the uterus in successive cycles. METHODS: This observational cohort study included women (n = 387) with an anatomically normal uterus who underwent oocyte retrieval for PGT-A treatment with at least one biopsied blastocyst, between January 2017 and December 2021 at a university-affiliated public fertility center. The procedures involved in this study included ICSI, blastocyst culture, trophectoderm biopsy and comprehensive 24-chromosome analysis of preimplantation embryos using Next Generation Sequencing (NGS). Women, who failed a vitrified-warmed euploid embryo transfer, had successive blastocyst transfer cycles (FET) for a total of three using remaining cryopreserved euploid blastocysts from the same oocyte retrieval cycle. The primary endpoints were sustained implantation rate (SIR) and live birth rate (LBR) per vitrified-warmed single euploid embryo. The secondary endpoints were mean euploidy rate (m-ER) per cohort of biopsied blastocysts from each patient, as well as pregnancy and miscarriage rates. RESULTS: The mean age of the patient population was 33.4 years (95% CI 32.8-33.9). A total of 1,641 embryos derived from the first oocyte retrieval cycle were biopsied and screened. We found no associations between the m-ER and the number of previous failed IVF cycles among different ranges of maternal age at oocyte retrieval (P = 0.45). Pairwise comparisons showed a significant decrease in the sustained implantation rate (44.7% vs. 30%; P = 0.01) and the livebirth rate per single euploid blastocyst (37.1% vs. 25%; P = 0.02) between the 1st and 3rd FET. The cumulative SIR and LBR after up to three successive single embryo transfers were 77.1% and 68.8%, respectively. We found that the live birth rate of the first vitrified-warmed euploid blastocyst transferred decreased significantly with the increasing number of previously failed IVF attempts by categories (45.3% vs. 35.8% vs. 27.6%; P = 0.04). A comparable decrease in sustained implantation rate was also observed but did not reach statistical significance (50% vs. 44.2 vs. 37.9%; P = NS). Using a logistic regression model, we confirmed the presence of a negative association between the number of previous IVF failed attempts and the live birth rate per embryo transfer cycle (OR = 0.76; 95% CI 0.62-0.94; P = 0.01). CONCLUSIONS: These findings are vital for enhancing patient counseling and refining management strategies for individuals facing recurrent implantation failure. By tailoring interventions based on age and ovarian reserve, healthcare professionals can offer more personalized guidance, potentially improving the overall success rates and patient experiences in fertility treatments. TRIAL REGISTRATION NUMBER: N/A.


Subject(s)
Preimplantation Diagnosis , Pregnancy , Humans , Female , Adult , Preimplantation Diagnosis/methods , Embryo Implantation , Embryo Transfer/methods , Genetic Testing/methods , Uterus , Blastocyst , Aneuploidy , Retrospective Studies
17.
Reprod Biomed Online ; 48(3): 103664, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38408811

ABSTRACT

A frequent finding after preimplantation genetic diagnostic testing for aneuploidies using next-generation sequencing is an embryo that is putatively mosaic. The prevalence of this outcome remains unclear and varies with technical and external factors. Mosaic embryos can be classified by the percentage of cells affected, type of chromosome involvement (whole or segmental), number of affected chromosomes or affected cell type (inner mass cell, trophectoderm or both). The origin of mosaicism seems to be intrinsic as a post-zygotic mitotic error, but some external factors can play a role. As experience has increased with the transfer of mosaic embryos, clinical practice has gradually become more flexible in recent years. Nevertheless, clinical results show lower implantation, pregnancy and clinical pregnancy rates and higher miscarriage rates with mosaic embryo transfer when compared with the transfer of euploid embryos. Prenatal diagnosis is highly recommended after the transfer of mosaic embryos. This narrative review is intended to serve as reference material for practitioners in reproductive medicine who must manage a mosaic embryo result after preimplantation genetic testing for aneuploidies.


Subject(s)
Preimplantation Diagnosis , Pregnancy , Female , Humans , Preimplantation Diagnosis/methods , Genetic Testing/methods , Embryo Implantation , Aneuploidy , Mosaicism , Blastocyst/metabolism
18.
Anal Chim Acta ; 1296: 342331, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38401939

ABSTRACT

BACKGROUND: The cell-free RNA (cf-RNA) of spent embryo medium (SEM) has aroused a concern of academic and clinical researchers for its potential use in non-invasive embryo screening. However, comprehensive characterization of cf-RNA from SEM still presents significant technical challenges, primarily due to the limited volume of SEM. Hence, there is urgently need to a small input liquid volume and ultralow amount of cf-RNA library preparation method to unbiased cf-RNA sequencing from SEM. (75) RESULT: Here, we report a high sensitivity agarose amplification-based cf-RNA sequencing method (SEM-Acf) for human preimplantation SEM cf-RNA analysis. It is a cf-RNA sequencing library preparation method by adding agarose amplification. The agarose amplification sensitivity (0.005 pg) and efficiency (105.35 %) were increased than that of without agarose addition (0.45 pg and 96.06 %) by âˆ¼ 90 fold and 9.29 %, respectively. Compared with SMART sequencing (SMART-seq), the correlation of gene expression was stronger in different SEM samples by using SEM-Acf. The cf-RNA number of detected and coverage uniformity of 3' end were significantly increased. The proportion of 5' end adenine, alternative splicing events and short fragments (<400 bp) were increased. It is also found that 4-mer end motifs of cf-RNA fragments was significantly differences between different embryonic stage by day3 spent cleavage medium and day5/6 spent blastocyst medium. (141) SIGNIFICANCE: This study established an efficient SEM amplification and library preparation method. Additionally, we successfully described the characterizations of SEM cf-RNA in preimplantation embryo using SEM-Acf, including expression features and fragment lengths. SEM-Acf facilitates the exploration of cf-RNA as a noninvasive embryo screening biomarker, and opens up potential clinical utilities of small input liquid volume and ultralow amount cf-RNA sequencing. (59).


Subject(s)
Cell-Free Nucleic Acids , Preimplantation Diagnosis , Pregnancy , Female , Humans , Preimplantation Diagnosis/methods , Sepharose , Blastocyst/metabolism , RNA/genetics , RNA/metabolism
19.
Reprod Biomed Online ; 48(4): 103729, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38367593

ABSTRACT

RESEARCH QUESTION: Is partial compaction during morula formation associated with an embryo's developmental ability and implantation potential? DESIGN: Retrospective analysis of data from 196 preimplantation genetic testing for aneuploidy (PGT-A) cycles. Embryos starting compaction were grouped according to the inclusion or not of all the blastomeres in the forming morula (full compaction or partial compaction). The possible effect of maternal age and ovarian response on compaction was analysed. Morphokinetic characteristics, blastocyst formation rate, morphology and cytogenetic constitution of the obtained blastocysts were compared. Comparisons of reproductive outcomes after the transfer of euploid blastocysts from both groups were established. Finally, in a subset of embryos, the chromosomal constitution concordance of the abandoned cells and the corresponding blastocyst through trophectoderm biopsies was assessed. RESULTS: A total of 430 embryos failed to include at least one cell during compaction (partial compaction group [49.3%]), whereas the 442 remaining embryos formed a fully compacted morula (full compaction group [50.7%]). Neither female age nor the number of oocytes collected affected the prevalence of partial compaction morulae. Morphokinetic parameters were altered in embryos from partial compaction morulae compared with full compaction. Although an impairment in blastocyst formation rate was observed in partial compaction morulae (57.2% versus 70.8%, P < 0.001), both chromosomal constitution (euploidy rate: partial compaction [38.4%] versus full compaction [34.2%]) and reproductive outcomes (live birth rate: partial compaction [51.9%] versus full compaction [46.2%]) of the obtained blastocysts were equivalent between groups. A high ploidy correlation of excluded cells-trophectoderm duos was observed. CONCLUSIONS: Partial compaction morulae show a reduced developmental ability compared with full compaction morulae. Resulting blastocysts from both groups, however, have similar euploidy rates and reproductive outcomes. Cell exclusion might be a consequence of a compromised embryo development regardless of the chromosomal constitution of the excluded cells.


Subject(s)
Preimplantation Diagnosis , Humans , Pregnancy , Female , Retrospective Studies , Preimplantation Diagnosis/methods , Morula , Embryo Implantation/physiology , Genetic Testing/methods , Aneuploidy , Blastocyst/pathology
20.
Hum Reprod ; 39(4): 709-723, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38308811

ABSTRACT

STUDY QUESTION: Are there cell lineage-related differences in the apoptotic rates and differentiation capacity of human blastocysts diagnosed as euploid, mosaic, and aneuploid after preimplantation genetic testing for aneuploidy (PGT-A) based on concurrent copy number and genotyping analysis? SUMMARY ANSWER: Trophectoderm (TE) cells of mosaic and aneuploid blastocysts exhibit significantly higher levels of apoptosis and significantly reduced differentiation capacity compared to those of euploid blastocysts. WHAT IS KNOWN ALREADY: Embryos diagnosed as mosaic after PGT-A can develop into healthy infants, yet understanding the reasons behind their reproductive potential requires further research. One hypothesis suggests that mosaicism can be normalized through selective apoptosis and reduced proliferation of aneuploid cells, but direct evidence of these mechanisms in human embryos is lacking. Additionally, data interpretation from studies involving mosaic embryos has been hampered by retrospective analysis methods and the high incidence of false-positive mosaic diagnoses stemming from the use of poorly specific PGT-A platforms. STUDY DESIGN, SIZE, DURATION: Prospective cohort study performing colocalization of cell-lineage and apoptotic markers by immunofluorescence (IF). We included a total of 64 human blastocysts donated to research on Day 5 or 6 post-fertilization (dpf) by 43 couples who underwent in vitro fertilization treatment with PGT-A at IVI-RMA Valencia between September 2019 and October 2022. A total of 27 mosaic blastocysts were analyzed. PARTICIPANTS/MATERIALS, SETTING, METHODS: The study consisted of two phases: Phase I (caspase-3, n = 53 blastocysts): n = 13 euploid, n = 22 mosaic, n = 18 aneuploid. Phase II (terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL), n = 11 blastocysts): n = 2 euploid, n = 5 mosaic, n = 4 aneuploid. Following donation for research, vitrified blastocysts were warmed, cultured until re-expansion, fixed, processed for IF, and imaged using confocal microscopy. For each blastocyst, the following cell counts were conducted: total cells (DAPI+), TE cells (GATA3+), inner cell mass (ICM) cells (GATA3-/NANOG+), and apoptotic cells (caspase-3+ or TUNEL+). The incidence of apoptosis was calculated for each blastocyst by dividing the number of caspase-3+ cells (Phase I) or TUNEL+ cells (Phase II) by the number of TE or ICM cells. Statistical analysis was performed according to data type and distribution (P < 0.05 was considered statistically significant). MAIN RESULTS AND THE ROLE OF CHANCE: Phase I: Mosaic blastocysts displayed a similar number of total cells (49.6 ± 15 cells at 5 dpf; 58.8 ± 16.9 cells at 6 dpf), TE cells (38.8 ± 13.7 cells at 5 dpf; 49.2 ± 16.2 cells at 6 dpf), and ICM cells (10.9 ± 4.2 cells at 5 dpf; 9.7 ± 7.1 cells at 6 dpf) compared to euploid and aneuploid blastocysts (P > 0.05). The proportion of TE cells retaining NANOG expression increased gradually from euploid blastocysts (9.7% = 63/651 cells at 5 dpf; 0% = 0/157 cells at 6 dpf) to mosaic blastocysts (13.1% = 104/794 cells at 5 dpf; 3.4% = 12/353 cells at 6 dpf) and aneuploid blastocysts (27.9% = 149/534 cells at 5 dpf; 4.6% = 19/417 cells at 6 dpf) (P < 0.05). At the TE level, caspase-3+ cells were frequently observed (39% = 901/2310 cells). The proportion of caspase-3+ TE cells was significantly higher in mosaic blastocysts (44.1% ± 19.6 at 5 dpf; 43% ± 16.8 at 6 dpf) and aneuploid blastocysts (45.9% ± 16.1 at 5 dpf; 49% ± 15.1 at 6 dpf) compared to euploid blastocysts (26.6% ± 16.6 at 5 dpf; 17.5% ± 14.8 at 6 dpf) (P < 0.05). In contrast, at the ICM level, caspase-3+ cells were rarely observed (1.9% = 11/596 cells), and only detected in mosaic blastocysts (2.6% = 6/232 cells) and aneuploid blastocysts (2.5% = 5/197 cells) (P > 0.05). Phase II: Consistently, TUNEL+ cells were only observed in TE cells (32.4% = 124/383 cells). An increasing trend was identified toward a higher proportion of TUNEL+ cells in the TE of mosaic blastocysts (37.2% ± 21.9) and aneuploid blastocysts (39% ± 41.7), compared to euploid blastocysts (23% ± 32.5), although these differences did not reach statistical significance (P > 0.05). LIMITATIONS, REASONS FOR CAUTION: The observed effects on apoptosis and differentiation may not be exclusive to aneuploid cells. Additionally, variations in aneuploidies and unexplored factors related to blastocyst development and karyotype concordance may introduce potential biases and uncertainties in the results. WIDER IMPLICATIONS OF THE FINDINGS: Our findings demonstrate a cell lineage-specific effect of aneuploidy on the apoptotic levels and differentiation capacity of human blastocysts. This contributes to unravelling the biological characteristics of mosaic blastocysts and supports the concept of clonal depletion of aneuploid cells in explaining their reproductive potential. STUDY FUNDING/COMPETING INTEREST(S): This work was funded by grants from Centro para el Desarrollo Tecnológico Industrial (CDTI) (20190022) and Generalitat Valenciana (APOTIP/2019/009). None of the authors has any conflict of interest to declare. TRIAL REGISTRATION NUMBER: N/A.


Subject(s)
Preimplantation Diagnosis , Pregnancy , Female , Humans , Preimplantation Diagnosis/methods , Caspase 3/metabolism , Retrospective Studies , Prospective Studies , Blastocyst/metabolism , Genetic Testing/methods , Aneuploidy
SELECTION OF CITATIONS
SEARCH DETAIL
...