Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 959
Filter
1.
Science ; 382(6666): 76-81, 2023 10 06.
Article in English | MEDLINE | ID: mdl-37797007

ABSTRACT

During pregnancy, physiological adaptations prepare the female body for the challenges of motherhood. Becoming a parent also requires behavioral adaptations. Such adaptations can occur as early as during pregnancy, but how pregnancy hormones remodel parenting circuits to instruct preparatory behavioral changes remains unknown. We found that action of estradiol and progesterone on galanin (Gal)-expressing neurons in the mouse medial preoptic area (MPOA) is critical for pregnancy-induced parental behavior. Whereas estradiol silences MPOAGal neurons and paradoxically increases their excitability, progesterone permanently rewires this circuit node by promoting dendritic spine formation and recruitment of excitatory synaptic inputs. This MPOAGal-specific neural remodeling sparsens population activity in vivo and results in persistently stronger, more selective responses to pup stimuli. Pregnancy hormones thus remodel parenting circuits in anticipation of future behavioral need.


Subject(s)
Estradiol , Maternal Behavior , Parenting , Preoptic Area , Progesterone , Animals , Female , Mice , Pregnancy , Estradiol/physiology , Maternal Behavior/physiology , Maternal Behavior/psychology , Parenting/psychology , Preoptic Area/cytology , Preoptic Area/physiology , Progesterone/physiology , Models, Animal , Neurons/metabolism , Neurons/physiology
2.
Nature ; 618(7967): 1006-1016, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37286598

ABSTRACT

In many species, including mice, female animals show markedly different pup-directed behaviours based on their reproductive state1,2. Naive wild female mice often kill pups, while lactating female mice are dedicated to pup caring3,4. The neural mechanisms that mediate infanticide and its switch to maternal behaviours during motherhood remain unclear. Here, on the basis of the hypothesis that maternal and infanticidal behaviours are supported by distinct and competing neural circuits5,6, we use the medial preoptic area (MPOA), a key site for maternal behaviours7-11, as a starting point and identify three MPOA-connected brain regions that drive differential negative pup-directed behaviours. Functional manipulation and in vivo recording reveal that oestrogen receptor α (ESR1)-expressing cells in the principal nucleus of the bed nucleus of stria terminalis (BNSTprESR1) are necessary, sufficient and naturally activated during infanticide in female mice. MPOAESR1 and BNSTprESR1 neurons form reciprocal inhibition to control the balance between positive and negative infant-directed behaviours. During motherhood, MPOAESR1 and BNSTprESR1 cells change their excitability in opposite directions, supporting a marked switch of female behaviours towards the young.


Subject(s)
Infanticide , Maternal Behavior , Preoptic Area , Animals , Female , Mice , Lactation , Maternal Behavior/physiology , Neural Pathways/physiology , Preoptic Area/cytology , Preoptic Area/physiology , Thalamus/cytology , Thalamus/physiology
3.
Nature ; 608(7924): 741-749, 2022 08.
Article in English | MEDLINE | ID: mdl-35922505

ABSTRACT

Mating and aggression are innate social behaviours that are controlled by subcortical circuits in the extended amygdala and hypothalamus1-4. The bed nucleus of the stria terminalis (BNSTpr) is a node that receives input encoding sex-specific olfactory cues from the medial amygdala5,6, and which in turn projects to hypothalamic nuclei that control mating7-9 (medial preoptic area (MPOA)) and aggression9-14 (ventromedial hypothalamus, ventrolateral subdivision (VMHvl)), respectively15. Previous studies have demonstrated that male aromatase-positive BNSTpr neurons are required for mounting and attack, and may identify conspecific sex according to their overall level of activity16. However, neural representations in BNSTpr, their function and their transformations in the hypothalamus have not been characterized. Here we performed calcium imaging17,18 of male BNSTprEsr1 neurons during social behaviours. We identify distinct populations of female- versus male-tuned neurons in BNSTpr, with the former outnumbering the latter by around two to one, similar to the medial amygdala and MPOA but opposite to VMHvl, in which male-tuned neurons predominate6,9,19. Chemogenetic silencing of BNSTprEsr1 neurons while imaging MPOAEsr1 or VMHvlEsr1 neurons in behaving animals showed, unexpectedly, that the male-dominant sex-tuning bias in VMHvl was inverted to female-dominant whereas a switch from sniff- to mount-selective neurons during mating was attenuated in MPOA. Our data also indicate that BNSTprEsr1 neurons are not essential for conspecific sex identification. Rather, they control the transition from appetitive to consummatory phases of male social behaviours by shaping sex- and behaviour-specific neural representations in the hypothalamus.


Subject(s)
Sexual Behavior, Animal , Social Behavior , Aggression/physiology , Amygdala/cytology , Amygdala/physiology , Animals , Calcium/analysis , Calcium/metabolism , Female , Hypothalamus/cytology , Hypothalamus/physiology , Male , Neurons/physiology , Preoptic Area/cytology , Preoptic Area/physiology , Sex Characteristics , Sexual Behavior, Animal/physiology
4.
Nature ; 606(7916): 937-944, 2022 06.
Article in English | MEDLINE | ID: mdl-35676482

ABSTRACT

During infection, animals exhibit adaptive changes in physiology and behaviour aimed at increasing survival. Although many causes of infection exist, they trigger similar stereotyped symptoms such as fever, warmth-seeking, loss of appetite and fatigue1,2. Yet exactly how the nervous system alters body temperature and triggers sickness behaviours to coordinate responses to infection remains unknown. Here we identify a previously uncharacterized population of neurons in the ventral medial preoptic area (VMPO) of the hypothalamus that are activated after sickness induced by lipopolysaccharide (LPS) or polyinosinic:polycytidylic acid. These neurons are crucial for generating a fever response and other sickness symptoms such as warmth-seeking and loss of appetite. Single-nucleus RNA-sequencing and multiplexed error-robust fluorescence in situ hybridization uncovered the identity and distribution of LPS-activated VMPO (VMPOLPS) neurons and non-neuronal cells. Gene expression and electrophysiological measurements implicate a paracrine mechanism in which the release of immune signals by non-neuronal cells during infection activates nearby VMPOLPS neurons. Finally, we show that VMPOLPS neurons exert a broad influence on the activity of brain areas associated with behavioural and homeostatic functions and are synaptically and functionally connected to circuit nodes controlling body temperature and appetite. Together, these results uncover VMPOLPS neurons as a control hub that integrates immune signals to orchestrate multiple sickness symptoms in response to infection.


Subject(s)
Appetite , Fever , Infections , Neurons , Preoptic Area , Animals , Appetite/drug effects , Appetite Depressants/pharmacology , Fever/chemically induced , Fever/physiopathology , In Situ Hybridization, Fluorescence , Infections/chemically induced , Infections/physiopathology , Lipopolysaccharides , Neurons/drug effects , Paracrine Communication , Poly I-C , Preoptic Area/cytology , Preoptic Area/drug effects , Preoptic Area/physiology
5.
Nature ; 599(7884): 262-267, 2021 11.
Article in English | MEDLINE | ID: mdl-34646019

ABSTRACT

The ability to help and care for others fosters social cohesiveness and is vital to the physical and emotional well-being of social species, including humans1-3. Affiliative social touch, such as allogrooming (grooming behaviour directed towards another individual), is a major type of prosocial behaviour that provides comfort to others1-6. Affiliative touch serves to establish and strengthen social bonds between animals and can help to console distressed conspecifics. However, the neural circuits that promote prosocial affiliative touch have remained unclear. Here we show that mice exhibit affiliative allogrooming behaviour towards distressed partners, providing a consoling effect. The increase in allogrooming occurs in response to different types of stressors and can be elicited by olfactory cues from distressed individuals. Using microendoscopic calcium imaging, we find that neural activity in the medial amygdala (MeA) responds differentially to naive and distressed conspecifics and encodes allogrooming behaviour. Through intersectional functional manipulations, we establish a direct causal role of the MeA in controlling affiliative allogrooming and identify a select, tachykinin-expressing subpopulation of MeA GABAergic (γ-aminobutyric-acid-expressing) neurons that promote this behaviour through their projections to the medial preoptic area. Together, our study demonstrates that mice display prosocial comforting behaviour and reveals a neural circuit mechanism that underlies the encoding and control of affiliative touch during prosocial interactions.


Subject(s)
Emotions , Social Behavior , Stress, Psychological , Touch/physiology , Amygdala/cytology , Amygdala/physiology , Animals , Cooperative Behavior , Female , Male , Mice , Neural Pathways , Neurons/physiology , Preoptic Area/cytology , Preoptic Area/physiology , Stress, Psychological/prevention & control , Stress, Psychological/psychology
6.
Neuron ; 109(20): 3283-3297.e11, 2021 10 20.
Article in English | MEDLINE | ID: mdl-34672983

ABSTRACT

Deep brain temperature detection by hypothalamic warm-sensitive neurons (WSNs) has been proposed to provide feedback information relevant for thermoregulation. WSNs increase their action potential firing rates upon warming, a property that has been presumed to rely on the composition of thermosensitive ion channels within WSNs. Here, we describe a synaptic mechanism that regulates temperature sensitivity of preoptic WSNs and body temperature. Experimentally induced warming of the mouse hypothalamic preoptic area in vivo triggers body cooling. TRPM2 ion channels facilitate this homeostatic response and, at the cellular level, enhance temperature responses of WSNs, thereby linking WSN function with thermoregulation for the first time. Rather than acting within WSNs, we-unexpectedly-find TRPM2 to temperature-dependently increase synaptic drive onto WSNs by disinhibition. Our data emphasize a network-based interoceptive paradigm that likely plays a key role in encoding body temperature and that may facilitate integration of diverse inputs into thermoregulatory pathways.


Subject(s)
Body Temperature Regulation/genetics , Neural Inhibition/genetics , Neurons/metabolism , Preoptic Area/metabolism , TRPM Cation Channels/genetics , Thermosensing/genetics , Animals , Body Temperature , Body Temperature Regulation/physiology , Interoception/physiology , Mice , Mice, Knockout , Preoptic Area/cytology , Synapses , TRPM Cation Channels/metabolism
7.
Nature ; 597(7875): 245-249, 2021 09.
Article in English | MEDLINE | ID: mdl-34433964

ABSTRACT

Transient neuromodulation can have long-lasting effects on neural circuits and motivational states1-4. Here we examine the dopaminergic mechanisms that underlie mating drive and its persistence in male mice. Brief investigation of females primes a male's interest to mate for tens of minutes, whereas a single successful mating triggers satiety that gradually recovers over days5. We found that both processes are controlled by specialized anteroventral and preoptic periventricular (AVPV/PVpo) dopamine neurons in the hypothalamus. During the investigation of females, dopamine is transiently released in the medial preoptic area (MPOA)-an area that is critical for mating behaviours. Optogenetic stimulation of AVPV/PVpo dopamine axons in the MPOA recapitulates the priming effect of exposure to a female. Using optical and molecular methods for tracking and manipulating intracellular signalling, we show that this priming effect emerges from the accumulation of mating-related dopamine signals in the MPOA through the accrual of cyclic adenosine monophosphate levels and protein kinase A activity. Dopamine transients in the MPOA are abolished after a successful mating, which is likely to ensure abstinence. Consistent with this idea, the inhibition of AVPV/PVpo dopamine neurons selectively demotivates mating, whereas stimulating these neurons restores the motivation to mate after sexual satiety. We therefore conclude that the accumulation or suppression of signals from specialized dopamine neurons regulates mating behaviours across minutes and days.


Subject(s)
Cyclic AMP/metabolism , Dopamine/metabolism , Dopaminergic Neurons/metabolism , Hypothalamus/cytology , Hypothalamus/metabolism , Sexual Behavior, Animal , Signal Transduction , Animals , Copulation , Cyclic AMP-Dependent Protein Kinases/metabolism , Drive , Female , Male , Mice , Optogenetics , Preoptic Area/cytology , Preoptic Area/metabolism , Satiety Response , Time Factors
8.
Nat Commun ; 12(1): 3545, 2021 06 10.
Article in English | MEDLINE | ID: mdl-34112806

ABSTRACT

Multiplexed fluorescence in situ hybridization techniques have enabled cell-type identification, linking transcriptional heterogeneity with spatial heterogeneity of cells. However, inaccurate cell segmentation reduces the efficacy of cell-type identification and tissue characterization. Here, we present a method called Spot-based Spatial cell-type Analysis by Multidimensional mRNA density estimation (SSAM), a robust cell segmentation-free computational framework for identifying cell-types and tissue domains in 2D and 3D. SSAM is applicable to a variety of in situ transcriptomics techniques and capable of integrating prior knowledge of cell types. We apply SSAM to three mouse brain tissue images: the somatosensory cortex imaged by osmFISH, the hypothalamic preoptic region by MERFISH, and the visual cortex by multiplexed smFISH. Here, we show that SSAM detects regions occupied by known cell types that were previously missed and discovers new cell types.


Subject(s)
Brain/cytology , Computational Biology/methods , Gene Expression Profiling/methods , Image Processing, Computer-Assisted/methods , Imaging, Three-Dimensional/methods , In Situ Hybridization, Fluorescence/methods , Single-Cell Analysis/methods , Algorithms , Animals , Brain/diagnostic imaging , Computer Simulation , Mice , Neurons/cytology , Neurons/metabolism , Preoptic Area/cytology , Preoptic Area/diagnostic imaging , Somatosensory Cortex/cytology , Somatosensory Cortex/diagnostic imaging , Transcriptome/genetics , Visual Cortex/cytology , Visual Cortex/diagnostic imaging
9.
Cell Metab ; 33(7): 1389-1403.e6, 2021 07 06.
Article in English | MEDLINE | ID: mdl-34038711

ABSTRACT

The preoptic area (POA) is a key brain region for regulation of body temperature (Tb), dictating thermogenic, cardiovascular, and behavioral responses that control Tb. Previously characterized POA neuronal populations all reduced Tb when activated. Using mice, we now identify POA neurons expressing bombesin-like receptor 3 (POABRS3) as a population whose activation increased Tb; inversely, acute inhibition of these neurons reduced Tb. POABRS3 neurons that project to either the paraventricular nucleus of the hypothalamus or the dorsomedial hypothalamus increased Tb, heart rate, and blood pressure via the sympathetic nervous system. Long-term inactivation of POABRS3 neurons caused increased Tb variability, overshooting both increases and decreases in Tb set point, with RNA expression profiles suggesting multiple types of POABRS3 neurons. Thus, POABRS3 neuronal populations regulate Tb and heart rate, contribute to cold defense, and fine-tune feedback control of Tb. These findings advance understanding of homeothermy, a defining feature of mammalian biology.


Subject(s)
Body Temperature Regulation , Heart Rate , Neurons/physiology , Preoptic Area/metabolism , Receptors, Bombesin/metabolism , Animals , Body Temperature/genetics , Body Temperature Regulation/genetics , Heart Rate/genetics , Male , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Transgenic , Neurons/cytology , Neurons/metabolism , Preoptic Area/cytology , Receptors, Bombesin/genetics , Signal Transduction/genetics , Sympathetic Nervous System/physiology , Thermogenesis/genetics
10.
Nature ; 593(7857): 108-113, 2021 05.
Article in English | MEDLINE | ID: mdl-33790464

ABSTRACT

Innate vocal sounds such as laughing, screaming or crying convey one's feelings to others. In many species, including humans, scaling the amplitude and duration of vocalizations is essential for effective social communication1-3. In mice, female scent triggers male mice to emit innate courtship ultrasonic vocalizations (USVs)4,5. However, whether mice flexibly scale their vocalizations and how neural circuits are structured to generate flexibility remain largely unknown. Here we identify mouse neurons from the lateral preoptic area (LPOA) that express oestrogen receptor 1 (LPOAESR1 neurons) and, when activated, elicit the complete repertoire of USV syllables emitted during natural courtship. Neural anatomy and functional data reveal a two-step, di-synaptic circuit motif in which primary long-range inhibitory LPOAESR1 neurons relieve a clamp of local periaqueductal grey (PAG) inhibition, enabling excitatory PAG USV-gating neurons to trigger vocalizations. We find that social context shapes a wide range of USV amplitudes and bout durations. This variability is absent when PAG neurons are stimulated directly; PAG-evoked vocalizations are time-locked to neural activity and stereotypically loud. By contrast, increasing the activity of LPOAESR1 neurons scales the amplitude of vocalizations, and delaying the recovery of the inhibition clamp prolongs USV bouts. Thus, the LPOA disinhibition motif contributes to flexible loudness and the duration and persistence of bouts, which are key aspects of effective vocal social communication.


Subject(s)
Hypothalamus/physiology , Vocalization, Animal/physiology , Animals , Courtship , Estrogen Receptor alpha/metabolism , Female , Hypothalamus/cytology , Male , Mice , Mice, Inbred BALB C , Neurons/physiology , Periaqueductal Gray/cytology , Periaqueductal Gray/physiology , Preoptic Area/cytology , Preoptic Area/physiology , Synapses/metabolism , Time Factors , Ultrasonic Waves
11.
Proc Natl Acad Sci U S A ; 118(4)2021 01 26.
Article in English | MEDLINE | ID: mdl-33468645

ABSTRACT

Mutations in the TrkB neurotrophin receptor lead to profound obesity in humans, and expression of TrkB in the dorsomedial hypothalamus (DMH) is critical for maintaining energy homeostasis. However, the functional implications of TrkB-fexpressing neurons in the DMH (DMHTrkB) on energy expenditure are unclear. Additionally, the neurocircuitry underlying the effect of DMHTrkB neurons on energy homeostasis has not been explored. In this study, we show that activation of DMHTrkB neurons leads to a robust increase in adaptive thermogenesis and energy expenditure without altering heart rate or blood pressure, while silencing DMHTrkB neurons impairs thermogenesis. Furthermore, we reveal neuroanatomically and functionally distinct populations of DMHTrkB neurons that regulate food intake or thermogenesis. Activation of DMHTrkB neurons projecting to the raphe pallidus (RPa) stimulates thermogenesis and increased energy expenditure, whereas DMHTrkB neurons that send collaterals to the paraventricular hypothalamus (PVH) and preoptic area (POA) inhibit feeding. Together, our findings provide evidence that DMHTrkB neuronal activity plays an important role in regulating energy expenditure and delineate distinct neurocircuits that underly the separate effects of DMHTrkB neuronal activity on food intake and thermogenesis.


Subject(s)
Appetite Regulation/genetics , Energy Metabolism/genetics , Membrane Glycoproteins/genetics , Paraventricular Hypothalamic Nucleus/metabolism , Preoptic Area/metabolism , Protein-Tyrosine Kinases/genetics , Thermogenesis/genetics , Animals , Eating/genetics , Female , Gene Expression Regulation , Genes, Reporter , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Homeostasis/genetics , Humans , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Male , Membrane Glycoproteins/metabolism , Mice , Mice, Transgenic , Neurons/cytology , Neurons/metabolism , Nucleus Raphe Pallidus/cytology , Nucleus Raphe Pallidus/metabolism , Paraventricular Hypothalamic Nucleus/cytology , Preoptic Area/cytology , Protein-Tyrosine Kinases/metabolism , Signal Transduction , Red Fluorescent Protein
12.
J Reprod Dev ; 67(1): 15-23, 2021 Feb 15.
Article in English | MEDLINE | ID: mdl-33100283

ABSTRACT

Kisspeptin neurons located in the hypothalamic preoptic area (POA) are suggested to be responsible for the induction of the gonadotropin-releasing hormone (GnRH) surge and the following luteinizing hormone (LH) surge to regulate female mammals' ovulation. Accumulating evidence demonstrates that the preovulatory level of estrogen activates the POA kisspeptin neurons (estrogen positive feedback), which in turn induces a GnRH/LH surge. This study aimed to derive a cell line from goat POA kisspeptin neurons as an in vitro model to analyze the estrogen positive feedback mechanism in ruminants. Neuron-derived cell clones obtained by the immortalization of POA tissue from a female Shiba goat fetus were analyzed for the expression of kisspeptin (KISS1) and estrogen receptor α (ESR1) genes using quantitative real-time reverse transcription-polymerase chain reaction and three cell clones were selected as POA kisspeptin neuron cell line candidates. One cell line (GP64) out of the three clones showed significant increase in the KISS1 level by incubation with estradiol for 24 h, indicating that the GP64 cells mimic endogenous goat POA kisspeptin neurons. The GP64 cells showed immunoreactivities for kisspeptin and estrogen receptor α and retained a stable growth rate throughout three passages. Further, intracellular calcium levels in the GP64 cells were increased by the KCl challenge, indicating their neurosecretory ability. In conclusion, we generated a new KISS1-expressing cell line derived from goat POA. The current GP64 cell line could be a useful model to elucidate the estrogen positive feedback mechanism responsible for the GnRH/LH surge generation in ruminants.


Subject(s)
Estradiol/pharmacology , Kisspeptins/genetics , Preoptic Area/cytology , Animals , Cell Line, Transformed , Female , Fetus/cytology , Gene Expression Regulation, Developmental/drug effects , Goats/embryology , Kisspeptins/metabolism , Preoptic Area/embryology , Up-Regulation/drug effects , Up-Regulation/genetics
13.
J Comp Neurol ; 529(5): 987-1003, 2021 04 01.
Article in English | MEDLINE | ID: mdl-32706120

ABSTRACT

Nonapeptides play a crucial role in mediating reproduction, aggression, and parental care across taxa. In fishes, arginine vasotocin (AVT) expression is related to social and/or reproductive status in most male fishes studied to date, and is linked to territorial defense, paternal care, and courtship. Despite a plethora of studies examining AVT in male fishes, relatively little is known about how AVT expression varies with female reproductive state or its role in female social behaviors. We used multiple methods for examining the AVT system in female African cichlid fish Astatotilapia burtoni, including immunohistochemistry for AVT, in situ hybridization for avt-mRNA, and quantitative PCR. Ovulated and mouthbrooding females had similar numbers of parvocellular, magnocellular, and gigantocellular AVT cells in the preoptic area. However, ovulated females had larger magnocellular and gigantocellular cells compared to mouthbrooding females, and gigantocellular AVT cell size correlated with the number of days brooding, such that late-stage brooding females had larger AVT cells than mid-stage brooding females. In addition, we found that ventral hypothalamic cells were more prominent in females compared to males, and were larger in mouthbrooding compared to ovulated females, suggesting a role in maternal care. Together, these data indicate that AVT neurons change across the reproductive cycle in female fishes, similar to that seen in males. These data on females complement studies in male A. burtoni, providing a comprehensive picture of the regulation and potential function of different AVT cell types in reproduction and social behaviors in both sexes.


Subject(s)
Cichlids/anatomy & histology , Preoptic Area/cytology , Reproduction/physiology , Vasotocin/analysis , Animals , Cell Count , Cichlids/physiology , Female , Hypothalamus/cytology , Ovulation/physiology , Preoptic Area/physiology , RNA, Messenger/biosynthesis , Reverse Transcriptase Polymerase Chain Reaction
14.
Neuroendocrinology ; 111(3): 249-262, 2021.
Article in English | MEDLINE | ID: mdl-32299085

ABSTRACT

BACKGROUND: Kisspeptin (KP) neurons in the rostral periventricular region of the 3rd ventricle (RP3V) of female rodents mediate positive estrogen feedback to gonadotropin-releasing hormone neurons and, thus, play a fundamental role in the mid-cycle luteinizing hormone (LH) surge. The RP3V is sexually dimorphic, and male rodents with lower KP cell numbers are unable to mount estrogen-induced LH surges. OBJECTIVE: To find and characterize the homologous KP neurons in the human brain, we studied formalin-fixed post-mortem hypothalami. METHODS: Immunohistochemical techniques were used. RESULTS: The distribution of KP neurons in the rostral hypothalamus overlapped with distinct subdivisions of the paraventricular nucleus. The cell numbers decreased after menopause, indicating that estrogens positively regulate KP gene expression in the rostral hypothalamus in humans, similarly to several other species. Young adult women and men had similar cell numbers, as opposed to rodents reported to have more KP neurons in the RP3V of females. Human KP neurons differed from the homologous rodent cells as well, in that they were devoid of enkephalins, galanin and tyrosine hydroxylase. Further, they did not contain known KP neuron markers of the human infundibular nucleus, neurokinin B, substance P and cocaine- and amphetamine-regulated transcript, while they received afferent input from these KP neurons. CONCLUSIONS: The identification and positive estrogenic regulation of KP neurons in the human rostral hypothalamus challenge the long-held view that positive estrogen feedback may be restricted to the mediobasal part of the hypothalamus in primates and point to the need of further anatomical, molecular and functional studies of rostral hypothalamic KP neurons.


Subject(s)
Estrogens/metabolism , Gonadotropin-Releasing Hormone/metabolism , Kisspeptins/metabolism , Menopause/metabolism , Neurons/metabolism , Paraventricular Hypothalamic Nucleus/metabolism , Preoptic Area/metabolism , Adolescent , Adult , Aged , Aged, 80 and over , Autopsy , Female , Humans , Immunohistochemistry , Male , Microscopy, Confocal , Middle Aged , Paraventricular Hypothalamic Nucleus/cytology , Preoptic Area/cytology , Young Adult
15.
Endocrinology ; 162(1)2021 01 01.
Article in English | MEDLINE | ID: mdl-33057587

ABSTRACT

The neural mechanisms generating pulsatile GnRH release from the median eminence (ME) remain unclear. Studies undertaken in the mouse demonstrate that GnRH neurons extend projections to the ME that have properties of both dendrites and axons, termed "dendrons," and that the kisspeptin neuron pulse generator targets these distal dendrons to drive pulsatile GnRH secretion. It presently remains unknown whether the GnRH neuron dendron exists in other species. We report here the generation of a knock-in Gnrh1-Ires-Cre rat line with near-perfect targeting of Cre recombinase to the GnRH neuronal phenotype. More than 90% of adult male and female GnRH neurons express Cre with no ectopic expression. Adeno-associated viruses were used in adult female Gnrh1-Ires-Cre rats to target mCherry or GCAMP6 to rostral preoptic area GnRH neurons. The mCherry tracer revealed the known unipolar and bipolar morphology of GnRH neurons and their principal projection pathways to the external zone of the ME. Synaptophysin-labeling of presynaptic nerve terminals revealed that GnRH neuron distal projections received numerous close appositions as they passed through the arcuate nucleus and into the median eminence. Confocal GCaMP6 imaging in acute horizontal brain slices demonstrated that GnRH neuron distal projections lateral to the median eminence were activated by kisspeptin. These studies indicate the presence of a dendron-like arrangement in the rat with GnRH neuron distal projections receiving synaptic input and responding to kisspeptin.


Subject(s)
Gonadotropin-Releasing Hormone/metabolism , Kisspeptins/pharmacology , Neurons/metabolism , Animals , Female , Gene Expression Regulation/physiology , Integrases , Luminescent Proteins , Preoptic Area/cytology , Preoptic Area/metabolism , Rats , Rats, Transgenic , Red Fluorescent Protein
16.
Curr Biol ; 31(2): 394-405.e4, 2021 01 25.
Article in English | MEDLINE | ID: mdl-33188746

ABSTRACT

Endogenous sleep and general anesthesia are distinct states that share similar traits. Of particular interest to neuroscience is the loss of consciousness that accompanies both states. Multiple lines of evidence demonstrate that general anesthetics can co-opt the neural circuits regulating arousal to produce unconsciousness. However, controversy remains as to whether the neural circuits and, more specifically, the same neurons shaping sleep and wakefulness actually do influence the anesthetic state in vivo. Hypothalamic preoptic area (POA) neurons are intimately involved in modulating spontaneous and anesthetic-induced changes in arousal. Nevertheless, recent work suggests that POA GABAergic or glutamatergic neurons capable of regulating endogenous sleep fail to influence the onset or dissipation of anesthesia. We hypothesized that the POA's broad neuronal diversity could mask convergent roles of a subset of neurons in regulating both arousal and anesthesia. Contrary to a previously published report, we show that chemogenetic activation of POA Tac1 neurons obliterates both non-rapid eye movement (NREM) and rapid eye movement (REM) sleep, strongly consolidating the waking state for hours, even during a period of elevated sleep drive. Moreover, chemogenetic activation of Tac1 POA neurons stabilizes the wake state against both isoflurane- and sevoflurane-induced unconsciousness. Tac1-activated mice display a partial resistance to entering isoflurane anesthesia and a more pronounced ability to exit both isoflurane- and sevoflurane-induced unconscious states. We conclude that POA Tac1 neurons can potently reinforce arousal both against endogenous and drug-induced unconscious states. POA Tac1 neurons thus add causal support for the involvement of arousal-regulating systems in the state of general anesthesia.


Subject(s)
Anesthesia, Inhalation , Neurons/metabolism , Preoptic Area/physiology , Sleep/physiology , Wakefulness/physiology , Administration, Inhalation , Animals , Arousal/physiology , Electroencephalography , Female , Isoflurane/administration & dosage , Male , Mice , Mice, Transgenic , Neurons/drug effects , Preoptic Area/cytology , Preoptic Area/drug effects , Sevoflurane/administration & dosage , Sleep/drug effects , Stereotaxic Techniques , Tachykinins/genetics , Tachykinins/metabolism , Unconsciousness/chemically induced , Wakefulness/drug effects
17.
Horm Behav ; 126: 104870, 2020 11.
Article in English | MEDLINE | ID: mdl-33002455

ABSTRACT

Galanin is a conserved neuropeptide involved in parental care and feeding. While galanin is known to mediate parental care and infanticide in rodents, its role in parental care and feeding behaviors in other taxa, particularly fishes, remains poorly understood. Mouthbrooding is an extreme form of parental care common in fishes in which caregivers carry offspring in their buccal cavity for the duration of development, resulting in obligatory starvation. In the cichlid fish Astatotilapia burtoni, females brood their young for ~2 wks and perform maternal care after release by collecting them into their mouth when threatened. However, females will cannibalize their brood after ~5 days. To examine the role of gal in feeding and maternal care, we collected mouthbrooding, fed, and starved females, as well as those displaying post-release maternal care and infanticide behaviors. Activation of gal neurons in the preoptic area (POA) was associated with parental care, providing the first link between gal and offspring-promoting behaviors in fishes. In contrast, activation of gal neurons in the lateral tuberal nucleus (NLT), the Arcuate homolog, was associated with feeding and infanticide. Overall, these data suggest gal is functionally conserved across vertebrate taxa with POA gal neurons promoting maternal care and Arc/NLT gal neurons promoting feeding.


Subject(s)
Behavior, Animal/physiology , Cichlids/physiology , Feeding Behavior/physiology , Galanin/metabolism , Nesting Behavior/physiology , Neurons/physiology , Animals , Female , Male , Neurons/metabolism , Preoptic Area/cytology , Preoptic Area/metabolism , Preoptic Area/physiology
18.
Curr Biol ; 30(23): 4606-4618.e4, 2020 12 07.
Article in English | MEDLINE | ID: mdl-33007241

ABSTRACT

Dopamine (DA)-producing neurons are critically involved in the production of motor behaviors in multiple circuits that are conserved from basal vertebrates to mammals. Although there is increasing evidence that DA neurons in the hypothalamus play a locomotor role, their precise contributions to behavior and the circuit mechanisms by which they are achieved remain unclear. Here, we demonstrate that tyrosine-hydroxylase-2-expressing (th2+) DA neurons in the zebrafish hypothalamus fire phasic bursts of activity to acutely promote swimming and modulate audiomotor behaviors on fast timescales. Their anatomy and physiology reveal two distinct functional DA modules within the hypothalamus. The first comprises an interconnected set of cerebrospinal-fluid-contacting DA nuclei surrounding the 3rd ventricle, which lack distal projections outside of the hypothalamus and influence locomotion through unknown means. The second includes neurons in the preoptic nucleus, which send long-range projections to targets throughout the brain, including the mid- and hindbrain, where they activate premotor circuits involved in swimming and sensorimotor integration. These data suggest a broad regulation of motor behavior by DA neurons within multiple hypothalamic nuclei and elucidate a novel functional mechanism for the preoptic DA neurons in the initiation of movement.


Subject(s)
Brain Stem/physiology , Dopaminergic Neurons/metabolism , Preoptic Area/physiology , Swimming/physiology , Animals , Brain Stem/cytology , Evoked Potentials, Motor/physiology , Genes, Reporter/genetics , Green Fluorescent Proteins/genetics , Intravital Microscopy/methods , Male , Microscopy, Fluorescence, Multiphoton , Models, Animal , Nerve Net/physiology , Optogenetics , Preoptic Area/cytology , Tyrosine 3-Monooxygenase/genetics , Tyrosine 3-Monooxygenase/metabolism , Video Recording , Zebrafish , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
19.
J Neurosci ; 40(47): 8994-9011, 2020 11 18.
Article in English | MEDLINE | ID: mdl-33067363

ABSTRACT

Although ventrolateral preoptic (VLPO) nucleus is regarded as a center for sleep promotion, the exact mechanisms underlying the sleep regulation are unknown. Here, we used optogenetic tools to identify the key roles of VLPO astrocytes in sleep promotion. Optogenetic stimulation of VLPO astrocytes increased sleep duration in the active phase in naturally sleep-waking adult male rats (n = 6); it also increased the extracellular ATP concentration (n = 3) and c-Fos expression (n = 3-4) in neurons within the VLPO. In vivo microdialysis analyses revealed an increase in the activity of VLPO astrocytes and ATP levels during sleep states (n = 4). Moreover, metabolic inhibition of VLPO astrocytes reduced ATP levels (n = 4) and diminished sleep duration (n = 4). We further show that tissue-nonspecific alkaline phosphatase (TNAP), an ATP-degrading enzyme, plays a key role in mediating the somnogenic effects of ATP released from astrocytes (n = 5). An appropriate sample size for all experiments was based on statistical power calculations. Our results, taken together, indicate that astrocyte-derived ATP may be hydrolyzed into adenosine by TNAP, which may in turn act on VLPO neurons to promote sleep.SIGNIFICANCE STATEMENT Glia have recently been at the forefront of neuroscience research. Emerging evidence illustrates that astrocytes, the most abundant glial cell type, are the functional determinants for fates of neurons and other glial cells in the central nervous system. In this study, we newly identified the pivotal role of hypothalamic ventrolateral preoptic (VLPO) astrocytes in the sleep regulation, and provide novel insights into the mechanisms underlying the astrocyte-mediated sleep regulation.


Subject(s)
Astrocytes/physiology , Preoptic Area/physiology , Sleep/physiology , Adenosine/metabolism , Adenosine Triphosphate/metabolism , Alkaline Phosphatase/biosynthesis , Alkaline Phosphatase/genetics , Animals , Cytokines/metabolism , Male , Membrane Proteins/biosynthesis , Membrane Proteins/genetics , Neurotransmitter Agents/metabolism , Optogenetics , Patch-Clamp Techniques , Photic Stimulation , Preoptic Area/cytology , Proto-Oncogene Proteins c-fos/biosynthesis , Proto-Oncogene Proteins c-fos/genetics , Rats , Rats, Sprague-Dawley
20.
Endocrinology ; 161(11)2020 11 01.
Article in English | MEDLINE | ID: mdl-33095238

ABSTRACT

Polycystic ovary syndrome (PCOS) is the most common form of infertility in women. The causes of PCOS are not yet understood and both genetics and early-life exposure have been considered as candidates. With regard to the latter, circulating androgens are elevated in mid-late gestation in women with PCOS, potentially exposing offspring to elevated androgens in utero; daughters of women with PCOS are at increased risk for developing this disorder. Consistent with these clinical observations, prenatal androgenization (PNA) of several species recapitulates many phenotypes observed in PCOS. There is increasing evidence that symptoms associated with PCOS, including elevated luteinizing hormone (LH) (and presumably gonadotropin-releasing hormone [GnRH]) pulse frequency emerge during the pubertal transition. We utilized translating ribosome affinity purification coupled with ribonucleic acid (RNA) sequencing to examine GnRH neuron messenger RNAs from prepubertal (3 weeks) and adult female control and PNA mice. Prominent in GnRH neurons were transcripts associated with protein synthesis and cellular energetics, in particular oxidative phosphorylation. The GnRH neuron transcript profile was affected more by the transition from prepuberty to adulthood than by PNA treatment; however, PNA did change the developmental trajectory of GnRH neurons. This included families of transcripts related to both protein synthesis and oxidative phosphorylation, which were more prevalent in adults than in prepubertal mice but were blunted in PNA adults. These findings suggest that prenatal androgen exposure can program alterations in the translatome of GnRH neurons, providing a mechanism independent of changes in the genetic code for altered expression.


Subject(s)
Neurogenesis/drug effects , Neurons/drug effects , Prenatal Exposure Delayed Effects , Preoptic Area/drug effects , Virilism , Androgens/adverse effects , Animals , Female , Gene Expression Regulation, Developmental/drug effects , Gonadotropin-Releasing Hormone/metabolism , Male , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Transgenic , Neurogenesis/genetics , Neurons/metabolism , Neurons/physiology , Pregnancy , Prenatal Exposure Delayed Effects/chemically induced , Prenatal Exposure Delayed Effects/genetics , Prenatal Exposure Delayed Effects/physiopathology , Preoptic Area/cytology , Preoptic Area/growth & development , Preoptic Area/metabolism , RNA, Messenger/drug effects , RNA, Messenger/genetics , RNA, Messenger/metabolism , Sex Factors , Virilism/chemically induced , Virilism/genetics , Virilism/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...