Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.171
Filter
1.
Transpl Int ; 37: 12298, 2024.
Article in English | MEDLINE | ID: mdl-38741700

ABSTRACT

Primary graft dysfunction (PGD) remains a challenge for lung transplantation (LTx) recipients as a leading cause of poor early outcomes. New methods are needed for more detailed monitoring and understanding of the pathophysiology of PGD. The measurement of particle flow rate (PFR) in exhaled breath is a novel tool to monitor and understand the disease at the proteomic level. In total, 22 recipient pigs underwent orthotopic left LTx and were evaluated for PGD on postoperative day 3. Exhaled breath particles (EBPs) were evaluated by mass spectrometry and the proteome was compared to tissue biopsies and bronchoalveolar lavage fluid (BALF). Findings were confirmed in EBPs from 11 human transplant recipients. Recipients with PGD had significantly higher PFR [686.4 (449.7-8,824.0) particles per minute (ppm)] compared to recipients without PGD [116.6 (79.7-307.4) ppm, p = 0.0005]. Porcine and human EBP proteins recapitulated proteins found in the BAL, demonstrating its utility instead of more invasive techniques. Furthermore, adherens and tight junction proteins were underexpressed in PGD tissue. Histological and proteomic analysis found significant changes to the alveolar-capillary barrier explaining the high PFR in PGD. Exhaled breath measurement is proposed as a rapid and non-invasive bedside measurement of PGD.


Subject(s)
Breath Tests , Bronchoalveolar Lavage Fluid , Lung Transplantation , Primary Graft Dysfunction , Proteomics , Animals , Lung Transplantation/adverse effects , Proteomics/methods , Primary Graft Dysfunction/metabolism , Primary Graft Dysfunction/etiology , Swine , Humans , Breath Tests/methods , Bronchoalveolar Lavage Fluid/chemistry , Female , Male , Exhalation
2.
BMJ Open Respir Res ; 11(1)2024 May 09.
Article in English | MEDLINE | ID: mdl-38724453

ABSTRACT

BACKGROUND: Long-term survival after lung transplantation is limited compared with other organ transplants. The main cause is development of progressive immune-mediated damage to the lung allograft. This damage, which can develop via multiple immune pathways, is captured under the umbrella term chronic lung allograft dysfunction (CLAD). Despite the availability of powerful immunosuppressive drugs, there are presently no treatments proven to reverse or reliably halt the loss of lung function caused by CLAD. The aim of the E-CLAD UK trial is to determine whether the addition of immunomodulatory therapy, in the form of extracorporeal photopheresis (ECP), to standard care is more efficacious at stabilising lung function in CLAD compared with standard care alone. METHODS AND ANALYSIS: E-CLAD UK is a Phase II clinical trial of an investigational medicinal product (Methoxsalen) delivered to a buffy coat prepared via an enclosed ECP circuit. Target recruitment is 90 bilateral lung transplant patients identified as having CLAD and being treated at one of the five UK adult lung transplant centres. Participants will be randomised 1:1 to intervention plus standard of care, or standard of care alone. Intervention will comprise nine ECP cycles spread over 20 weeks, each course involving two treatments of ECP on consecutive days. All participants will be followed up for a period of 24 weeks.The primary outcome is lung function stabilisation derived from change in forced expiratory volume in one second and forced vital capacity at 12 and 24 weeks compared with baseline at study entry. Other parameters include change in exercise capacity, health-related quality of life and safety. A mechanistic study will seek to identify molecular or cellular markers linked to treatment response and qualitative interviews will explore patient experiences of CLAD and the ECP treatment.A patient and public advisory group is integral to the trial from design to implementation, developing material to support the consent process and interview materials. ETHICS AND DISSEMINATION: The East Midlands-Derby Research Ethics Committee has provided ethical approval (REC 22/EM/0218). Dissemination will be via publications, patient-friendly summaries and presentation at scientific meetings. TRIAL REGISTRATION NUMBER: EudraCT number 2022-002659-20; ISRCTN 10615985.


Subject(s)
Lung Transplantation , Photopheresis , Humans , Photopheresis/methods , Prospective Studies , United Kingdom , Methoxsalen/therapeutic use , Multicenter Studies as Topic , Randomized Controlled Trials as Topic , Quality of Life , Adult , Male , Female , Primary Graft Dysfunction/therapy , Allografts , Treatment Outcome , Lung/physiopathology , Graft Rejection , Middle Aged
3.
Circ Heart Fail ; 17(5): e010904, 2024 May.
Article in English | MEDLINE | ID: mdl-38602105

ABSTRACT

BACKGROUND: Heart transplant (HT) in recipients with left ventricular assist devices (LVADs) is associated with poor early post-HT outcomes, including primary graft dysfunction (PGD). As complicated heart explants in recipients with LVADs may produce longer ischemic times, innovations in donor heart preservation may yield improved post-HT outcomes. The SherpaPak Cardiac Transport System is an organ preservation technology that maintains donor heart temperatures between 4 °C and 8 °C, which may minimize ischemic and cold-induced graft injuries. This analysis sought to identify whether the use of SherpaPak versus traditional cold storage was associated with differential outcomes among patients with durable LVAD undergoing HT. METHODS: Global Utilization and Registry Database for Improved Heart Preservation-Heart (NCT04141605) is a multicenter registry assessing post-HT outcomes comparing 2 methods of donor heart preservation: SherpaPak versus traditional cold storage. A retrospective review of all patients with durable LVAD who underwent HT was performed. Outcomes assessed included rates of PGD, post-HT mechanical circulatory support use, and 30-day and 1-year survival. RESULTS: SherpaPak (n=149) and traditional cold storage (n=178) patients had similar baseline characteristics. SherpaPak use was associated with reduced PGD (adjusted odds ratio, 0.56 [95% CI, 0.32-0.99]; P=0.045) and severe PGD (adjusted odds ratio, 0.31 [95% CI, 0.13-0.75]; P=0.009), despite an increased total ischemic time in the SherpaPak group. Propensity matched analysis also noted a trend toward reduced intensive care unit (SherpaPak 7.5±6.4 days versus traditional cold storage 11.3±18.8 days; P=0.09) and hospital (SherpaPak 20.5±11.9 days versus traditional cold storage 28.7±37.0 days; P=0.06) lengths of stay. The 30-day and 1-year survival was similar between groups. CONCLUSIONS: SherpaPak use was associated with improved early post-HT outcomes among patients with LVAD undergoing HT. This innovation in preservation technology may be an option for HT candidates at increased risk for PGD. REGISTRATION: URL: https://www.clinicaltrials.gov; Unique identifier: NCT04141605.


Subject(s)
Heart Failure , Heart Transplantation , Heart-Assist Devices , Organ Preservation , Registries , Humans , Male , Female , Middle Aged , Organ Preservation/methods , Retrospective Studies , Heart Failure/therapy , Heart Failure/physiopathology , Heart Failure/surgery , Heart Failure/mortality , Treatment Outcome , Adult , Aged , Primary Graft Dysfunction , Time Factors
4.
Transpl Int ; 37: 12380, 2024.
Article in English | MEDLINE | ID: mdl-38463463

ABSTRACT

Donor organ biomarkers with sufficient predictive value in liver transplantation (LT) are lacking. We herein evaluate liver viability and mitochondrial bioenergetics for their predictive capacity towards the outcome in LT. We enrolled 43 consecutive patients undergoing LT. Liver biopsy samples taken upon arrival after static cold storage were assessed by histology, real-time confocal imaging analysis (RTCA), and high-resolution respirometry (HRR) for mitochondrial respiration of tissue homogenates. Early allograft dysfunction (EAD) served as primary endpoint. HRR data were analysed with a focus on the efficacy of ATP production or P-L control efficiency, calculated as 1-L/P from the capacity of oxidative phosphorylation P and non-phosphorylating respiration L. Twenty-two recipients experienced EAD. Pre-transplant histology was not predictive of EAD. The mean RTCA score was significantly lower in the EAD cohort (-0.75 ± 2.27) compared to the IF cohort (0.70 ± 2.08; p = 0.01), indicating decreased cell viability. P-L control efficiency was predictive of EAD (0.76 ± 0.06 in IF vs. 0.70 ± 0.08 in EAD-livers; p = 0.02) and correlated with the RTCA score. Both RTCA and P-L control efficiency in biopsy samples taken during cold storage have predictive capacity towards the outcome in LT. Therefore, RTCA and HRR should be considered for risk stratification, viability assessment, and bioenergetic testing in liver transplantation.


Subject(s)
Liver Transplantation , Primary Graft Dysfunction , Humans , Liver Transplantation/adverse effects , Graft Survival , Risk Factors , Liver/pathology , Energy Metabolism , Allografts/pathology , Primary Graft Dysfunction/etiology
5.
JAMA Netw Open ; 7(3): e241828, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38466306

ABSTRACT

Importance: The use of ex vivo normothermic organ perfusion has enabled the use of deceased after circulatory death (DCD) donors for heart transplants. However, compared with conventional brain death donation, DCD heart transplantation performed with ex vivo organ perfusion involves an additional period of warm and cold ischemia, exposing the allograft to multiple bouts of ischemia reperfusion injury and may contribute to the high rates of extracorporeal membrane oxygenation usage after DCD heart transplantation. Objective: To assess whether the beating heart method of DCD heart transplantation is safe and whether it has an acceptable rate of extracorporeal membrane oxygenation use postoperatively. Design, Setting, and Participants: This case series includes 10 patients with end-stage heart failure undergoing DCD heart transplantation at a single academic medical center from October 1, 2022, to August 3, 2023. Data were analyzed from October 2022 to August 2023. Interventions: Using a beating heart method of implantation of the donor allograft. Main Outcomes and Measures: The main outcome was primary graft dysfunction necessitating postoperative initiation of mechanical circulatory support. Survival and initiation of mechanical circulatory support were secondary outcomes. Results: In this case series, 10 consecutive patients underwent DCD heart transplantation via the beating heart method. Ten of 10 recipients were male (100%), the mean (SD) age was 51.2 (13.8) years, and 7 (70%) had idiopathic dilated cardiomyopathy. Ten patients (100%) survived, and 0 patients had initiation of extracorporeal membrane oxygenation postoperatively. No other mechanical circulatory support, including intra-aortic balloon pump, was initiated postoperatively. Graft survival was 100% (10 of 10 patients), and, at the time of publication, no patients have been listed for retransplantation. Conclusions and Relevance: In this study of 10 patients undergoing heart transplantation, the beating heart implantation method for DCD heart transplantation was safe and may mitigate ischemia reperfusion injury, which may lead to lower rates of primary graft dysfunction necessitating extracorporeal membrane oxygenation. These results are relevant to institutions using DCD donors for heart transplantation.


Subject(s)
Cardiovascular System , Heart Transplantation , Primary Graft Dysfunction , Humans , Male , Middle Aged , Female , Heart , Tissue Donors
6.
Heart Lung Circ ; 33(4): 524-532, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38429191

ABSTRACT

BACKGROUND & AIM: Pulmonary hypertension (PH) secondary to lung disease (Group-3 PH) is the second leading cause of PH. The role of PH as a risk factor for primary graft dysfunction (PGD) following lung transplant (LT) is controversial. OBJECTIVE: To assess the impact that the new definition of PH had on the prevalence of PH in patients with advanced lung disease-candidate for LT, and its association with the occurrence of PGD. METHOD: A retrospective study was performed in all patients undergoing cardiac catheterisation referred for consideration as candidates to LT in a centre between 1 January 2017 and 31 December 2022. The baseline and haemodynamic characteristics of patients were analysed, along with the occurrence of PGD and post-transplant course in those who ultimately underwent transplantation. RESULTS: A total of 396 patients were included. Based on the new 2022 European Society of Cardiology/European Respiratory Society definitions, as many as 70.7% of patients met PH criteria. Since the introduction of the 2022 definition, a significant reduction was observed in the frequency of severe Group-3 PH (41.1% vs 10.3%; p<0.001), with respect to the 2015 definition. As many as 236 patients underwent transplantation. None of the variables associated with PH was identified as a risk factor for PGD. CONCLUSION: The new classification did not have any impact on the prevalence of PGD after transplantation. These results exclude that any significant differences exist in the baseline characteristics or post-transplant course of patients with Group-3 PH vs unclassified PH.


Subject(s)
Hypertension, Pulmonary , Lung Transplantation , Primary Graft Dysfunction , Humans , Female , Male , Retrospective Studies , Primary Graft Dysfunction/epidemiology , Primary Graft Dysfunction/etiology , Primary Graft Dysfunction/diagnosis , Hypertension, Pulmonary/epidemiology , Hypertension, Pulmonary/etiology , Hypertension, Pulmonary/physiopathology , Lung Transplantation/adverse effects , Middle Aged , Prevalence , Risk Factors , Follow-Up Studies , Cardiac Catheterization , Adult , Transplant Recipients/statistics & numerical data
8.
Curr Opin Pulm Med ; 30(4): 377-381, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38305383

ABSTRACT

PURPOSE OF REVIEW: Chronic lung allograft dysfunction (CLAD) remains a life-threatening complication following lung transplantation. Different CLAD phenotypes have recently been defined, based on the combination of pulmonary function testing and chest computed tomography (CT) scanning and spurred renewed interests in differential diagnosis, risk factors and management of CLAD. RECENT FINDINGS: Given their crucial importance in the differential diagnosis, we will discuss the latest development in assessing the pulmonary function and chest CT scan, but also their limitations in proper CLAD phenotyping, especially with regards to patients with baseline allograft dysfunction. Since no definitive treatment exists, it remains important to timely identify clinical risk factors, but also to assess the presence of specific patterns or biomarkers in tissue or in broncho alveolar lavage in relation to CLAD (phenotypes). We will provide a comprehensive overview of the latest advances in risk factors and biomarker research in CLAD. Lastly, we will also review novel preventive and curative treatment strategies for CLAD. SUMMARY: Although this knowledge has significantly advanced the field of lung transplantation, more research is warranted because CLAD remains a life-threatening complication for all lung transplant recipients.


Subject(s)
Lung Transplantation , Respiratory Function Tests , Tomography, X-Ray Computed , Humans , Lung Transplantation/adverse effects , Risk Factors , Graft Rejection/diagnosis , Allografts , Biomarkers/metabolism , Biomarkers/analysis , Chronic Disease , Primary Graft Dysfunction/diagnosis , Primary Graft Dysfunction/therapy , Primary Graft Dysfunction/etiology , Primary Graft Dysfunction/physiopathology , Diagnosis, Differential , Lung/physiopathology , Lung/diagnostic imaging
9.
Front Immunol ; 15: 1341675, 2024.
Article in English | MEDLINE | ID: mdl-38380332

ABSTRACT

Primary Graft Dysfunction (PGD) is a major cause of both short-term and long-term morbidity and mortality following lung transplantation. Various donor, recipient, and technical risk factors have been previously identified as being associated with the development of PGD. Here, we present a comprehensive review of the current literature as it pertains to PGD following lung transplantation, as well as discussing current strategies to mitigate PGD and future directions. We will pay special attention to recent advances in lung transplantation such as ex-vivo lung perfusion, thoracoabdominal normothermic regional perfusion, and up-to-date literature published in the interim since the 2016 ISHLT consensus statement on PGD and the COVID-19 pandemic.


Subject(s)
Lung Transplantation , Primary Graft Dysfunction , Humans , Primary Graft Dysfunction/etiology , Pandemics , Lung Transplantation/adverse effects , Lung , Risk Factors
10.
J Heart Lung Transplant ; 43(6): 973-982, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38211836

ABSTRACT

BACKGROUND: Aspiration is a known risk factor for adverse outcomes post-lung transplantation. Airway bile acids are the gold-standard biomarker of aspiration; however, they are released into the duodenum and likely reflect concurrent gastrointestinal dysmotility. Previous studies investigating total airway pepsin have found conflicting results on its relationship with adverse outcomes post-lung transplantation. These studies measured total pepsin and pepsinogen in the airways. Certain pepsinogens are constitutively expressed in the lungs, while others, such as pepsinogen A4 (PGA4), are not. We sought to evaluate the utility of measuring airway PGA4 as a biomarker of aspiration and predictor of adverse outcomes in lung transplant recipients (LTRs) early post-transplant. METHODS: Expression of PGA4 was compared to other pepsinogens in lung tissue. Total pepsin and PGA4 were measured in large airway bronchial washings and compared to preexisting markers of aspiration. Two independent cohorts of LTRs were used to assess the relationship between airway PGA4 and chronic lung allograft dysfunction (CLAD). Changes to airway PGA4 after antireflux surgery were assessed in a third cohort of LTRs. RESULTS: PGA4 was expressed in healthy human stomach but not lung. Airway PGA4, but not total pepsin, was associated with aspiration. Airway PGA4 was associated with an increased risk of CLAD in two independent cohorts of LTRs. Antireflux surgery was associated with reduced airway PGA4. CONCLUSIONS: Airway PGA4 is a marker of aspiration that predicts CLAD in LTRs. Measuring PGA4 at surveillance bronchoscopies can help triage high-risk LTRs for anti-reflux surgery.


Subject(s)
Allografts , Biomarkers , Lung Transplantation , Humans , Lung Transplantation/adverse effects , Male , Female , Middle Aged , Biomarkers/metabolism , Respiratory Aspiration/diagnosis , Respiratory Aspiration/etiology , Respiratory Aspiration/metabolism , Pepsinogen C/metabolism , Pepsinogen C/blood , Adult , Primary Graft Dysfunction/diagnosis , Primary Graft Dysfunction/metabolism , Primary Graft Dysfunction/etiology , Chronic Disease , Lung/metabolism , Lung/physiopathology , Postoperative Complications/diagnosis , Predictive Value of Tests
11.
Transplantation ; 108(6): 1460-1465, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38291576

ABSTRACT

BACKGROUND: Acute exacerbations of idiopathic pulmonary fibrosis (AE-IPF) are acute, significant respiratory deteriorations in patients with IPF and can lead to increased morbidity and mortality. It remains unclear how AE-IPF impacts lung transplant (LTX) outcomes. METHODS: All adult patients who were listed for LTX between July 2005 and October 2020 at the Loyola University Medical Center with a diagnosis of IPF were included. Pretransplant characteristics and posttransplant outcomes were gathered via retrospective chart review. The primary outcome was short- and long-term survival for patients transplanted during stable IPF versus those with AE-IPF. RESULTS: One hundred fifty-nine patients were included in this study, 17.6% of whom were transplanted during AE-IPF. AE-IPF patients were more likely to have higher oxygen needs pretransplant, have higher lung allocation score, and were more likely to be intubated or be on extracorporeal membrane oxygenation as compared with stable IPF patients. Survival by AE status at transplant did not differ at 90 d or 1 y posttransplantation. There were also no significant differences in rates of severe primary graft dysfunction or acute rejection within 1 y. CONCLUSIONS: Patients with AE-IPF were more likely to have higher oxygenation requirements and higher lung allocation score at the time of LTX than those with stable IPF. Despite this, there were no differences in survival at 90 d, 1 y, or 3 y, or differences in incidence of severe primary graft dysfunction or acute cellular rejection. Transplantation of patients with AE-IPF has clinical outcomes comparable with transplantation of patients with stable IPF. This contrasts with previous studies examining LTX in patients with AE-IPF.


Subject(s)
Idiopathic Pulmonary Fibrosis , Lung Transplantation , Humans , Lung Transplantation/adverse effects , Lung Transplantation/mortality , Idiopathic Pulmonary Fibrosis/surgery , Idiopathic Pulmonary Fibrosis/mortality , Male , Female , Retrospective Studies , Middle Aged , Aged , Treatment Outcome , Disease Progression , Graft Rejection , Risk Factors , Extracorporeal Membrane Oxygenation , Time Factors , Primary Graft Dysfunction/etiology , Primary Graft Dysfunction/mortality , Primary Graft Dysfunction/diagnosis
12.
J Surg Res ; 296: 47-55, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38219506

ABSTRACT

INTRODUCTION: Primary graft dysfunction (PGD) is a known risk factor for early mortality following lung transplant (LT). However, the outcomes of patients who achieve long-term survival following index hospitalization are unknown. We aimed to determine the long-term association of PGD grade 3 (PGD3) in patients without in-hospital mortality. METHODS: LT recipients were identified from the United Network for Organ Sharing Database. Patients were stratified based on the grade of PGD at 72 h (No PGD, Grade 1/2 or Grade 3). Groups were assessed with comparative statistics. Long-term survival was evaluated using Kaplan-Meier methods and a multivariable shared frailty model including recipient, donor, and transplant characteristics. RESULTS: The PGD3 group had significantly increased length of stay, dialysis, and treated rejection post-transplant (P < 0.001). Unadjusted survival analysis revealed a significant difference in long-term survival (P < 0.001) between groups; however, following adjustment, PGD3 was not independently associated with long-term survival (hazard ratio: 0.972; 95% confidence interval: 0.862-1.096). Increased mortality was significantly associated with increased recipient age and treated rejection. Decreased mortality was significantly associated with no donor diabetes, bilateral LT as compared to single LT, transplant in 2015-2016 and 2017-2018, and no post-transplant dialysis. CONCLUSIONS: While PGD3 remains a challenge post LT, PGD3 at 72 h is not independently associated with decreased long-term survival, while complications such as dialysis and rejection are, in patients who survive index hospitalization. Transplant providers should be aggressive in preventing further complications in recipients with severe PGD to minimize the negative association on long-term survival.


Subject(s)
Lung Transplantation , Primary Graft Dysfunction , Humans , Primary Graft Dysfunction/epidemiology , Primary Graft Dysfunction/etiology , Lung Transplantation/adverse effects , Lung Transplantation/methods , Risk Factors , Survival Analysis , Tissue Donors , Retrospective Studies , Graft Survival
13.
Ann Thorac Surg ; 117(2): 413-421, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37031770

ABSTRACT

BACKGROUND: There is no consensus on the optimal allograft sizing strategy for lung transplantation in restrictive lung disease. Current methods that are based on predicted total lung capacity (pTLC) ratios do not account for the diminutive recipient chest size. The study investigators hypothesized that a new sizing ratio incorporating preoperative recipient computed tomographic lung volumes (CTVol) would be associated with postoperative outcomes. METHODS: A retrospective single-institution study was conducted of adults undergoing primary bilateral lung transplantation between January 2016 and July 2020 for restrictive lung disease. CTVol was computed for recipients by using advanced segmentation software. Two sizing ratios were calculated: pTLC ratio (pTLCdonor/pTLCrecipient) and a new volumetric ratio (pTLCdonor/CTVolrecipient). Patients were divided into reference, oversized, and undersized groups on the basis of ratio quintiles, and multivariable models were used to assess the effect of the ratios on primary graft dysfunction and survival. RESULTS: CTVol was successfully acquired in 218 of 220 (99.1%) patients. In adjusted analysis, undersizing on the basis of the volumetric ratio was independently associated with decreased primary graft dysfunction grade 2 or 3 within 72 hours (odds ratio, 0.42; 95% CI, 0.20-0.87; P =.02). The pTLC ratio was not significantly associated with primary graft dysfunction. Oversizing on the basis of the volumetric ratio was independently associated with an increased risk of death (hazard ratio, 2.27; 95% CI, 1.04-4.99; P =.04], whereas the pTLC ratio did not have a significant survival association. CONCLUSIONS: Using computed tomography-acquired lung volumes for donor-recipient size matching in lung transplantation is feasible with advanced segmentation software. This method may be more predictive of outcome compared with current sizing methods, which use gender and height only.


Subject(s)
Lung Diseases , Lung Transplantation , Primary Graft Dysfunction , Adult , Humans , Lung/surgery , Retrospective Studies , Primary Graft Dysfunction/etiology , Organ Size , Lung Transplantation/methods , Lung Diseases/surgery , Tissue Donors , Tomography, X-Ray Computed
14.
Am J Transplant ; 24(4): 577-590, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37977230

ABSTRACT

Growing evidence implicates complement in the pathogenesis of primary graft dysfunction (PGD). We hypothesized that early complement activation postreperfusion could predispose to severe PGD grade 3 (PGD-3) at 72 hours, which is associated with worst posttransplant outcomes. Consecutive lung transplant patients (n = 253) from January 2018 through June 2023 underwent timed open allograft biopsies at the end of cold ischemia (internal control) and 30 minutes postreperfusion. PGD-3 at 72 hours occurred in 14% (35/253) of patients; 17% (44/253) revealed positive C4d staining on postreperfusion allograft biopsy, and no biopsy-related complications were encountered. Significantly more patients with PGD-3 at 72 hours had positive C4d staining at 30 minutes postreperfusion compared with those without (51% vs 12%, P < .001). Conversely, patients with positive C4d staining were significantly more likely to develop PGD-3 at 72 hours (41% vs 8%, P < .001) and experienced worse long-term outcomes. In multivariate logistic regression, positive C4d staining remained highly predictive of PGD-3 (odds ratio 7.92, 95% confidence interval 2.97-21.1, P < .001). Hence, early complement deposition in allografts is highly predictive of PGD-3 at 72 hours. Our data support future studies to evaluate the role of complement inhibition in patients with early postreperfusion complement activation to mitigate PGD and improve transplant outcomes.


Subject(s)
Lung Transplantation , Primary Graft Dysfunction , Humans , Primary Graft Dysfunction/etiology , Complement C4b , Retrospective Studies , Lung , Complement System Proteins , Lung Transplantation/adverse effects , Allografts , Graft Rejection/etiology , Graft Rejection/pathology
15.
J Heart Lung Transplant ; 43(4): 633-641, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38065239

ABSTRACT

BACKGROUND: Primary graft dysfunction (PGD) is the leading cause of early morbidity and mortality after lung transplantation. Accurate prediction of PGD risk could inform donor approaches and perioperative care planning. We sought to develop a clinically useful, generalizable PGD prediction model to aid in transplant decision-making. METHODS: We derived a predictive model in a prospective cohort study of subjects from 2012 to 2018, followed by a single-center external validation. We used regularized (lasso) logistic regression to evaluate the predictive ability of clinically available PGD predictors and developed a user interface for clinical application. Using decision curve analysis, we quantified the net benefit of the model across a range of PGD risk thresholds and assessed model calibration and discrimination. RESULTS: The PGD predictive model included distance from donor hospital to recipient transplant center, recipient age, predicted total lung capacity, lung allocation score (LAS), body mass index, pulmonary artery mean pressure, sex, and indication for transplant; donor age, sex, mechanism of death, and donor smoking status; and interaction terms for LAS and donor distance. The interface allows for real-time assessment of PGD risk for any donor/recipient combination. The model offers decision-making net benefit in the PGD risk range of 10% to 75% in the derivation centers and 2% to 10% in the validation cohort, a range incorporating the incidence in that cohort. CONCLUSION: We developed a clinically useful PGD predictive algorithm across a range of PGD risk thresholds to support transplant decision-making, posttransplant care, and enrich samples for PGD treatment trials.


Subject(s)
Lung Transplantation , Primary Graft Dysfunction , Humans , Risk Factors , Risk Assessment , Primary Graft Dysfunction/diagnosis , Primary Graft Dysfunction/epidemiology , Prospective Studies , Retrospective Studies
16.
Transplantation ; 108(1): 192-197, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37271865

ABSTRACT

BACKGROUND: Prolonged organ procurement time impairs the outcome of donation after circulatory death (DCD) and liver transplantation (LiT). Our transplant team developed a simultaneous, rather than sequential, lung-abdominal organ explantation strategy for DCD donation to prioritize liver procurement. We evaluated whether this change in strategy effectively reduced donor hepatectomy time (dHT), without affecting donor pneumonectomy time (dPT), and influenced LiT and lung transplantation outcome. METHODS: All lung-abdominal and abdominal-only transplant procedures between 2010 and 2020 were analyzed in this retrospective cohort study. Relationships were assessed between the year of transplant and dHT and dPT (univariate linear regression), 1-y patient and graft survival, primary graft dysfunction, and nonanastomotic biliary strictures (univariate logistic regression). RESULTS: Fifty-two lung-abdominal and 110 abdominal-only DCD procedures were analyzed. A significant decrease in dHT was noted in lung-abdominal (slope -1.14 [-2.14; -0.15], P = 0.026) but not in abdominal-only procedures; dPT did not increase. There were no significant associations between the year of transplant and nonanastomotic biliary strictures frequency, primary graft dysfunction incidence, 1-y patient, and graft survival. CONCLUSIONS: Simultaneous organ procurement in multiorgan lung-abdominal DCD procedures is feasible, and effectively shortened dHT without affecting lung transplantation outcome. No impact on LiT outcome was observed; however, larger multicenter studies are needed.


Subject(s)
Primary Graft Dysfunction , Tissue and Organ Procurement , Humans , Hepatectomy/adverse effects , Retrospective Studies , Constriction, Pathologic , Tissue Donors , Liver/surgery , Graft Survival , Lung , Death , Brain Death
17.
Surg Today ; 54(4): 317-324, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37523071

ABSTRACT

PURPOSE: Chronic lung allograft dysfunction (CLAD) is a known long-term fatal disorder after lung transplantation. In this study, we evaluated the CLAD classification of the International Society for Heart and Lung Transplantation (ISHLT) for living-donor lobar lung transplantation (LDLLT). METHODS: We conducted a single-center retrospective review of data from 73 patients who underwent bilateral LDLLT between 1998 and 2019. Factors related to opacity on computed tomography (CT) and restriction on pulmonary function tests (PFTs) were also analyzed. RESULTS: Overall, 26 (36%) patients were diagnosed with CLAD, including restrictive allograft syndrome (RAS), n = 10 (38.5%); bronchiolitis obliterans syndrome (BOS), n = 8 (30.8%); mixed, n = 1 (3.8%); undefined, n = 2 (7.7%); and unclassified, n = 5 (19.2%). The 5-year survival rate after the CLAD onset was 60.7%. The survival of patients with BOS was significantly better than that of patients with RAS (p = 0.012). In particular, patients with restriction on PFT had a significantly worse survival than those without restriction (p = 0.001). CONCLUSIONS: CLAD after bilateral LDLLT does not have a major impact on the recipient survival, especially in patients with BOS. Restriction on PFT may predict a particularly poor prognosis in patients with CLAD after bilateral LDLLT.


Subject(s)
Bronchiolitis Obliterans Syndrome , Bronchiolitis Obliterans , Lung Transplantation , Primary Graft Dysfunction , Humans , Bronchiolitis Obliterans/etiology , Bronchiolitis Obliterans/surgery , Living Donors , Allografts , Retrospective Studies , Primary Graft Dysfunction/etiology , Lung
18.
Respirology ; 29(1): 71-79, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37789612

ABSTRACT

BACKGROUND: Antifibrotic agents (AFAs) are now standard-of-care for idiopathic pulmonary fibrosis (IPF). Concerns have arisen about the safety of these drugs in patients undergoing lung transplantation (LTx). METHODS: We performed a multi-centre, nationwide, retrospective, observational study of French IPF patients undergoing LTx between 2011 and 2018 to determine whether maintaining AFAs in the peri-operative period leads to increased bronchial anastomoses issues, delay in skin healing and haemorrhagic complications. We compared the incidence of post-operative complications and the survival of patients according to AFA exposure. RESULTS: Among 205 patients who underwent LTx for IPF during the study period, 58 (28%) had received AFAs within 4 weeks before LTx (AFA group): pirfenidone in 37 (18.0%) and nintedanib in 21 (10.2%). The median duration of AFA treatment before LTx was 13.8 (5.6-24) months. The AFA and control groups did not significantly differ in airway, bleeding or skin healing complications (p = 0.91, p = 0.12 and p = 0.70, respectively). Primary graft dysfunction was less frequent in the AFA than control group (26% vs. 43%, p = 0.02), and the 90-day mortality was lower (7% vs. 18%, p = 0.046). CONCLUSIONS: AFA therapy did not increase airway, bleeding or wound post-operative complications after LTx and could be associated with reduced rates of primary graft dysfunction and 90-day mortality.


Subject(s)
Idiopathic Pulmonary Fibrosis , Lung Transplantation , Primary Graft Dysfunction , Humans , Antifibrotic Agents , Retrospective Studies , Primary Graft Dysfunction/drug therapy , Primary Graft Dysfunction/etiology , Idiopathic Pulmonary Fibrosis/drug therapy , Idiopathic Pulmonary Fibrosis/surgery , Lung Transplantation/adverse effects , Postoperative Complications/epidemiology , Postoperative Complications/etiology , Pyridones/adverse effects , Treatment Outcome
19.
Am J Respir Crit Care Med ; 209(1): 91-100, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37734031

ABSTRACT

Rationale: Primary graft dysfunction (PGD) is the leading cause of early morbidity and mortality after lung transplantation. Prior studies implicated proxy-defined donor smoking as a risk factor for PGD and mortality. Objectives: We aimed to more accurately assess the impact of donor smoke exposure on PGD and mortality using quantitative smoke exposure biomarkers. Methods: We performed a multicenter prospective cohort study of lung transplant recipients enrolled in the Lung Transplant Outcomes Group cohort between 2012 and 2018. PGD was defined as grade 3 at 48 or 72 hours after lung reperfusion. Donor smoking was defined using accepted thresholds of urinary biomarkers of nicotine exposure (cotinine) and tobacco-specific nitrosamine (4-[methylnitrosamino]-1-[3-pyridyl]-1-butanol [NNAL]) in addition to clinical history. The donor smoking-PGD association was assessed using logistic regression, and survival analysis was performed using inverse probability of exposure weighting according to smoking category. Measurements and Main Results: Active donor smoking prevalence varied by definition, with 34-43% based on urinary cotinine, 28% by urinary NNAL, and 37% by clinical documentation. The standardized risk of PGD associated with active donor smoking was higher across all definitions, with an absolute risk increase of 11.5% (95% confidence interval [CI], 3.8% to 19.2%) by urinary cotinine, 5.7% (95% CI, -3.4% to 14.9%) by urinary NNAL, and 6.5% (95% CI, -2.8% to 15.8%) defined clinically. Donor smoking was not associated with differential post-lung transplant survival using any definition. Conclusions: Donor smoking associates with a modest increase in PGD risk but not with increased recipient mortality. Use of lungs from smokers is likely safe and may increase lung donor availability. Clinical trial registered with www.clinicaltrials.gov (NCT00552357).


Subject(s)
Lung Transplantation , Primary Graft Dysfunction , Smoking , Tissue Donors , Humans , Biomarkers , Cotinine , Lung Transplantation/adverse effects , Primary Graft Dysfunction/epidemiology , Prospective Studies , Smoking/adverse effects
20.
Am J Transplant ; 24(3): 458-467, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37468109

ABSTRACT

Primary graft dysfunction (PGD) is the leading cause of morbidity and mortality in the first 30 days after lung transplantation. Risk factors for the development of PGD include donor and recipient characteristics, but how multiple variables interact to impact the development of PGD and how clinicians should consider these in making decisions about donor acceptance remain unclear. This was a single-center retrospective cohort study to develop and evaluate machine learning pipelines to predict the development of PGD grade 3 within the first 72 hours of transplantation using donor and recipient variables that are known at the time of donor offer acceptance. Among 576 bilateral lung recipients, 173 (30%) developed PGD grade 3. The cohort underwent a 75% to 25% train-test split, and lasso regression was used to identify 11 variables for model development. A K-nearest neighbor's model showing the best calibration and performance with relatively small confidence intervals was selected as the final predictive model with an area under the receiver operating characteristics curve of 0.65. Machine learning models can predict the risk for development of PGD grade 3 based on data available at the time of donor offer acceptance. This may improve donor-recipient matching and donor utilization in the future.


Subject(s)
Lung Transplantation , Primary Graft Dysfunction , Humans , Retrospective Studies , Primary Graft Dysfunction/diagnosis , Primary Graft Dysfunction/etiology , Lung Transplantation/adverse effects , Risk Factors , Lung
SELECTION OF CITATIONS
SEARCH DETAIL
...