Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 14.226
Filter
1.
Sci Data ; 11(1): 545, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38806530

ABSTRACT

Human and non-human primates have strikingly similar genomes, but they strongly differ in many brain-based processes (e.g., behaviour and cognition). While the functions of protein-coding genes have been extensively studied, rather little is known about the role of non-coding RNAs such as long non-coding RNAs (lncRNAs). Here, we predicted lncRNAs and analysed their expression pattern across different brain regions of human and non-human primates (chimpanzee, gorilla, and gibbon). Our analysis identified shared orthologous and non-orthologous lncRNAs, showing striking differences in the genomic features. Differential expression analysis of the shared orthologous lncRNAs from humans and chimpanzees revealed distinct expression patterns in subcortical regions (striatum, hippocampus) and neocortical areas while retaining a homogeneous expression in the cerebellum. Co-expression analysis of lncRNAs and protein-coding genes revealed massive proportions of co-expressed pairs in neocortical regions of humans compared to chimpanzees. Network analysis of co-expressed pairs revealed the distinctive role of the hub-acting orthologous lncRNAs in a region- and species-specific manner. Overall, our study provides novel insight into lncRNA driven gene regulatory landscape, neural regulation, brain evolution, and constitutes a resource for primate's brain lncRNAs.


Subject(s)
Brain , Pan troglodytes , RNA, Long Noncoding , Animals , RNA, Long Noncoding/genetics , Humans , Brain/metabolism , Pan troglodytes/genetics , Species Specificity , Hylobates/genetics , Gorilla gorilla/genetics , Primates/genetics
2.
Proc Biol Sci ; 291(2023): 20240138, 2024 May.
Article in English | MEDLINE | ID: mdl-38808448

ABSTRACT

A leading hypothesis for the evolution of large brains in humans and other species is that a feedback loop exists whereby intelligent animals forage more efficiently, which results in increased energy intake that fuels the growth and maintenance of large brains. We test this hypothesis for the first time with high-resolution tracking data from four sympatric, frugivorous rainforest mammal species (42 individuals) and drone-based maps of their predominant feeding trees. We found no evidence that larger-brained primates had more efficient foraging paths than smaller brained procyonids. This refutes a key assumption of the fruit-diet hypothesis for brain evolution, suggesting that other factors such as temporal cognition, extractive foraging or sociality have been more important for brain evolution.


Subject(s)
Brain , Diet , Feeding Behavior , Animals , Brain/physiology , Diet/veterinary , Biological Evolution , Fruit , Rainforest , Primates/physiology
3.
Emerg Infect Dis ; 30(6): 1253-1257, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38782139

ABSTRACT

We conducted a serologic and molecular study to assess exposure of captive nonhuman primates (NHPs) to SARS-CoV-2 in Spain during the 2020-2023 COVID-19 pandemic. We found limited exposure of NHPs to SARS-CoV-2. Biosafety measures must be strictly maintained to avoid SARS-CoV-2 reverse-zoonotic transmission in the human-NHP interface.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Spain/epidemiology , COVID-19/epidemiology , COVID-19/veterinary , COVID-19/transmission , COVID-19/prevention & control , Primates , Humans , Antibodies, Viral/blood , Animals, Zoo/virology
4.
Sci Adv ; 10(20): eadl2036, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38758800

ABSTRACT

Huntington's disease (HD) is an autosomal dominant neurodegenerative disease characterized by preferential neuronal loss in the striatum. The mechanism underlying striatal selective neurodegeneration remains unclear, making it difficult to develop effective treatments for HD. In the brains of nonhuman primates, we examined the expression of Huntingtin (HTT), the gene responsible for HD. We found that HTT protein is highly expressed in striatal neurons due to its slow degradation in the striatum. We also identified tripartite motif-containing 37 (TRIM37) as a primate-specific protein that interacts with HTT and is selectively reduced in the primate striatum. TRIM37 promotes the ubiquitination and degradation of mutant HTT (mHTT) in vitro and modulates mHTT aggregation in mouse and monkey brains. Our findings suggest that nonhuman primates are crucial for understanding the mechanisms of human diseases such as HD and support TRIM37 as a potential therapeutic target for treating HD.


Subject(s)
Corpus Striatum , Huntingtin Protein , Huntington Disease , Tripartite Motif Proteins , Ubiquitin-Protein Ligases , Ubiquitination , Huntington Disease/metabolism , Huntington Disease/pathology , Huntington Disease/genetics , Animals , Huntingtin Protein/genetics , Huntingtin Protein/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Tripartite Motif Proteins/metabolism , Tripartite Motif Proteins/genetics , Corpus Striatum/metabolism , Corpus Striatum/pathology , Mice , Humans , Disease Models, Animal , Neurons/metabolism , Neurons/pathology , Proteolysis , Primates
5.
J Biomed Sci ; 31(1): 53, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38764023

ABSTRACT

BACKGROUND: The C-type lectin family 18 (CLEC18) with lipid and glycan binding capabilities is important to metabolic regulation and innate immune responses against viral infection. However, human CLEC18 comprises three paralogous genes with highly similar sequences, making it challenging to distinguish genetic variations, expression patterns, and biological functions of individual CLEC18 paralogs. Additionally, the evolutionary relationship between human CLEC18 and its counterparts in other species remains unclear. METHODS: To identify the sequence variation and evolutionary divergence of human CLEC18 paralogs, we conducted a comprehensive analysis using various resources, including human and non-human primate reference genome assemblies, human pangenome assemblies, and long-read-based whole-genome and -transcriptome sequencing datasets. RESULTS: We uncovered paralogous sequence variants (PSVs) and polymorphic variants (PVs) of human CLEC18 proteins, and identified distinct signatures specific to each CLEC18 paralog. Furthermore, we unveiled a novel segmental duplication for human CLEC18A gene. By comparing CLEC18 across human and non-human primates, our research showed that the CLEC18 paralogy probably occurred in the common ancestor of human and closely related non-human primates, and the lipid-binding CAP/SCP/TAPS domain of CLEC18 is more diverse than its glycan-binding CTLD. Moreover, we found that certain amino acids alterations at variant positions are exclusive to human CLEC18 paralogs. CONCLUSIONS: Our findings offer a comprehensive profiling of the intricate variations and evolutionary characteristics of human CLEC18.


Subject(s)
Evolution, Molecular , Genetic Variation , Lectins, C-Type , Humans , Lectins, C-Type/genetics , Lectins, C-Type/metabolism , Animals , Primates/genetics
6.
Elife ; 122024 May 16.
Article in English | MEDLINE | ID: mdl-38753426

ABSTRACT

Zoonotic disease dynamics in wildlife hosts are rarely quantified at macroecological scales due to the lack of systematic surveys. Non-human primates (NHPs) host Plasmodium knowlesi, a zoonotic malaria of public health concern and the main barrier to malaria elimination in Southeast Asia. Understanding of regional P. knowlesi infection dynamics in wildlife is limited. Here, we systematically assemble reports of NHP P. knowlesi and investigate geographic determinants of prevalence in reservoir species. Meta-analysis of 6322 NHPs from 148 sites reveals that prevalence is heterogeneous across Southeast Asia, with low overall prevalence and high estimates for Malaysian Borneo. We find that regions exhibiting higher prevalence in NHPs overlap with human infection hotspots. In wildlife and humans, parasite transmission is linked to land conversion and fragmentation. By assembling remote sensing data and fitting statistical models to prevalence at multiple spatial scales, we identify novel relationships between P. knowlesi in NHPs and forest fragmentation. This suggests that higher prevalence may be contingent on habitat complexity, which would begin to explain observed geographic variation in parasite burden. These findings address critical gaps in understanding regional P. knowlesi epidemiology and indicate that prevalence in simian reservoirs may be a key spatial driver of human spillover risk.


Zoonotic diseases are infectious diseases that are transmitted from animals to humans. For example, the malaria-causing parasite Plasmodium knowlesi can be transmitted from monkeys to humans through mosquitos that have previously fed on infected monkeys. In Malaysia, progress towards eliminating malaria is being undermined by the rise of human incidences of 'monkey malaria', which has been declared a public health threat by The World Health Organisation. In humans, cases of monkey malaria are higher in areas of recent deforestation. Changes in habitat may affect how monkeys, insects and humans interact, making it easier for diseases like malaria to pass between them. Deforestation could also change the behaviour of wildlife, which could lead to an increase in infection rates. For example, reduced living space increases contact between monkeys, or it may prevent behaviours that help animals to avoid parasites. Johnson et al. wanted to investigate how the prevalence of malaria in monkeys varies across Southeast Asia to see whether an increase of Plasmodium knowlesi in primates is linked to changes in the landscape. They merged the results of 23 existing studies, including data from 148 sites and 6322 monkeys to see how environmental factors like deforestation influenced the amount of disease in different places. Many previous studies have assumed that disease prevalence is high across all macaques, monkey species that are considered pests, and in all places. But Johnson et al. found that disease rates vary widely across different regions. Overall disease rates in monkeys are lower than expected (only 12%), but in regions with less forest or more 'fragmented' forest areas, malaria rates are higher. Areas with a high disease rate in monkeys tend to further coincide with infection hotspots for humans. This suggests that deforestation may be driving malaria infection in monkeys, which could be part of the reason for increased human infection rates. Johnsons et al.'s study has provided an important step towards better understanding the link between deforestation and the levels of monkey malaria in humans living nearby. Their study provides important insights into how we might find ways of managing the landscape better to reduce health risks from wildlife infection.


Subject(s)
Malaria , Plasmodium knowlesi , Primates , Zoonoses , Animals , Humans , Asia, Southeastern/epidemiology , Ecosystem , Malaria/epidemiology , Malaria/transmission , Malaria/parasitology , Prevalence , Primate Diseases/epidemiology , Primate Diseases/parasitology , Primate Diseases/transmission , Primates/parasitology , Zoonoses/epidemiology , Zoonoses/parasitology , Zoonoses/transmission
7.
Nat Genet ; 56(5): 877-888, 2024 May.
Article in English | MEDLINE | ID: mdl-38714869

ABSTRACT

Thyrotropin (TSH) is the master regulator of thyroid gland growth and function. Resistance to TSH (RTSH) describes conditions with reduced sensitivity to TSH. Dominantly inherited RTSH has been linked to a locus on chromosome 15q, but its genetic basis has remained elusive. Here we show that non-coding mutations in a (TTTG)4 short tandem repeat (STR) underlie dominantly inherited RTSH in all 82 affected participants from 12 unrelated families. The STR is contained in a primate-specific Alu retrotransposon with thyroid-specific cis-regulatory chromatin features. Fiber-seq and RNA-seq studies revealed that the mutant STR activates a thyroid-specific enhancer cluster, leading to haplotype-specific upregulation of the bicistronic MIR7-2/MIR1179 locus 35 kb downstream and overexpression of its microRNA products in the participants' thyrocytes. An imbalance in signaling pathways targeted by these micro-RNAs provides a working model for this cause of RTSH. This finding broadens our current knowledge of genetic defects altering pituitary-thyroid feedback regulation.


Subject(s)
Chromosomes, Human, Pair 15 , Enhancer Elements, Genetic , MicroRNAs , Microsatellite Repeats , Mutation , Thyrotropin , Humans , MicroRNAs/genetics , Microsatellite Repeats/genetics , Chromosomes, Human, Pair 15/genetics , Female , Thyrotropin/genetics , Male , Thyroid Gland/metabolism , Animals , Primates/genetics , Pedigree
8.
Nat Commun ; 15(1): 4380, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38782905

ABSTRACT

SLC22A10 is an orphan transporter with unknown substrates and function. The goal of this study is to elucidate its substrate specificity and functional characteristics. In contrast to orthologs from great apes, human SLC22A10, tagged with green fluorescent protein, is not expressed on the plasma membrane. Cells expressing great ape SLC22A10 orthologs exhibit significant accumulation of estradiol-17ß-glucuronide, unlike those expressing human SLC22A10. Sequence alignments reveal a proline at position 220 in humans, which is a leucine in great apes. Replacing proline with leucine in SLC22A10-P220L restores plasma membrane localization and uptake function. Neanderthal and Denisovan genomes show proline at position 220, akin to modern humans, indicating functional loss during hominin evolution. Human SLC22A10 is a unitary pseudogene due to a fixed missense mutation, P220, while in great apes, its orthologs transport sex steroid conjugates. Characterizing SLC22A10 across species sheds light on its biological role, influencing organism development and steroid homeostasis.


Subject(s)
Primates , Animals , Humans , Primates/genetics , Amino Acid Sequence , HEK293 Cells , Organic Cation Transport Proteins/metabolism , Organic Cation Transport Proteins/genetics , Hominidae/genetics , Hominidae/metabolism , Estradiol/metabolism , Pseudogenes , Substrate Specificity , Mutation, Missense
9.
Nat Commun ; 15(1): 4501, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802354

ABSTRACT

How the spike output of the retina enables human visual perception is not fully understood. Here, we address this at the sensitivity limit of vision by correlating human visual perception with the spike outputs of primate ON and OFF parasol (magnocellular) retinal ganglion cells in tightly matching stimulus conditions. We show that human vision at its ultimate sensitivity limit depends on the spike output of the ON but not the OFF retinal pathway. Consequently, nonlinear signal processing in the retinal ON pathway precludes perceptual detection of single photons in darkness but enables quantal-resolution discrimination of differences in light intensity.


Subject(s)
Photic Stimulation , Photons , Retina , Retinal Ganglion Cells , Animals , Humans , Retinal Ganglion Cells/physiology , Retina/physiology , Visual Perception/physiology , Contrast Sensitivity/physiology , Male , Adult , Female , Primates , Visual Pathways/physiology , Macaca mulatta , Vision, Ocular/physiology
10.
Dev Psychobiol ; 66(5): e22491, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38698633

ABSTRACT

Developmental plasticity is particularly important for humans and other primates because of our extended period of growth and maturation, during which our phenotypes adaptively respond to environmental cues. The hypothalamus-pituitary-gonadal (HPG) and hypothalamus-pituitary-adrenal (HPA) axes are likely to be principal targets of developmental "programming" given their roles in coordinating fitness-relevant aspects of the phenotype, including sexual development, adult reproductive and social strategies, and internal responses to the external environment. In social animals, including humans, the social environment is believed to be an important source of cues to which these axes may adaptively respond. The effects of early social environments on the HPA axis have been widely studied in humans, and to some extent, in other primates, but there are still major gaps in knowledge specifically relating to males. There has also been relatively little research examining the role that social environments play in developmental programming of the HPG axis or the HPA/HPG interface, and what does exist disproportionately focuses on females. These topics are likely understudied in males in part due to the difficulty of identifying developmental milestones in males relative to females and the general quiescence of the HPG axis prior to maturation. However, there are clear indicators that early life social environments matter for both sexes. In this review, we examine what is known about the impact of social environments on HPG and HPA axis programming during male development in humans and nonhuman primates, including the role that epigenetic mechanisms may play in this programming. We conclude by highlighting important next steps in this research area.


Subject(s)
Hypothalamo-Hypophyseal System , Pituitary-Adrenal System , Primates , Social Environment , Animals , Hypothalamo-Hypophyseal System/metabolism , Hypothalamo-Hypophyseal System/physiology , Pituitary-Adrenal System/metabolism , Pituitary-Adrenal System/physiology , Male , Primates/physiology , Humans , Female
11.
Commun Biol ; 7(1): 647, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802506

ABSTRACT

Characterising how the totality of primate diversity is distributed across the order, and how it evolved, is challenging because diversity in individual traits often show opposing phylogenetic patterns. A species' combination of traits can be conceptualised as its 'niche'. Here, we describe and analyse seven-dimensional niche space, comprising 11 traits, for 191 primate species. Multifaceted diversity is distributed unequally among taxonomic groups. Cercopithecoidea and Hominidae occupy the largest areas of niche space, and are the most diverse families; platyrrhine families occupy small areas, and this space overlaps with strepsirrhines. The evolution of species' locations in niche space is regulated by selection for adaptive optima in trait combinations. Given that niche similarity results in interspecific competition, we quantify two measures of species' niche locations relative to others. We find that omnivores, frugivores, and species tolerating higher temperatures experience stronger interspecific competition. Hominidae occupation of niche space suggests competitive exclusion from niches by Cercopithecoidea over evolutionary time; but living great apes experience the lowest levels of interspecific competition. Callitrichids experience the highest levels of interspecific competition. Our results provide a standardised measure of primate niches that sheds light on the partitioning and evolution of primate diversity, and how this is driven by interspecific competition.


Subject(s)
Biological Evolution , Ecosystem , Primates , Animals , Primates/physiology , Phylogeny , Species Specificity
12.
PLoS Pathog ; 20(4): e1012171, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38683864

ABSTRACT

Researchers and clinicians often rely on molecular assays like PCR to identify and monitor viral infections, instead of the resource-prohibitive gold standard of viral culture. However, it remains unclear when (if ever) PCR measurements of viral load are reliable indicators of replicating or infectious virus. The recent popularity of PCR protocols targeting subgenomic RNA for SARS-CoV-2 has caused further confusion, as the relationships between subgenomic RNA and standard total RNA assays are incompletely characterized and opinions differ on which RNA type better predicts culture outcomes. Here, we explore these issues by comparing total RNA, subgenomic RNA, and viral culture results from 24 studies of SARS-CoV-2 in non-human primates (including 2167 samples from 174 individuals) using custom-developed Bayesian statistical models. On out-of-sample data, our best models predict subgenomic RNA positivity from total RNA data with 91% accuracy, and they predict culture positivity with 85% accuracy. Further analyses of individual time series indicate that many apparent prediction errors may arise from issues with assay sensitivity or sample processing, suggesting true accuracy may be higher than these estimates. Total RNA and subgenomic RNA showed equivalent performance as predictors of culture positivity. Multiple cofactors (including exposure conditions, host traits, and assay protocols) influence culture predictions, yielding insights into biological and methodological sources of variation in assay outcomes-and indicating that no single threshold value applies across study designs. We also show that our model can accurately predict when an individual is no longer infectious, illustrating the potential for future models trained on human data to guide clinical decisions on case isolation. Our work shows that meta-analysis of in vivo data can overcome longstanding challenges arising from limited sample sizes and can yield robust insights beyond those attainable from individual studies. Our analytical pipeline offers a framework to develop similar predictive tools in other virus-host systems, including models trained on human data, which could support laboratory analyses, medical decisions, and public health guidelines.


Subject(s)
COVID-19 , RNA, Viral , SARS-CoV-2 , Viral Load , Animals , SARS-CoV-2/genetics , COVID-19/virology , COVID-19/diagnosis , RNA, Viral/genetics , Primates/virology , Bayes Theorem , Humans , Polymerase Chain Reaction/methods , COVID-19 Nucleic Acid Testing/methods
13.
Nat Rev Neurosci ; 25(6): 373, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38575769
14.
Science ; 384(6694): 387, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38662812

ABSTRACT

Primatologist who brought animals and humans "a little closer".


Subject(s)
Anthropology , Primates , Portraits as Topic , Animals , Humans , History, 20th Century , History, 21st Century , Anthropology/history
15.
Int J Mol Sci ; 25(7)2024 Mar 31.
Article in English | MEDLINE | ID: mdl-38612733

ABSTRACT

In the human genome, two short open reading frames (ORFs) separated by a transcriptional silencer and a small intervening sequence stem from the gene SMIM45. The two ORFs show different translational characteristics, and they also show divergent patterns of evolutionary development. The studies presented here describe the evolution of the components of SMIM45. One ORF consists of an ultra-conserved 68 amino acid (aa) sequence, whose origins can be traced beyond the evolutionary age of divergence of the elephant shark, ~462 MYA. The silencer also has ancient origins, but it has a complex and divergent pattern of evolutionary formation, as it overlaps both at the 68 aa ORF and the intervening sequence. The other ORF consists of 107 aa. It develops during primate evolution but is found to originate de novo from an ancestral non-coding genomic region with root origins within the Afrothere clade of placental mammals, whose evolutionary age of divergence is ~99 MYA. The formation of the complete 107 aa ORF during primate evolution is outlined, whereby sequence development is found to occur through biased mutations, with disruptive random mutations that also occur but lead to a dead-end. The 107 aa ORF is of particular significance, as there is evidence to suggest it is a protein that may function in human brain development. Its evolutionary formation presents a view of a human-specific ORF and its linked silencer that were predetermined in non-primate ancestral species. The genomic position of the silencer offers interesting possibilities for the regulation of transcription of the 107 aa ORF. A hypothesis is presented with respect to possible spatiotemporal expression of the 107 aa ORF in embryonic tissues.


Subject(s)
Genome, Human , Placenta , Female , Pregnancy , Animals , Humans , Open Reading Frames/genetics , Amino Acid Sequence , Primates , Mammals
16.
J Hum Evol ; 190: 103494, 2024 05.
Article in English | MEDLINE | ID: mdl-38564844

ABSTRACT

The body proportions of extant animals help inform inferences about the behaviors of their extinct relatives, but relationships between body proportions, behavior, and phylogeny in extant primates remain unclear. Advances in behavioral data, molecular phylogenies, and multivariate analytical tools make it an opportune time to perform comprehensive comparative analyses of primate traditional limb length proportions (e.g., intermembral, humerofemoral, brachial, and crural indices), body size-adjusted long bone proportions, and principal components. In this study we used a mix of newly-collected and published data to investigate whether and how the limb length proportions of a diverse sample of primates, including monkeys, apes, and modern humans, are influenced by behavior and phylogeny. We reconfirm that the intermembral index, followed by the first principal component of traditional limb length proportions, is the single most effective variable distinguishing hominoids and other anthropoids. Combined limb length proportions and positional behaviors are strongly correlated in extant anthropoid groups, but phylogeny is a better predictor of limb length proportion variation than of behavior. We confirm convergences between members of the Atelidae and extant apes (especially Pan), members of the Hylobatidae and Pongo, and a potential divergence of Presbytis limb proportions from some other cercopithecoids, which correlate with adaptations for forelimb-dominated behaviors in some colobines. Collectively, these results substantiate hypotheses indicating that extinct hominins and other hominoid taxa can be distinguished by analyzing combinations of their limb length proportions at different taxonomic levels. From these results, we hypothesize that fossil skeletons characterized by notably disparate limb length proportions are unlikely to have exhibited similar behavioral patterns.


Subject(s)
Hominidae , Hylobatidae , Humans , Animals , Phylogeny , Haplorhini , Fossils , Primates , Upper Extremity , Biological Evolution
17.
Int J Mol Sci ; 25(8)2024 Apr 14.
Article in English | MEDLINE | ID: mdl-38673928

ABSTRACT

There are two paralogs of glutamate dehydrogenase (GDH) in humans encoded by the GLUD1 and GLUD2 genes as a result of a recent retroposition during the evolution of primates. The two human GDHs possess significantly different regulation by allosteric ligands, which is not fully characterized at the structural level. Recent advances in identification of the GDH ligand binding sites provide a deeper perspective on the significance of the accumulated substitutions within the two GDH paralogs. In this review, we describe the evolution of GLUD1 and GLUD2 after the duplication event in primates using the accumulated sequencing and structural data. A new gibbon GLUD2 sequence questions the indispensability of ancestral R496S and G509A mutations for GLUD2 irresponsiveness to GTP, providing an alternative with potentially similar regulatory features. The data of both GLUD1 and GLUD2 evolution not only confirm substitutions enhancing GLUD2 mitochondrial targeting, but also reveal a conserved mutation in ape GLUD1 mitochondrial targeting sequence that likely reduces its transport to mitochondria. Moreover, the information of GDH interactors, posttranslational modification and subcellular localization are provided for better understanding of the GDH mutations. Medically significant point mutations causing deregulation of GDH are considered from the structural and regulatory point of view.


Subject(s)
Evolution, Molecular , Glutamate Dehydrogenase , Protein Processing, Post-Translational , Animals , Humans , Glutamate Dehydrogenase/metabolism , Glutamate Dehydrogenase/genetics , Glutamate Dehydrogenase/chemistry , Ligands , Mutation , Primates/genetics
18.
Am J Primatol ; 86(6): e23622, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38561573

ABSTRACT

The consumption of primates is integral to the traditional subsistence strategies of many Indigenous communities throughout Amazonia. Understanding the overall health of primates harvested for food in the region is critical to Indigenous food security and thus, these communities are highly invested in long-term primate population health. Here, we describe the establishment of a surveillance comanagement program among the Waiwai, an Indigenous community in the Konashen Amerindian Protected Area (KAPA). To assess primate health in the KAPA, hunters performed field necropsies on primates harvested for food and tissues collected from these individuals were analyzed using histopathology. From 2015 to 2019, hunters conducted 127 necropsies across seven species of primates. Of this sample, 82 primates (between 2015 and 2017) were submitted for histopathological screening. Our histopathology data revealed that KAPA primates had little evidence of underlying disease. Of the tissue abnormalities observed, the majority were either due to diet (e.g., hepatocellular pigment), degenerative changes resulting from aging (e.g., interstitial nephritis, myocyte lipofusion), or nonspecific responses to antigenic stimulation (renal and splenic lymphoid hyperplasia). In our sample, 7.32% of individuals had abnormalities that were consistent with a viral etiology, including myocarditis and hepatitis. Internal parasites were observed in 53.66% of individuals and is consistent with what would be expected from a free-ranging primate population. This study represents the importance of baseline data for long-term monitoring of primate populations hunted for food. More broadly, this research begins to close a critical gap in zoonotic disease risk related to primate harvesting in Amazonia, while also demonstrating the benefits of partnering with Indigenous hunters and leveraging hunting practices in disease surveillance and primate population health assessment.


Subject(s)
Primates , Animals , Guyana , Humans , Primate Diseases/virology , Male , Indigenous Peoples , Female
19.
Parasitology ; 151(5): 514-522, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38629119

ABSTRACT

With many non-human primates (NHPs) showing continued population decline, there is an ongoing need to better understand their ecology and conservation threats. One such threat is the risk of disease, with various bacterial, viral and parasitic infections previously reported to have damaging consequences for NHP hosts. Strongylid nematodes are one of the most commonly reported parasitic infections in NHPs. Current knowledge of NHP strongylid infections is restricted by their typical occurrence as mixed infections of multiple genera, which are indistinguishable through traditional microscopic approaches. Here, modern metagenomics approaches were applied for insight into the genetic diversity of strongylid infections in South-East and East Asian NHPs. We hypothesized that strongylid nematodes occur in mixed communities of multiple taxa, dominated by Oesophagostomum, matching previous findings using single-specimen genetics. Utilizing the Illumina MiSeq platform, ITS-2 strongylid metabarcoding was applied to 90 samples from various wild NHPs occurring in Malaysian Borneo and Japan. A clear dominance of Oesophagostomum aculeatum was found, with almost all sequences assigned to this species. This study suggests that strongylid communities of Asian NHPs may be less species-rich than those in African NHPs, where multi-genera communities are reported. Such knowledge contributes baseline data, assisting with ongoing monitoring of health threats to NHPs.


Subject(s)
Genetic Variation , Primates , Animals , Primates/parasitology , Strongylida Infections/veterinary , Strongylida Infections/parasitology , Strongylida Infections/epidemiology , Japan , Monkey Diseases/parasitology , Monkey Diseases/epidemiology , Metagenomics , Strongylida/genetics , Strongylida/classification , Strongylida/isolation & purification , Borneo , Primate Diseases/parasitology , Phylogeny , Oesophagostomum/genetics , Oesophagostomum/classification , East Asian People
20.
Elife ; 122024 Apr 09.
Article in English | MEDLINE | ID: mdl-38592269

ABSTRACT

Visual detection is a fundamental natural task. Detection becomes more challenging as the similarity between the target and the background in which it is embedded increases, a phenomenon termed 'similarity masking'. To test the hypothesis that V1 contributes to similarity masking, we used voltage sensitive dye imaging (VSDI) to measure V1 population responses while macaque monkeys performed a detection task under varying levels of target-background similarity. Paradoxically, we find that during an initial transient phase, V1 responses to the target are enhanced, rather than suppressed, by target-background similarity. This effect reverses in the second phase of the response, so that in this phase V1 signals are positively correlated with the behavioral effect of similarity. Finally, we show that a simple model with delayed divisive normalization can qualitatively account for our findings. Overall, our results support the hypothesis that a nonlinear gain control mechanism in V1 contributes to perceptual similarity masking.


Subject(s)
Macaca , Primates , Animals , Perceptual Masking , Voltage-Sensitive Dye Imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...