Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 70
Filter
1.
Cell Syst ; 15(5): 445-461.e4, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38692274

ABSTRACT

BMP signaling is essential for mammalian gastrulation, as it initiates a cascade of signals that control self-organized patterning. As development is highly dynamic, it is crucial to understand how time-dependent combinatorial signaling affects cellular differentiation. Here, we show that BMP signaling duration is a crucial control parameter that determines cell fates upon the exit from pluripotency through its interplay with the induced secondary signal WNT. BMP signaling directly converts cells from pluripotent to extraembryonic fates while simultaneously upregulating Wnt signaling, which promotes primitive streak and mesodermal specification. Using live-cell imaging of signaling and cell fate reporters together with a simple mathematical model, we show that this circuit produces a temporal morphogen effect where, once BMP signal duration is above a threshold for differentiation, intermediate and long pulses of BMP signaling produce specification of mesoderm and extraembryonic fates, respectively. Our results provide a systems-level picture of how these signaling pathways control the landscape of early human development.


Subject(s)
Bone Morphogenetic Proteins , Cell Differentiation , Primitive Streak , Signal Transduction , Primitive Streak/metabolism , Primitive Streak/embryology , Bone Morphogenetic Proteins/metabolism , Humans , Signal Transduction/physiology , Animals , Mesoderm/metabolism , Mesoderm/embryology , Wnt Signaling Pathway/physiology , Wnt Proteins/metabolism , Gene Expression Regulation, Developmental , Gastrulation/physiology
2.
Dev Cell ; 59(10): 1252-1268.e13, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38579720

ABSTRACT

The blueprint of the mammalian body plan is laid out during gastrulation, when a trilaminar embryo is formed. This process entails a burst of proliferation, the ingression of embryonic epiblast cells at the primitive streak, and their priming toward primitive streak fates. How these different events are coordinated remains unknown. Here, we developed and characterized a 3D culture of self-renewing mouse embryonic cells that captures the main transcriptional and architectural features of the early gastrulating mouse epiblast. Using this system in combination with microfabrication and in vivo experiments, we found that proliferation-induced crowding triggers delamination of cells that express high levels of the apical polarity protein aPKC. Upon delamination, cells become more sensitive to Wnt signaling and upregulate the expression of primitive streak markers such as Brachyury. This mechanistic coupling between ingression and differentiation ensures that the right cell types become specified at the right place during embryonic development.


Subject(s)
Cell Differentiation , Gastrulation , Germ Layers , Animals , Mice , Germ Layers/cytology , Germ Layers/metabolism , T-Box Domain Proteins/metabolism , T-Box Domain Proteins/genetics , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/metabolism , Primitive Streak/cytology , Primitive Streak/metabolism , Fetal Proteins/metabolism , Fetal Proteins/genetics , Wnt Signaling Pathway , Cell Proliferation , Gene Expression Regulation, Developmental , Embryo, Mammalian/cytology , Embryo, Mammalian/metabolism
3.
Dev Cell ; 59(11): 1439-1456.e7, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38579716

ABSTRACT

Basement membranes (BMs) are sheet-like structures of extracellular matrix (ECM) that provide structural support for many tissues and play a central role in signaling. They are key regulators of cell behavior and tissue functions, and defects in their assembly or composition are involved in numerous human diseases. Due to the differences between human and animal embryogenesis, ethical concerns, legal constraints, the scarcity of human tissue material, and the inaccessibility of the in vivo condition, BM regulation during human embryo development has remained elusive. Using the post-implantation amniotic sac embryoid (PASE), we delineate BM assembly upon post-implantation development and BM disassembly during primitive streak (PS) cell dissemination. Further, we show that the transcription factor Oct4 regulates the expression of BM structural components and receptors and controls BM development by regulating Akt signaling and the small GTPase Rac1. These results represent a relevant step toward a more comprehensive understanding of early human development.


Subject(s)
Basement Membrane , Embryonic Development , Octamer Transcription Factor-3 , Signal Transduction , rac1 GTP-Binding Protein , Humans , Basement Membrane/metabolism , Embryonic Development/genetics , Octamer Transcription Factor-3/metabolism , Octamer Transcription Factor-3/genetics , rac1 GTP-Binding Protein/metabolism , rac1 GTP-Binding Protein/genetics , Proto-Oncogene Proteins c-akt/metabolism , Gene Expression Regulation, Developmental , Primitive Streak/metabolism , Primitive Streak/cytology , Laminin/metabolism , Extracellular Matrix/metabolism
4.
Stem Cells ; 41(12): 1142-1156, 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-37819786

ABSTRACT

In early embryogenesis, the primitive streak (PrS) generates the mesendoderm and is essential for organogenesis. However, because the PrS is a minute and transient tissue, elucidating the mechanism of its formation has been challenging. We performed comprehensive screening of 2 knockout mouse databases based on the fact that failure of PrS formation is lethal. We identified 812 genes involved in various cellular functions and responses that might be linked to PrS formation, with the category of greatest abundance being "Metabolism." In this study, we focused on genes of sphingolipid metabolism and investigated their roles in PrS formation using an in vitro mouse ES cell differentiation system. We show here that elevated intracellular ceramide negatively regulates gene expression essential for PrS formation and instead induces neurogenesis. In addition, sphingosine-1-phosphate (a ceramide derivative) positively regulates neural maturation. Our results indicate that ceramide regulates both PrS formation and the induction of neural differentiation.


Subject(s)
Ceramides , Primitive Streak , Mice , Animals , Ceramides/metabolism , Primitive Streak/metabolism , Cell Differentiation/genetics , Neurogenesis/genetics , Phenotype
5.
Cell Stem Cell ; 30(6): 867-884.e11, 2023 06 01.
Article in English | MEDLINE | ID: mdl-37209681

ABSTRACT

Gastruloids are 3D structures generated from pluripotent stem cells recapitulating fundamental principles of embryonic pattern formation. Using single-cell genomic analysis, we provide a resource mapping cell states and types during gastruloid development and compare them with the in vivo embryo. We developed a high-throughput handling and imaging pipeline to spatially monitor symmetry breaking during gastruloid development and report an early spatial variability in pluripotency determining a binary response to Wnt activation. Although cells in the gastruloid-core revert to pluripotency, peripheral cells become primitive streak-like. These two populations subsequently break radial symmetry and initiate axial elongation. By performing a compound screen, perturbing thousands of gastruloids, we derive a phenotypic landscape and infer networks of genetic interactions. Finally, using a dual Wnt modulation, we improve the formation of anterior structures in the existing gastruloid model. This work provides a resource to understand how gastruloids develop and generate complex patterns in vitro.


Subject(s)
Embryo, Mammalian , Pluripotent Stem Cells , Mice , Animals , Embryo, Mammalian/metabolism , Primitive Streak/metabolism , Embryonic Development
6.
Stem Cell Reports ; 17(2): 231-244, 2022 02 08.
Article in English | MEDLINE | ID: mdl-35063128

ABSTRACT

The formation of the primitive streak (PS) and the subsequent induction of neuroectoderm are hallmarks of gastrulation. Combining an in vitro reconstitution of this process based on mouse embryonic stem cells (mESCs) with a collection of knockouts in reporter mESC lines, we identified retinoic acid (RA) as a critical mediator of early neural induction triggered by TGFß or Wnt signaling inhibition. Single-cell RNA sequencing analysis captured the temporal unfolding of cell type diversification, up to the emergence of somite and neural fates. In the absence of the RA-synthesizing enzyme Aldh1a2, a sensitive RA reporter revealed a hitherto unidentified residual RA signaling that specified neural fate. Genetic evidence showed that the RA-degrading enzyme Cyp26a1 protected PS-like cells from neural induction, even in the absence of TGFß and Wnt antagonists. Overall, we characterized a multi-layered control of RA levels that regulates early neural differentiation in an in vitro PS-like system.


Subject(s)
Cell Differentiation/drug effects , Neurons/metabolism , Tretinoin/pharmacology , Aldehyde Dehydrogenase 1 Family/deficiency , Aldehyde Dehydrogenase 1 Family/genetics , Animals , Benzamides/pharmacology , Dioxoles/pharmacology , Ectoderm/cytology , Ectoderm/metabolism , Mice , Mouse Embryonic Stem Cells/cytology , Mouse Embryonic Stem Cells/drug effects , Mouse Embryonic Stem Cells/metabolism , Neurons/cytology , Primitive Streak/cytology , Primitive Streak/metabolism , Retinal Dehydrogenase/deficiency , Retinal Dehydrogenase/genetics , Retinoic Acid 4-Hydroxylase/metabolism , Signal Transduction/drug effects , Tretinoin/metabolism
7.
Elife ; 102021 07 06.
Article in English | MEDLINE | ID: mdl-34227938

ABSTRACT

In classical descriptions of vertebrate development, the segregation of the three embryonic germ layers completes by the end of gastrulation. Body formation then proceeds in a head to tail fashion by progressive deposition of lineage-committed progenitors during regression of the primitive streak (PS) and tail bud (TB). The identification by retrospective clonal analysis of a population of neuromesodermal progenitors (NMPs) contributing to both musculoskeletal precursors (paraxial mesoderm) and spinal cord during axis formation challenged these notions. However, classical fate mapping studies of the PS region in amniotes have so far failed to provide direct evidence for such bipotential cells at the single-cell level. Here, using lineage tracing and single-cell RNA sequencing in the chicken embryo, we identify a resident cell population of the anterior PS epiblast, which contributes to neural and mesodermal lineages in trunk and tail. These cells initially behave as monopotent progenitors as classically described and only acquire a bipotential fate later, in more posterior regions. We show that NMPs exhibit a conserved transcriptomic signature during axis elongation but lose their epithelial characteristicsin the TB. Posterior to anterior gradients of convergence speed and ingression along the PS lead to asymmetric exhaustion of PS mesodermal precursor territories. Through limited ingression and increased proliferation, NMPs are maintained and amplified as a cell population which constitute the main progenitors in the TB. Together, our studies provide a novel understanding of the PS and TB contribution through the NMPs to the formation of the body of amniote embryos.


Subject(s)
Gene Expression Regulation, Developmental , Mesoderm/embryology , Neural Stem Cells/cytology , Primitive Streak/embryology , Animals , Body Patterning/genetics , Cell Differentiation/genetics , Chick Embryo/embryology , Mesoderm/metabolism , Neural Stem Cells/physiology , Primitive Streak/metabolism
8.
Development ; 148(1)2021 01 07.
Article in English | MEDLINE | ID: mdl-33199445

ABSTRACT

Anterior mesoderm (AM) and definitive endoderm (DE) progenitors represent the earliest embryonic cell types that are specified during germ layer formation at the primitive streak (PS) of the mouse embryo. Genetic experiments indicate that both lineages segregate from Eomes-expressing progenitors in response to different Nodal signaling levels. However, the precise spatiotemporal pattern of the emergence of these cell types and molecular details of lineage segregation remain unexplored. We combined genetic fate labeling and imaging approaches with single-cell RNA sequencing (scRNA-seq) to follow the transcriptional identities and define lineage trajectories of Eomes-dependent cell types. Accordingly, all cells moving through the PS during the first day of gastrulation express Eomes AM and DE specification occurs before cells leave the PS from Eomes-positive progenitors in a distinct spatiotemporal pattern. ScRNA-seq analysis further suggested the immediate and complete separation of AM and DE lineages from Eomes-expressing cells as last common bipotential progenitor.


Subject(s)
Cell Lineage , Endoderm/cytology , Endoderm/metabolism , Gastrulation , Mesoderm/cytology , Mesoderm/metabolism , Alleles , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Cell Differentiation , Epithelial Cells/metabolism , Gene Expression Regulation, Developmental , Germ Layers/cytology , Mice , Models, Biological , Primitive Streak/embryology , Primitive Streak/metabolism , Stem Cells/metabolism , T-Box Domain Proteins/metabolism , Time Factors , Transcription, Genetic
9.
Nature ; 582(7811): 253-258, 2020 06.
Article in English | MEDLINE | ID: mdl-32523119

ABSTRACT

Tissue sculpting during development has been attributed mainly to cellular events through processes such as convergent extension or apical constriction1,2. However, recent work has revealed roles for basement membrane remodelling in global tissue morphogenesis3-5. Upon implantation, the epiblast and extraembryonic ectoderm of the mouse embryo become enveloped by a basement membrane. Signalling between the basement membrane and these tissues is critical for cell polarization and the ensuing morphogenesis6,7. However, the mechanical role of the basement membrane in post-implantation embryogenesis remains unknown. Here we demonstrate the importance of spatiotemporally regulated basement membrane remodelling during early embryonic development. Specifically, we show that Nodal signalling directs the generation and dynamic distribution of perforations in the basement membrane by regulating the expression of matrix metalloproteinases. This basement membrane remodelling facilitates embryo growth before gastrulation. The establishment of the anterior-posterior axis8,9 further regulates basement membrane remodelling by localizing Nodal signalling-and therefore the activity of matrix metalloproteinases and basement membrane perforations-to the posterior side of the embryo. Perforations on the posterior side are essential for primitive-streak extension during gastrulation by rendering the basement membrane of the prospective primitive streak more prone to breaching. Thus spatiotemporally regulated basement membrane remodelling contributes to the coordination of embryo growth, morphogenesis and gastrulation.


Subject(s)
Basement Membrane/embryology , Basement Membrane/metabolism , Embryo, Mammalian/embryology , Embryo, Mammalian/metabolism , Embryonic Development , Animals , Basement Membrane/cytology , Blastocyst/cytology , Blastocyst/metabolism , Embryo, Mammalian/cytology , Extracellular Matrix/metabolism , Female , Gastrula/embryology , Male , Matrix Metalloproteinases/metabolism , Mice , Nodal Signaling Ligands/metabolism , Primitive Streak/cytology , Primitive Streak/embryology , Primitive Streak/metabolism
10.
Open Biol ; 10(2): 190299, 2020 02.
Article in English | MEDLINE | ID: mdl-32102607

ABSTRACT

The early stages of development of the chick embryo, leading to primitive streak formation (the start of gastrulation), have received renewed attention recently, especially for studies of the mechanisms of large-scale cell movements and those that position the primitive streak in the radial blastodisc. Over the long history of chick embryology, the terminology used to define different regions has been changing, making it difficult to relate studies to each other. To resolve this objectively requires precise definitions of the regions based on anatomical and functional criteria, along with a systematic molecular map that can be compared directly to the functional anatomy. Here, we undertake these tasks. We describe the characteristic cell morphologies (using scanning electron microscopy and immunocytochemistry for cell polarity markers) in different regions and at successive stages. RNAseq was performed for 12 regions of the blastodisc, from which a set of putative regional markers was selected. These were studied in detail by in situ hybridization. Together this provides a comprehensive resource allowing the community to define the regions unambiguously and objectively. In addition to helping with future experimental design and interpretation, this resource will also be useful for evolutionary comparisons between different vertebrate species.


Subject(s)
Biomarkers/metabolism , Gene Expression Profiling/veterinary , Gene Regulatory Networks , Primitive Streak/anatomy & histology , Animals , Cell Polarity , Chick Embryo , Gene Expression Regulation, Developmental , Immunohistochemistry , In Situ Hybridization , Microscopy, Atomic Force , Primitive Streak/growth & development , Primitive Streak/metabolism , Sequence Analysis, RNA
11.
Development ; 146(20)2019 10 15.
Article in English | MEDLINE | ID: mdl-31575644

ABSTRACT

During early embryogenesis, mechanical constraints and localized biochemical signals co-occur around anteroposterior axis determination and symmetry breaking. Their relative roles, however, are hard to tease apart in vivo Using brachyury (Bra), a primitive streak and mesendoderm marker in mouse embryoid bodies (EBs), we studied how contact, biochemical cues and neighboring cell cues affect the positioning of a primitive streak-like locus and thus determine the anteroposterior axis. We show that a Bra-competent layer must be formed in the EB before Bra expression initiates, and that Bra onset locus position is biased by contact points of the EB with its surrounding, probably through modulation of chemical cues rather than by mechanical signaling. We can push or pull Bra onset away from contact points by introducing a separate localized Wnt signal source, or maneuver Bra onset to a few loci or to an isotropic peripheral pattern. Furthermore, we show that Foxa2-positive cells are predictive of the future location of Bra onset, demonstrating an earlier symmetry-breaking event. Our analysis of factors affecting symmetry breaking and spatial fate choice during this developmental process could prove valuable for in vitro differentiation and organoid formation.


Subject(s)
Embryoid Bodies/cytology , Embryoid Bodies/metabolism , Animals , Cell Differentiation/genetics , Cell Differentiation/physiology , Cells, Cultured , Embryonic Stem Cells/cytology , Embryonic Stem Cells/metabolism , Fetal Proteins/genetics , Fetal Proteins/metabolism , Gene Expression Regulation, Developmental , Hepatocyte Nuclear Factor 3-beta/genetics , Hepatocyte Nuclear Factor 3-beta/metabolism , Mice , Primitive Streak/cytology , Primitive Streak/metabolism , T-Box Domain Proteins/genetics , T-Box Domain Proteins/metabolism
12.
Proc Natl Acad Sci U S A ; 116(34): 16872-16881, 2019 08 20.
Article in English | MEDLINE | ID: mdl-31371508

ABSTRACT

Epithelial-to-mesenchymal transitions (EMTs) require a complete reorganization of cadherin-based cell-cell junctions. p120-catenin binds to the cytoplasmic juxtamembrane domain of classical cadherins and regulates their stability, suggesting that p120-catenin may play an important role in EMTs. Here, we describe the role of p120-catenin in mouse gastrulation, an EMT that can be imaged at cellular resolution and is accessible to genetic manipulation. Mouse embryos that lack all p120-catenin, or that lack p120-catenin in the embryo proper, survive to midgestation. However, mutants have specific defects in gastrulation, including a high rate of p53-dependent cell death, a bifurcation of the posterior axis, and defects in the migration of mesoderm; all are associated with abnormalities in the primitive streak, the site of the EMT. In embryonic day 7.5 (E7.5) mutants, the domain of expression of the streak marker Brachyury (T) expands more than 3-fold, from a narrow strip of posterior cells to encompass more than one-quarter of the embryo. After E7.5, the enlarged T+ domain splits in 2, separated by a mass of mesoderm cells. Brachyury is a direct target of canonical WNT signaling, and the domain of WNT response in p120-catenin mutant embryos, like the T domain, is first expanded, and then split, and high levels of nuclear ß-catenin levels are present in the cells of the posterior embryo that are exposed to high levels of WNT ligand. The data suggest that p120-catenin stabilizes the membrane association of ß-catenin, thereby preventing accumulation of nuclear ß-catenin and excessive activation of the WNT pathway during EMT.


Subject(s)
Catenins/metabolism , Embryo, Mammalian/metabolism , Epithelial-Mesenchymal Transition , Wnt Signaling Pathway , Animals , Apoptosis , Body Patterning , Cell Movement , Cell Nucleus/metabolism , Germ Layers/metabolism , Mesoderm/metabolism , Mice , Mutation/genetics , Primitive Streak/metabolism , Protein Transport , beta Catenin/metabolism , Delta Catenin
13.
Development ; 146(17)2019 09 12.
Article in English | MEDLINE | ID: mdl-31427289

ABSTRACT

Although fate maps of early embryos exist for nearly all model organisms, a fate map of the gastrulating human embryo remains elusive. Here, we use human gastruloids to piece together a rudimentary fate map for the human primitive streak (PS). This is possible because differing levels of BMP, WNT and NODAL lead to self-organization of gastruloids into homogenous subpopulations of endoderm and mesoderm, and comparative analysis of these gastruloids, together with the fate map of the mouse embryo, allows the organization of these subpopulations along an anterior-posterior axis. We also developed a novel cell tracking technique that detected robust fate-dependent cell migrations in our gastruloids comparable with those found in the mouse embryo. Taken together, our fate map and recording of cell migrations provides a first coarse view of what the human PS may resemble in vivo.


Subject(s)
Cell Movement/physiology , Cell Tracking/methods , Gastrula/cytology , Gastrulation/physiology , Models, Biological , Primitive Streak/cytology , Animals , Cell Differentiation/physiology , Cells, Cultured , Embryo, Mammalian/cytology , Embryo, Mammalian/metabolism , Endoderm/cytology , Fibroblasts/metabolism , Gastrula/metabolism , Germ Layers/metabolism , Human Embryonic Stem Cells/metabolism , Humans , Mesoderm/cytology , Mice/embryology , Primitive Streak/metabolism
14.
Nat Cell Biol ; 21(7): 900-910, 2019 07.
Article in English | MEDLINE | ID: mdl-31263269

ABSTRACT

Breaking the anterior-posterior symmetry in mammals occurs at gastrulation. Much of the signalling network underlying this process has been elucidated in the mouse; however, there is no direct molecular evidence of events driving axis formation in humans. Here, we use human embryonic stem cells to generate an in vitro three-dimensional model of a human epiblast whose size, cell polarity and gene expression are similar to a day 10 human epiblast. A defined dose of BMP4 spontaneously breaks axial symmetry, and induces markers of the primitive streak and epithelial-to-mesenchymal transition. We show that WNT signalling and its inhibitor DKK1 play key roles in this process downstream of BMP4. Our work demonstrates that a model human epiblast can break axial symmetry despite the absence of asymmetry in the initial signal and of extra-embryonic tissues or maternal cues. Our three-dimensional model is an assay for the molecular events underlying human axial symmetry breaking.


Subject(s)
Bone Morphogenetic Protein 4/metabolism , Gene Expression Regulation, Developmental/physiology , Germ Layers/metabolism , Primitive Streak/metabolism , Tissue Culture Techniques , Cell Polarity/physiology , Epithelial-Mesenchymal Transition , Gastrulation/physiology , Humans , Primitive Streak/embryology , Signal Transduction/physiology
15.
Sci Rep ; 9(1): 2765, 2019 02 26.
Article in English | MEDLINE | ID: mdl-30808965

ABSTRACT

A major cause of chronic kidney disease (CKD) is glomerular disease, which can be attributed to a spectrum of podocyte disorders. Podocytes are non-proliferative, terminally differentiated cells. Thus, the limited supply of primary podocytes impedes CKD research. Differentiation of human pluripotent stem cells (hPSCs) into podocytes has the potential to produce podocytes for disease modeling, drug screening, and cell therapies. In the podocyte differentiation process described here, hPSCs are first induced to primitive streak-like cells by activating canonical Wnt signaling. Next, these cells progress to mesoderm precursors, proliferative nephron progenitors, and eventually become mature podocytes by culturing in a serum-free medium. Podocytes generated via this protocol adopt podocyte morphology, express canonical podocyte markers, and exhibit podocyte phenotypes, including albumin uptake and TGF-ß1 triggered cell death. This study provides a simple, defined strategy to generate podocytes for in vitro modeling of podocyte development and disease or for cell therapies.


Subject(s)
Cell Differentiation , Pluripotent Stem Cells/cytology , Podocytes/cytology , Cells, Cultured , Humans , Mesoderm/cytology , Mesoderm/metabolism , Nanog Homeobox Protein/genetics , Nanog Homeobox Protein/metabolism , Octamer Transcription Factor-3/genetics , Octamer Transcription Factor-3/metabolism , Phenotype , Pluripotent Stem Cells/metabolism , Podocytes/metabolism , Primitive Streak/cytology , Primitive Streak/metabolism , Wnt Proteins/metabolism
16.
Dev Biol ; 445(1): 1-7, 2019 01 01.
Article in English | MEDLINE | ID: mdl-30389344

ABSTRACT

MESP1 is a key transcription factor in development of early cardiovascular tissue and it is required for induction of the cardiomyocyte (CM) gene expression program, but its role in vascular development is unclear. Here, we used inducible CRISPRi knock-down of MESP1 to analyze the molecular processes of the early differentiation stages of human induced pluripotent stem cells into mesoderm and subsequently vascular progenitor cells. We found that expression of the mesodermal marker, BRACHYURY (encoded by T) was unaffected in MESP1 knock-down cells as compared to wild type cells suggesting timely movement through the primitive streak whereas another mesodermal marker MIXL1 was slightly, but significantly decreased. In contrast, the expression of the vascular cell surface marker KDR was decreased and CD31 and CD34 expression were substantially reduced in MESP1 knock-down cells supporting inhibition or delay of vascular specification. In addition, mRNA microarray data revealed several other altered gene expressions including the EMT regulating transcription factors SNAI1 and TWIST1, which were both significantly decreased indicating that MESP1 knock-down cells are less likely to undergo EMT during vascular progenitor differentiation. Our study demonstrates that while leaving primitive streak markers unaffected, MESP1 expression is required for timely vascular progenitor specification. Thus, MESP1 expression is essential for the molecular features of early CM, EC and VSMC lineage specification.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/metabolism , Induced Pluripotent Stem Cells/metabolism , Primitive Streak/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Cell Differentiation/physiology , Cell Lineage , Embryonic Stem Cells/cytology , Endothelial Progenitor Cells/cytology , Endothelial Progenitor Cells/metabolism , Fetal Proteins/metabolism , Gene Expression Regulation, Developmental/genetics , Helix-Loop-Helix Motifs/physiology , Homeodomain Proteins/metabolism , Humans , Induced Pluripotent Stem Cells/cytology , Mesoderm/metabolism , Myocardium/metabolism , Myocytes, Cardiac/metabolism , Primitive Streak/cytology , T-Box Domain Proteins/metabolism , Transcription Factors/metabolism
17.
Stem Cell Reports ; 11(6): 1357-1364, 2018 12 11.
Article in English | MEDLINE | ID: mdl-30449705

ABSTRACT

Specifying the primitive streak (PS) guides stem cell differentiation in vitro; however, much remains to be learned about the transcription networks that direct anterior and posterior PS cells (APS and PPS, respectively) to differentiate to distinct mesendodermal subpopulations. Here, we show that APS genes are predominantly induced in YAP1-/- human embryonic stem cells (hESCs) in response to ACTIVIN. This finding establishes the Hippo effector YAP1 as a master regulator of PS specification, functioning to repress ACTIVIN-regulated APS genes in hESCs. Moreover, transient exposure of wild-type hESCs to dasatinib, a potent C-SRC/YAP1 inhibitor, enables differentiation to APS-derived endoderm and cardiac mesoderm in response to ACTIVIN. Importantly, these cells can differentiate efficiently to normal beating cardiomyocytes without the cytoskeletal defect seen in YAP1-/- hESC-derived cardiomyocytes. Overall, we uncovered an induction mechanism to generate APS cells using a cocktail of ACTIVIN and YAP1i molecules that holds practical implications for hESC and induced pluripotent stem cell differentiation into distinct mesendodermal lineages.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Phosphoproteins/metabolism , Pluripotent Stem Cells/metabolism , Primitive Streak/metabolism , Activins/metabolism , Adaptor Proteins, Signal Transducing/antagonists & inhibitors , Cell Differentiation/drug effects , Cell Lineage/drug effects , Cellular Reprogramming/drug effects , Dasatinib/pharmacology , Endoderm/cytology , Human Embryonic Stem Cells/cytology , Human Embryonic Stem Cells/drug effects , Human Embryonic Stem Cells/metabolism , Humans , Myocardium/cytology , Myocytes, Cardiac/cytology , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Phosphoproteins/antagonists & inhibitors , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/drug effects , Transcription Factors , YAP-Signaling Proteins
18.
Genome Biol ; 19(1): 162, 2018 10 15.
Article in English | MEDLINE | ID: mdl-30322406

ABSTRACT

BACKGROUND: There is substantial interest in the evolutionary forces that shaped the regulatory framework in early human development. Progress in this area has been slow because it is difficult to obtain relevant biological samples. Induced pluripotent stem cells (iPSCs) may provide the ability to establish in vitro models of early human and non-human primate developmental stages. RESULTS: Using matched iPSC panels from humans and chimpanzees, we comparatively characterize gene regulatory changes through a four-day time course differentiation of iPSCs into primary streak, endoderm progenitors, and definitive endoderm. As might be expected, we find that differentiation stage is the major driver of variation in gene expression levels, followed by species. We identify thousands of differentially expressed genes between humans and chimpanzees in each differentiation stage. Yet, when we consider gene-specific dynamic regulatory trajectories throughout the time course, we find that at least 75% of genes, including nearly all known endoderm developmental markers, have similar trajectories in the two species. Interestingly, we observe a marked reduction of both intra- and inter-species variation in gene expression levels in primitive streak samples compared to the iPSCs, with a recovery of regulatory variation in endoderm progenitors. CONCLUSIONS: The reduction of variation in gene expression levels at a specific developmental stage, paired with overall high degree of conservation of temporal gene regulation, is consistent with the dynamics of a conserved developmental process.


Subject(s)
Cell Differentiation , Endoderm/cytology , Animals , Bayes Theorem , Cell Differentiation/genetics , Female , Gene Expression Profiling , Gene Expression Regulation , Humans , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Male , Pan troglodytes , Primitive Streak/metabolism , Time Factors
19.
Nature ; 558(7708): 132-135, 2018 06.
Article in English | MEDLINE | ID: mdl-29795348

ABSTRACT

In amniotes, the development of the primitive streak and its accompanying 'organizer' define the first stages of gastrulation. Although these structures have been characterized in detail in model organisms, the human primitive streak and organizer remain a mystery. When stimulated with BMP4, micropatterned colonies of human embryonic stem cells self-organize to generate early embryonic germ layers 1 . Here we show that, in the same type of colonies, Wnt signalling is sufficient to induce a primitive streak, and stimulation with Wnt and Activin is sufficient to induce an organizer, as characterized by embryo-like sharp boundary formation, markers of epithelial-to-mesenchymal transition and expression of the organizer-specific transcription factor GSC. Moreover, when grafted into chick embryos, human stem cell colonies treated with Wnt and Activin induce and contribute autonomously to a secondary axis while inducing a neural fate in the host. This fulfils the most stringent functional criteria for an organizer, and its discovery represents a milestone in human embryology.


Subject(s)
Nodal Protein/metabolism , Organizers, Embryonic/embryology , Organizers, Embryonic/metabolism , Wnt Proteins/metabolism , Wnt Signaling Pathway , Activins/metabolism , Animals , Bone Morphogenetic Protein 4/metabolism , Cell Line , Chick Embryo , Epithelial-Mesenchymal Transition , Goosecoid Protein/metabolism , Human Embryonic Stem Cells/cytology , Human Embryonic Stem Cells/metabolism , Humans , Mice , Nerve Tissue/cytology , Nerve Tissue/embryology , Nerve Tissue/metabolism , Organizers, Embryonic/cytology , Primitive Streak/cytology , Primitive Streak/metabolism
20.
Stem Cell Res Ther ; 9(1): 2, 2018 01 05.
Article in English | MEDLINE | ID: mdl-29304842

ABSTRACT

BACKGROUND: Pluripotent stem cells hold great promise for regenerative medicine. However, before clinical application, reproducible protocols for pluripotent stem cell differentiation should be established. Extracellular signal-regulated protein kinase (ERK) signaling plays a central role for the self-renewal of epiblast stem cells (EpiSCs), but its role for subsequent germ layer differentiation is still ambiguous. We proposed that ERK could modulate differentiation of the epiblast. METHODS: PD0325901 was used to inhibit ERK activation during the differentiation of embryonic stem cells and EpiSCs. Immunofluorescence, western blot analysis, real-time PCR and flow cytometry were used to detect germ layer markers and pathway activation. RESULTS: We demonstrate that the ERK phosphorylation level is lower in neuroectoderm of mouse E7.5 embryos than that in the primitive streak. ERK inhibition results in neural lineage commitment of epiblast. Mechanistically, PD0325901 abrogates the expression of primitive streak markers by ß-catenin retention in the cytoplasm, and inhibits the expression of OCT4 and NANOG during EpiSC differentiation. Thus, EpiSCs differentiate into neuroectodermal lineage efficiently under PD0325901 treatment. These results suggest that neuroectoderm differentiation does not require extrinsic signals, supporting the default differentiation of neural lineage. CONCLUSIONS: We report that a single ERK inhibitor, PD0325901, can specify epiblasts and EpiSCs into neural-like cells, providing an efficient strategy for neural differentiation.


Subject(s)
Embryonic Stem Cells/cytology , Extracellular Signal-Regulated MAP Kinases/antagonists & inhibitors , Germ Layers/cytology , Neural Plate/cytology , Neurogenesis/physiology , Primitive Streak/cytology , Animals , Benzamides/pharmacology , Cells, Cultured , Diphenylamine/analogs & derivatives , Diphenylamine/pharmacology , Extracellular Signal-Regulated MAP Kinases/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Nanog Homeobox Protein/biosynthesis , Neural Plate/metabolism , Octamer Transcription Factor-3/biosynthesis , Octamer Transcription Factor-3/genetics , Phosphorylation , Primitive Streak/metabolism , beta Catenin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...