Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 16(11): e0258682, 2021.
Article in English | MEDLINE | ID: mdl-34847154

ABSTRACT

The prion protein (PrP) is best known for its ability to cause fatal neurodegenerative diseases in humans and animals. Here, we revisited its molecular environment in the brain using a well-developed affinity-capture mass spectrometry workflow that offers robust relative quantitation. The analysis confirmed many previously reported interactions. It also pointed toward a profound enrichment of Na,K-ATPases (NKAs) in proximity to cellular PrP (PrPC). Follow-on work validated the interaction, demonstrated partial co-localization of the ATP1A1 and PrPC, and revealed that cells exposed to cardiac glycoside (CG) inhibitors of NKAs exhibit correlated changes to the steady-state levels of both proteins. Moreover, the presence of PrPC was observed to promote the ion uptake activity of NKAs in a human co-culture paradigm of differentiated neurons and glia cells, and in mouse neuroblastoma cells. Consistent with this finding, changes in the expression of 5'-nucleotidase that manifest in wild-type cells in response to CG exposure can also be observed in untreated PrPC-deficient cells. Finally, the endoproteolytic cleavage of the glial fibrillary acidic protein, a hallmark of late-stage prion disease, can also be induced by CGs, raising the prospect that a loss of NKA activity may contribute to the pathobiology of prion diseases.


Subject(s)
Prion Proteins/metabolism , Sodium-Potassium-Exchanging ATPase/metabolism , 5'-Nucleotidase/metabolism , Animals , Brain/metabolism , Calpain/metabolism , Cardiac Glycosides/pharmacology , Glial Fibrillary Acidic Protein/metabolism , Mice , Models, Biological , Prion Proteins/deficiency , Protein Binding/drug effects , Protein Isoforms/metabolism , Protein Subunits/metabolism , Reproducibility of Results
2.
Biochem Biophys Res Commun ; 551: 1-6, 2021 04 30.
Article in English | MEDLINE | ID: mdl-33713980

ABSTRACT

Shadoo and PrP belongs to the same protein family, whose biological function remains poorly understood. Previous experiments reported potential functional redundancies or antagonisms between these two proteins, depending on the tissue analysed. While knockdown experiments suggested the requirement of Shadoo in the absence of PrP during early mouse embryogenesis, knockout ones, on the contrary, highlighted little impact, if any, of the double-knockout of these two loci. In the present study, we reinvestigated the phenotype associated with the concomitant knockout of these two genes using newly produced FVB/N Sprn knockout mice. In this genetic background, the combined two genes' knockout induces intra-uterine growth retardations, likely resulting from placental failures highlighted by transcriptomic analyses that revealed potential redundant or antagonist roles of these two proteins in different developmental-related pathways. It also induced an increased perinatal-lethality and ascertained the role of these two loci in the lactation process.


Subject(s)
Nerve Tissue Proteins/metabolism , Prion Proteins/metabolism , Reproduction/physiology , Animals , Animals, Newborn/growth & development , Embryonic Development , Female , GPI-Linked Proteins , Genes, Lethal , Lactation/genetics , Lactation/physiology , Male , Mice , Mice, Knockout , Mice, Transgenic , Nerve Tissue Proteins/deficiency , Nerve Tissue Proteins/genetics , Phenotype , Placentation , Pregnancy , Prion Proteins/deficiency , Prion Proteins/genetics , Reproduction/genetics , Transcriptome
3.
Cell Mol Life Sci ; 78(5): 2157-2167, 2021 Mar.
Article in English | MEDLINE | ID: mdl-32875355

ABSTRACT

Inherited fatty acid oxidation diseases in their mild forms often present as metabolic myopathies. Carnitine Palmitoyl Transferase 2 (CPT2) deficiency, one such prototypical disorder is associated with compromised myotube differentiation. Here, we show that CPT2-deficient myotubes exhibit defects in focal adhesions and redox balance, exemplified by increased SOD2 expression. We document unprecedented alterations in the cellular prion protein PrPC, which directly arise from the failure in CPT2 enzymatic activity. We also demonstrate that the loss of PrPC function in normal myotubes recapitulates the defects in focal adhesion, redox balance and differentiation hallmarks monitored in CPT2-deficient cells. These results are further corroborated by studies performed in muscles from Prnp-/- mice. Altogether, our results unveil a molecular scenario, whereby PrPC dysfunction governed by faulty CPT2 activity may drive aberrant focal adhesion turnover and hinder proper myotube differentiation. Our study adds a novel facet to the involvement of PrPC in diverse physiopathological situations.


Subject(s)
Carnitine O-Palmitoyltransferase/genetics , Focal Adhesions/genetics , Muscle Fibers, Skeletal/metabolism , Muscular Diseases/genetics , Prion Proteins/genetics , Animals , Carnitine O-Palmitoyltransferase/deficiency , Cells, Cultured , Focal Adhesions/metabolism , Humans , Mice, Knockout , Muscle Fibers, Skeletal/cytology , Muscular Diseases/metabolism , Myogenic Regulatory Factor 5/genetics , Myogenic Regulatory Factor 5/metabolism , Oxidation-Reduction , Prion Diseases/genetics , Prion Diseases/metabolism , Prion Proteins/deficiency , RNA Interference , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism
4.
Biochem Biophys Res Commun ; 523(2): 375-381, 2020 03 05.
Article in English | MEDLINE | ID: mdl-31870551

ABSTRACT

Patients with metastatic melanoma have a poorer prognosis. Prion protein (PrP) in melanoma is known to play an important role in cancer cell migration and invasion by interacting with filamin A (FLNa), a cytolinker protein. To investigate if PrP may contribute to cancer cell mobility independent of its binding to FLNa, we knocked out PRNP in M2 melanoma cell, which lacked FLNa expression. We found that deletion of PRNP in M2 significantly reduced its motility. When PRNP was deleted, the level of Akt was decreased. As a consequence, phosphorylation of small heat shock protein (hsp27) was also reduced, which resulted in polymerization of F-actin rendering the cells less migratory. Accordingly, when PrP was re-expressed in PRNP null M2 cells, the mobility of the recurred cells was rescued, so were the expression levels of Akt and phosphorylated hsp27, resulting in a decrease in the polymerization of F-actin. These results revealed that PrP can play a FLNa independent role in cytoskeletal organization and tumor cell migration by modulating Akt-hsp27-F-actin axis.


Subject(s)
Heat-Shock Proteins/metabolism , Melanoma/metabolism , Molecular Chaperones/metabolism , Prion Proteins/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Actins/metabolism , Cell Line, Tumor , Cell Movement/physiology , Filamins/deficiency , Filamins/genetics , Filamins/metabolism , Gene Knockout Techniques , Gene Silencing , Humans , Melanoma/genetics , Melanoma/pathology , Neoplasm Invasiveness/pathology , Neoplasm Invasiveness/physiopathology , Prion Proteins/deficiency , Prion Proteins/genetics , Signal Transduction , p38 Mitogen-Activated Protein Kinases/metabolism
5.
Brain ; 142(2): 249-254, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30601948

ABSTRACT

α-Synuclein oligomers are crucial players in the pathogenesis of Parkinson's disease. Some mechanisms involved in α-synuclein oligomer detrimental effects include membrane damage, neuroinflammation and protein-protein interactions. Recently, the cellular prion protein (PrPC) emerged as an interactor of α-synuclein oligomers, apparently mediating their detrimental activities. Through direct in vivo and in vitro approaches we herein investigated the existence of a direct cross-talk between α-synuclein oligomers and PrPC. In vitro, we assessed α-synuclein oligomer toxicity by comparing the effect in Prnp+/+ versus PrPC knockout (Prnp0/0) hippocampal neurons. Through an in vivo acute mouse model, where α-synuclein oligomers injected intracerebroventricularly induce memory impairment and neuroinflammation, we verified whether these detrimental effects were preserved in Prnp0/0 mice. In addition, PrPC-α-synuclein oligomer direct binding was investigated through surface plasmon resonance. We found that PrPC was not mandatory to mediate α-synuclein oligomer detrimental effects in vitro or in vivo. Indeed, α-synuclein oligomer toxicity was comparable in Prnp+/+ and Prnp0/0 neurons and both Prnp+/+ and Prnp0/0 mice injected with α-synuclein oligomers displayed memory deficit and hippocampal gliosis. Moreover, surface plasmon resonance analyses ruled out PrPC-α-synuclein oligomer binding. Our findings indicate that PrPC neither binds α-synuclein oligomers nor mediates their detrimental actions. Therefore, it is likely that PrPC-dependent and PrPC-independent pathways co-exist in Parkinson's disease.


Subject(s)
Cell Survival/physiology , Hippocampus/metabolism , Hippocampus/pathology , Prion Proteins/metabolism , alpha-Synuclein/metabolism , Animals , Cell Survival/drug effects , Cells, Cultured , Dose-Response Relationship, Drug , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , Prion Proteins/deficiency , Protein Binding/physiology , alpha-Synuclein/pharmacology
7.
Radiother Oncol ; 120(1): 175-83, 2016 07.
Article in English | MEDLINE | ID: mdl-27406443

ABSTRACT

BACKGROUND & AIM: Despite extensive study of the contribution of cell death and apoptosis to radiation-induced acute intestinal injury, our knowledge of the signaling mechanisms involved in epithelial barrier dysfunction remains inadequate. Because PrP(c) plays a key role in intestinal homeostasis by renewing epithelia, we sought to study its role in epithelial barrier function after irradiation. DESIGN: Histology, morphometry and plasma FD-4 levels were used to examine ileal architecture, wound healing, and intestinal leakage in PrP(c)-deficient (KO) and wild-type (WT) mice after total-body irradiation. Impairment of the PrP(c) Src pathway after irradiation was explored by immunofluorescence and confocal microscopy, with Caco-2/Tc7 cells. Lastly, dasatinib treatment was used to switch off the Src pathway in vitro and in vivo. RESULTS: The decrease in radiation-induced lethality, improved intestinal wound healing, and reduced intestinal leakage promoted by PrP(c) deficiency demonstrate its involvement in acute intestinal damage. Irradiation of Cacao2/Tc7 cells induced PrP(c) to target the nuclei associated with Src activation. Finally, the protective effect triggered by dasatinib confirmed Src involvement in radiation-induced acute intestinal toxicity. CONCLUSION: Our data are the first to show a role for the PrP(c)-Src pathway in acute intestinal response to radiation injury and offer a novel therapeutic opportunity.


Subject(s)
Dasatinib/therapeutic use , Intestines/radiation effects , Prion Proteins/deficiency , Radiation Injuries/prevention & control , src-Family Kinases/antagonists & inhibitors , Animals , CSK Tyrosine-Protein Kinase , Caco-2 Cells , Humans , Mice , Mice, Inbred C57BL , Prion Proteins/physiology , Whole-Body Irradiation , src-Family Kinases/physiology
8.
PLoS One ; 11(6): e0156779, 2016.
Article in English | MEDLINE | ID: mdl-27327609

ABSTRACT

A popular method for studying the function of a given protein is to generate and characterize a suitable model deficient for its expression. For the prion protein (PrP), best known for its role in several invariably fatal neurodegenerative diseases, a natural choice, therefore, would be to undertake such studies with brain samples. We recently documented the surprising observation that PrP deficiency caused a loss or enhancement of NCAM1 polysialylation, dependent on the cell model used. To identify possible causes for this disparity, we set out to systematically investigate the consequence of PrP deficiency on the global proteome in brain tissue and in four distinct cell models. Here we report that PrP deficiency causes robust but surprisingly divergent changes to the global proteomes of cell models but has no discernible impact on the global brain proteome. Amongst >1,500 proteins whose levels were compared in wild-type and PrP-deficient models, members of the MARCKS protein family exhibited pronounced, yet cell model-dependent changes to their steady-state levels. Follow-up experiments revealed that PrP collaborates with members of the MARCKS protein family in its control of NCAM1 polysialylation. We conclude that the physiological function of PrP may be masked in analyses of complex brain samples but its cell-type specific influence on a lipid raft-based NCAM1-related cell biology comes to the fore in investigations of specific cell types.


Subject(s)
Brain/metabolism , Models, Biological , Prion Proteins/deficiency , Proteome/metabolism , Amino Acid Sequence , Animals , CD56 Antigen/metabolism , Calmodulin-Binding Proteins , Cell Line , Cluster Analysis , Gene Ontology , Intracellular Signaling Peptides and Proteins/metabolism , Kinetics , Membrane Proteins/metabolism , Mice , Microfilament Proteins , Myristoylated Alanine-Rich C Kinase Substrate , N-Acetylneuraminic Acid/metabolism , Prion Proteins/metabolism , Proteomics , Reproducibility of Results , Sequence Homology, Amino Acid , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...