Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 694
Filter
1.
Food Chem ; 452: 139541, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38718457

ABSTRACT

Identifying aflatoxin-detoxifying probiotics remains a significant challenge in mitigating the risks associated with aflatoxin contamination in crops. Biological detoxification is a popular technique that reduces mycotoxin hazards and garners consumer acceptance. Through multiple rounds of screening and validation tests, Geotrichum candidum XG1 demonstrated the ability to degrade aflatoxin B1 (AFB1) by 99-100%, exceeding the capabilities of mere adsorption mechanisms. Notably, the degradation efficiency was demonstrably influenced by the presence of copper and iron ions in the liquid medium, suggesting a potential role for proteases in the degradation process. Subsequent validation experiments with red pepper revealed an 83% reduction in AFB1 levels following fermentation with G. candidum XG1. Furthermore, mass spectrometry analysis confirmed the disruption of the AFB1 furan ring structure, leading to a subsequent reduction in its toxicity. Collectively, these findings establish G. candidum XG1 as a promising candidate for effective aflatoxin degradation, with potential applications within the food industry.


Subject(s)
Aflatoxin B1 , Food Contamination , Geotrichum , Probiotics , Aflatoxin B1/metabolism , Aflatoxin B1/chemistry , Aflatoxin B1/analysis , Probiotics/metabolism , Probiotics/chemistry , Geotrichum/metabolism , Geotrichum/chemistry , Food Contamination/analysis , Fermentation , Capsicum/chemistry , Capsicum/metabolism , Capsicum/microbiology , China
2.
Curr Microbiol ; 81(6): 164, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38710854

ABSTRACT

Edible bird's nest (EBN), a most highly priced and valuable foodstuff, contains high percentage of proteins and carbohydrates. However, proteins adhering to these carbohydrates make the EBN hard and tough, which need to be boiled as the bird's nest soup to make the Chinese cuisine. To overcome the hard and tough texture of EBN and improve the digestion degrees, the present study screened and identified a probiotic strain Bacillus amyloliquefaciens YZW02 from 5-year stored EBN sample completely solubilizing EBN for the first time. The 24-h B. amyloliquefaciens fermented EBN contained 20.30-21.48 mg/mL of the soluble protein contents with a recovery rate of 98-100%, DPPH radical scavenging rate of 84.76% and ABTS radical scavenging capacity of 41.05%. The mixed fermentation of B. amyloliquefaciens YZW02 and Bacillus natto BN1 were further applied to improve the low-MW peptide percentages and antioxidant activities. The mixed-fermentation of B. natto BN1 with 4-h cultured B. amyloliquefaciens YZW02 had the lowest percentage (82.23%) of >12-kDa proteins/peptides and highest percentages of 3-12 kDa, 1-3 kDa and 0.1-1 kDa peptides of 8.6% ± 0.08, 7.57% ± 0.09, 1.77% ± 0.05 and 0.73% ± 0.05, with the highest DPPH, ABTS and •OH scavenging capacity of 90.23%, 46.45% and 49.12%, respectively. These findings would provide an efficient strategy for improving the solubility and antioxidant activities of EBNs.


Subject(s)
Antioxidants , Bacillus amyloliquefaciens , Birds , Fermentation , Probiotics , Solubility , Bacillus amyloliquefaciens/chemistry , Bacillus amyloliquefaciens/metabolism , Antioxidants/chemistry , Antioxidants/metabolism , Animals , Probiotics/chemistry , Probiotics/metabolism , Birds/microbiology
3.
ACS Nano ; 18(20): 12917-12932, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38720520

ABSTRACT

Inflammatory bowel diseases (IBDs) refer to multifaceted disorders in the intestinal microenvironment and microbiota homeostasis. In view of the broad bioactivity and high compatibility of polyphenols, there is considerable interest in developing a polyphenol-based collaborative platform to remodel the IBD microenvironment and regulate microbiota. Here, we demonstrated the coordination assembly of nanostructured polyphenols to modify probiotics and simultaneously deliver drugs for IBD treatment. Inspired by the distinctive structure of tannic acid (TA), we fabricated nanostructured pBDT-TA by using a self-polymerizable aromatic dithiol (BDT) and TA, which exhibited excellent antioxidant and anti-inflammatory capability in vitro. We thus coated pBDT-TA and sodium alginate (SA) to the surface of Escherichia coli Nissle 1917 layer by layer to construct the collaborative platform EcN@SA-pBDT-TA. The modified probiotics showed improved resistance to oxidative and inflammatory stress, which resulted in superior colon accumulation and retention in IBD model mice. Further, EcN@SA-pBDT-TA could alleviate dextran sulfate sodium (DSS)-induced colitis by controlling the inflammatory response, repairing intestinal barriers, and modulating gut microbiota. Importantly, EcN@SA-pBDT-TA-mediated IBD drug delivery could achieve an improved therapeutic effect in DSS model mice. Given the availability and functionality of polyphenol and prebiotics, we expected that nanostructured polyphenol-modified probiotics provided a solution to develop a collaborative platform for IBD treatment.


Subject(s)
Inflammatory Bowel Diseases , Nanoparticles , Polyphenols , Probiotics , Tannins , Animals , Probiotics/pharmacology , Probiotics/chemistry , Probiotics/administration & dosage , Polyphenols/chemistry , Polyphenols/pharmacology , Mice , Nanoparticles/chemistry , Inflammatory Bowel Diseases/drug therapy , Inflammatory Bowel Diseases/therapy , Tannins/chemistry , Tannins/pharmacology , Mice, Inbred C57BL , Escherichia coli/drug effects , Dextran Sulfate/chemistry , Alginates/chemistry , Alginates/pharmacology , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Antioxidants/chemistry , Antioxidants/pharmacology
4.
Food Chem ; 453: 139644, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-38761735

ABSTRACT

This work developed and characterized the physicochemical properties of a type A gelatin and amidated low-methoxyl pectin complex coacervate (GA-LMAP-CC) hydrogel and evaluated its suitability for preserving the viability of probiotics under in vitro gastrointestinal conditions. The formation of GA-LMAP-CC was achieved via height electrostatic attraction at pH 3 and a mixing ratio of 1, exhibiting thermoreversible gel behavior. The hydrogel had a porosity of 44% and a water absorption capacity of up to 12 times. Water absorption profiles were obtained at different pH values (2, 5, and 7). The influence of GA-LMAP-CC depended on the medium, which controlled the hydration and water absorption rate. GA-LMAP-CC promoted the viability of B. longum BB536 and L. acidophilus strains under simulated gastrointestinal conditions, thereby enhancing their potential for intestinal colonization. The hydrogel has suitable properties for potential application in food and pharmaceutical areas to encapsulate and preserve probiotics.


Subject(s)
Gelatin , Hydrogels , Pectins , Probiotics , Pectins/chemistry , Gelatin/chemistry , Probiotics/chemistry , Hydrogels/chemistry , Microbial Viability/drug effects , Lactobacillus acidophilus/chemistry , Lactobacillus acidophilus/growth & development , Lactobacillus acidophilus/metabolism , Bifidobacterium/growth & development , Bifidobacterium/metabolism , Hydrogen-Ion Concentration , Gastrointestinal Tract/metabolism , Gastrointestinal Tract/microbiology
5.
Int J Biol Macromol ; 269(Pt 2): 132068, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38719001

ABSTRACT

Pullulan was used as the wall material for microencapsulation of L. plantarum CRD7 by spray drying, while isomalto-oligosaccharides (IMO) was used as prebiotic. Also, the effect of different thermal protectants on survival rate during microencapsulation was evaluated. Taguchi orthogonal array design showed that pullulan at 14 % concentration, IMO at 30 % concentration and whey protein isolate at 20 % rate were the optimized wall material, prebiotic and thermal protectant, respectively for microencapsulation of L. plantarum. FESEM images revealed that the spray-dried encapsulates were fibrous similar to those produce by electrospinning, while fluorescence microscopy ascertained that most of the probiotic cells were alive and intact after microencapsulation. The adsorption-desorption isotherm was of Type II and the encapsulate had specific surface area of 1.92 m2/g and mean pore diameter of 15.12 nm. The typical amide II and III bands of the bacterial proteins were absent in the FTIR spectra, suggestive of adequate encapsulation. DSC thermogram showed shifting of melting peaks to wider temperature range due to interactions between the probiotic and wall materials. IMO at 30 % (w/w) along with WPI at 20 % concentration provided the highest storage stability and the lowest rate of cell death of L. plantarum after microencapsulation. Acid and bile salt tolerance results confirmed that microencapsulated L. plantarum could sustain the harsh GI conditions with >7.5 log CFU/g viability. After microencapsulation, L. plantarum also possessed the ability to ferment milk into curd with pH of 4.62.


Subject(s)
Glucans , Lactobacillus plantarum , Prebiotics , Glucans/chemistry , Glucans/pharmacology , Lactobacillus plantarum/chemistry , Spray Drying , Probiotics/chemistry , Microbial Viability/drug effects , Drug Compounding , Whey Proteins/chemistry , Oligosaccharides/chemistry , Oligosaccharides/pharmacology
6.
Food Chem ; 451: 139499, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38703731

ABSTRACT

Paotianxiong (PTX) is a processing product of Aconitum carmichaelii Debx., often used as a tonic food daily. However, the structure and activity of the polysaccharide component that plays a major role still need to be determined. In our work, two new polysaccharides were purified from PTX and named PTXP-1 and PTXP-2. Structural analysis showed that PTXP-1 is a glucan with a molecular weight of 915 Da and a structure of 4)-α-D-Glcp-(1 â†’ as the main chain. PTXP-2 is a glucose arabinoglycan with 4)-α-D-Glcp-(1 â†’ as the main chain, containing 8 glycosidic bonds attached, and a molecular weight of 57.9KDa. In vitro probiotic experiments demonstrated that PTXP-1 could significantly promote probiotic growth and acid production. In vivo experiments demonstrated that both PTXP-1 and PTXP-2 exhibited significant effectiveness in promoting the growth of intestinal probiotics. These findings help expand the application of polysaccharide components extracted from tonic herbs as functional food ingredients.


Subject(s)
Polysaccharides , Prebiotics , Probiotics , Prebiotics/analysis , Polysaccharides/chemistry , Animals , Probiotics/chemistry , Mice , Molecular Weight , Humans , Male , Plant Extracts/chemistry
7.
Braz J Microbiol ; 55(2): 1735-1744, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38727922

ABSTRACT

AIMS: To develop and characterize a functional lactose-free ice cream with added ginger and honey, evaluate the survival of Lacticaseibacillus casei CSL3 under frozen storage and the simulated gastrointestinal tract (GIT), as well as antioxidant activity and product acceptability. METHODS AND RESULTS: The survival of Lacticaseibacillus casei CSL3 was evaluated for 180 days, under frozen storage, and GIT at 60 days. At 15 days of storage, proximal composition, antioxidant activity, color, pH, acidity, fusion, density, overrun, and sensory analysis were performed. Ice cream was an effective food matrix for maintaining the viability of CSL3, with concentrations > 7 log CFU g- 1 during storage and GIT. In addition, the analysis showed overrun and prebiotic characteristics through high values of antioxidant activity and phenolic compounds, good acceptability, and purchase intention. CONCLUSIONS: The product has satisfactory market potential (acceptance rate of 95.19% and purchase intention rate > 96%), and it could become another means of inserting probiotics in food.


Subject(s)
Honey , Ice Cream , Lacticaseibacillus casei , Probiotics , Zingiber officinale , Honey/analysis , Zingiber officinale/chemistry , Ice Cream/microbiology , Ice Cream/analysis , Lacticaseibacillus casei/chemistry , Lacticaseibacillus casei/metabolism , Probiotics/chemistry , Humans , Antioxidants/chemistry , Lactose/metabolism , Gastrointestinal Tract/microbiology , Food Storage , Microbial Viability/drug effects
8.
Int J Biol Macromol ; 270(Pt 1): 131758, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38714282

ABSTRACT

In this study, the whey protein concentrate and xanthan gum complex obtained by specific pH treatment, along with κ-carrageenan (KC), were used to encapsulate Lactobacillus acidophilus JYLA-191 in an emulsion gel system. The effects of crosslinking and KC concentration on the visual characteristics, stability, mechanical properties, and formation mechanism of emulsion gels were investigated. The results of optical imaging, particle size distribution, and rheology exhibited that with the addition of crosslinking agents, denser and more homogeneous emulsion gels were formed, along with a relative decrease in the droplet size and a gradual increase in viscosity. Especially when the concentration of citric acid (CA) was 0.09 wt%, KC was 0.8 wt%, and K+ was present in the system, the double-network emulsion gel was stable at high temperatures and in freezing environments, and the swelling ratio was the lowest (9.41%). Gastrointestinal tract digestive treatments and pasteurization revealed that the probiotics encapsulated in the double-network emulsion gel had a higher survival rate, which was attributed to the synergistic cross-linking of CA and K+ biopolymers to construct the emulsion gels. Overall, this study highlights the potential of emulsion gels to maintain probiotic vitality and provides valuable insights for developing inventive functional foods.


Subject(s)
Carrageenan , Emulsions , Gels , Lactobacillus acidophilus , Polysaccharides, Bacterial , Probiotics , Whey Proteins , Polysaccharides, Bacterial/chemistry , Polysaccharides, Bacterial/pharmacology , Carrageenan/chemistry , Carrageenan/pharmacology , Emulsions/chemistry , Probiotics/chemistry , Whey Proteins/chemistry , Whey Proteins/pharmacology , Gels/chemistry , Lactobacillus acidophilus/drug effects , Rheology , Microbial Viability/drug effects , Particle Size , Viscosity
9.
Chem Commun (Camb) ; 60(40): 5330-5333, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38666704

ABSTRACT

Single-cell nanoencapsulation (SCNE) has great potential in the enhancement of therapeutic effects of probiotic microbes. However, the material scope has been limited to water-soluble compounds to avoid non-biocompatible organic solvents that are harmful to living cells. In this work, the SCNE of probiotic Lactobacillus acidophilus with water-insoluble luteolin and Fe3+ ions is achieved by the vortex-assisted, biphasic water-oil system. The process creates L. acidophilus nanoencapsulated in the luteolin-Fe3+ shells that empower the cells with extrinsic properties, such as resistance to lysozyme attack, anti-ROS ability, and α-amylase-inhibition activity, as well as sustaining viability under acidic conditions. The proposed protocol, embracing water-insoluble flavonoids as shell components in SCNE, will be an advanced add-on to the chemical toolbox for the manipulation of living cells at the single-cell level.


Subject(s)
Lactobacillus acidophilus , Luteolin , Oils , Probiotics , Water , Lactobacillus acidophilus/metabolism , Probiotics/chemistry , Water/chemistry , Luteolin/chemistry , Oils/chemistry , alpha-Amylases/metabolism
10.
Food Chem ; 448: 139117, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38608398

ABSTRACT

This study aimed to determine the impact of supplementation with probiotically fermented chickpea (Cicer arietinum L) seeds on the quality parameters and functional characteristics of wheat bread. The addition of chickpea seeds caused significant changes in the chemical composition of the control wheat bread. The legume-supplemented products exhibited higher values of a* and b* color parameters and higher hardness after 24 h of storage than the control. The application of fermented or unfermented chickpeas contributed to an increase in total polyphenol and flavonoid contents, iron chelating capacity, and antioxidant properties of the final product. The variant containing unfermented seeds had the highest riboflavin content (29.53 ± 1.11 µg/100 g d.w.), Trolox equivalent antioxidant capacity (227.02 ± 7.29 µmol·L-1 TX/100 g d.w.), and free radical scavenging activity (71.37 ± 1.30 % DPPH inhibition). The results of this preliminary research have practical importance in the production of innovative bakery products with potential properties of functional food.


Subject(s)
Antioxidants , Bread , Cicer , Fermentation , Probiotics , Cicer/chemistry , Bread/analysis , Antioxidants/chemistry , Antioxidants/analysis , Probiotics/analysis , Probiotics/chemistry , Seeds/chemistry , Flavonoids/analysis , Flavonoids/chemistry , Polyphenols/chemistry , Polyphenols/analysis , Functional Food/analysis , Triticum/chemistry , Triticum/metabolism
11.
Food Chem ; 448: 139085, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38518444

ABSTRACT

The effects and underlying molecular mechanisms of binary probiotics (Lactiplantibacillus plantarum subsp. plantarum CGMCC 1.5953 and Lacticaseibacillus casei CGMCC 1.5956) on the quality of wolfberry fermented beverages (WFB) were investigated. The results indicated that binary probiotics increased the number of probiotics, anthocyanin (89.92 ± 1.64 mg/L), polyphenol content (283.04 ± 3.81 µg/mL), and odor score (24.19) in WFB. Metabolomics found that they could enhance signal exchange (cyclic AMP) between binary probiotics and improve the utilization of citrulline, d-proline, d-glucose, and d-galactose through galactose metabolism and amino acid biosynthesis pathway to promote probiotics growth. Furthermore, HS-SPME-GC-MS and GS-IMS revealed that the improvement in flavor was mainly due to an increase in the content of the aromatic flavor substances 3-heptanol, glutaraldehyde, and 2-heptanone, and a decrease in the content of the off-flavor substances methyl isobutyl ketone-D and 2-undecanone. This is strategically important for the development of WFB with high probiotic content and unique flavor.


Subject(s)
Anthocyanins , Fermentation , Odorants , Polyphenols , Probiotics , Polyphenols/metabolism , Polyphenols/analysis , Polyphenols/chemistry , Odorants/analysis , Anthocyanins/analysis , Anthocyanins/metabolism , Probiotics/metabolism , Probiotics/analysis , Probiotics/chemistry , Flavoring Agents/metabolism , Flavoring Agents/chemistry
12.
Food Chem ; 448: 138959, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38552464

ABSTRACT

This study aimed to investigate the interaction between L.casei and L.bulgaricus with Polygonatum sibiricum saponins (PSS) and to explore the co-microencapsulation to reduce their loss rate during storage and consumption. 1% PSS was added to the culture broth, and it was found that the growth and metabolism of the strains were accelerated, especially in the compound probiotic group, indicating that PSS has potential for prebiotics. LC-MS observed significant differences in the composition and content of saponins in PSS. The metabolomics results suggest that the addition of PSS resulted in significant changes in the metabolites of probiotics. In addition, it was found that the combination of probiotics and PSS may have stronger hypoglycemic ability (ɑ-glucosidase, HepG2). Finally, a co-microencapsulated delivery system was constructed using zein and isomaltooligosaccharide. This system can achieve more excellent resistance of probiotics and PSS in gastrointestinal fluids, effectively transporting both to the small intestine.


Subject(s)
Drug Compounding , Polygonatum , Probiotics , Saponins , Saponins/chemistry , Saponins/metabolism , Saponins/pharmacology , Humans , Probiotics/metabolism , Probiotics/chemistry , Polygonatum/chemistry , Polygonatum/metabolism , Prebiotics/analysis , Lactobacillus/metabolism , Lactobacillus/chemistry , Lactobacillus/growth & development , Lactobacillales/metabolism , Lactobacillales/growth & development , Lactobacillales/chemistry
13.
Int J Biol Macromol ; 266(Pt 2): 131000, 2024 May.
Article in English | MEDLINE | ID: mdl-38521333

ABSTRACT

In recent years, the development of probiotic film by incorporating probiotics into edible polymers has attracted significant research attention in the field of active packaging. However, the influence of the external environment substantially reduces the vitality of probiotics, limiting their application. Therefore, to improve the probiotic activity, this study devised a novel nanofiber film incorporating chia mucilage protection solution (CPS), gum arabic (GA), pullulan (PUL), and Lactobacillus bulgaricus (LB). SEM images indicated the successful preparation of the nanofiber film incorporating LB. CPS incorporation significantly improved the survival ability of LB, with a live cell count reaching 7.62 log CFU/g after 28 days of storage at 4 °C - an increase of 1 log CFU/g compared to the fiber film without CPS. The results showed that the fiber film containing LB inhibited Escherichia coli and Staphylococcus aureus. Finally, the novel probiotic nanofiber film was applied to beef. The results showed that the shelf life of the beef during the experiments was extended for 2 days at 4 °C. Therefore, the novel probiotic film containing LB was suitable for meat preservation.


Subject(s)
Anti-Bacterial Agents , Glucans , Gum Arabic , Nanofibers , Nanofibers/chemistry , Glucans/chemistry , Glucans/pharmacology , Gum Arabic/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Salvia/chemistry , Lactobacillus delbrueckii , Probiotics/chemistry , Animals , Food Preservation/methods , Red Meat/microbiology , Staphylococcus aureus/drug effects , Plant Mucilage/chemistry , Escherichia coli/drug effects , Cattle , Food Packaging/methods
14.
Benef Microbes ; 15(1): 51-66, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38350470

ABSTRACT

The health benefits of probiotics in the body are predicated on their ability to remain viable in harsh gastrointestinal conditions and complex pathological microenvironments. Casein and gum Arabic (GA), with dual emulsifying and stabilising effects in colloidal systems. Therefore, the objective of this research was to develop a novel microcapsule to encapsulate Lactiplantibacillus plantarum A3 using casein and GA as wall materials to improve the survival of the bacteria during gastrointestinal digestion, storage and lyophilization. The casein and GA composite microcapsules were prepared and characterised by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and scanning electron microscopy (SEM). It was found that the microcapsules had stable morphology, uniform size and spherical shape. The results revealed that the encapsulation of microcapsules significantly improved the survival of L. plantarum A3 in gastrointestinal fluid environment (5.52 × 109 cfu/ml) and lyophilization treatment (6.25 × 109 cfu/ml). Furthermore, the microencapsulated L. plantarum A3 exhibited an improved ability to regulate intestinal microbiota by effectively increasing the relative abundance of Bacteroidetes, Proteobacteria and Actinobacteria and decreasing the relative abundance of Firmicutes in vivo. The findings of the study will help to design a lactic acid bacteria encapsulation system based on the gastrointestinal environment and provide a basis for the development of probiotic functional products.


Subject(s)
Lactobacillus plantarum , Probiotics , Gum Arabic/chemistry , Capsules/chemistry , Caseins , Probiotics/chemistry
15.
PLoS One ; 19(2): e0297900, 2024.
Article in English | MEDLINE | ID: mdl-38324577

ABSTRACT

Due to the distinctive characteristics of probiotics, it is essential to pinpoint strains originating from diverse sources that prove efficacious in addressing a range of pathologies linked to dysfunction of the intestinal barrier. Nine strains of lactic acid bacteria were isolated from two different sources of tepache kefir grains (KAS2, KAS3, KAS4, KAS7, KAL4, KBS2, KBS3, KBL1 and KBL3), and were categorized to the genus Lacticaseibacillus, Liquorilactobacillus, and Lentilactobacillus by 16S rRNA gene. Kinetic behaviors of these strains were evaluated in MRS medium, and their probiotic potential was performed: resistance to low pH, tolerance to pepsin, pancreatin, bile salts, antibiotic resistance, hemolytic activity, and adhesion ability. KAS7 strain presented a higher growth rate (0.50 h-1) compared with KAS2 strain, who presented a lower growth rate (0.29 h-1). KBS2 strain was the only strain that survived the in vitro stomach simulation conditions (29.3%). Strain KBL1 demonstrated significantly higher viability (90.6%) in the in vitro intestine simulation conditions. Strain KAS2 demonstrated strong hydrophilic character with chloroform (85.6%) and xylol (57.6%) and a higher percentage of mucin adhesion (87.1%). However, strains KBS2 (84.8%) and KBL3 (89.5%) showed the highest autoaggregation values. In terms of adhesion to the intestinal epithelium in rats, strains KAS2, KAS3 and KAS4 showed values above 80%. The growth of the strains KAS2, KAS3, KAS4, KBS2, and KBL3 was inhibited by cefuroxime, cefotaxime, tetracycline, ampicillin, erythromycin, and cephalothin. Strains KBS2 (41.9% and 33.5%) and KBL3 (42.5% and 32.8%) had the highest co-aggregation values with S. aureus and E. coli. The results obtained in this study indicate that lactic acid bacteria isolated from tepache can be considered as candidates for potentially probiotic bacteria, laying the foundations to evaluate their probiotic functionality in vivo and thus to be used in the formulation of functional foods.


Subject(s)
Kefir , Lactobacillales , Probiotics , Animals , Rats , Kefir/microbiology , RNA, Ribosomal, 16S/genetics , Escherichia coli/genetics , Staphylococcus aureus/genetics , Lactobacillaceae/genetics , Probiotics/chemistry , Lactobacillales/genetics
16.
Int J Biol Macromol ; 260(Pt 2): 129624, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38262550

ABSTRACT

Lactiplantibacillus plantarum ZJ316 has demonstrated effective alleviation of gastritis and colitis, making it crucial to improve its viability within the gastrointestinal tract. In this study, Chitosan (CS) and pullulan (PUL) encapsulated nanofibers of ZJ316 were prepared using electrospinning, considering both the synergistic effects of prebiotics and probiotics and their protective effects. We found that increasing the CS ratio resulted in elevated conductivity of the polymer solution, while decreasing viscosity and pH. Scanning electron microscopy showed that at a CS: PUL ratio of 1:135, polymer filaments were difficult to form, and nanofiber diameter decreased with higher CS content. X-ray diffraction analysis confirmed the miscibility of CS and PUL, while ATR-FTIR demonstrated the presence of hydrogen bonding interactions between the two materials. Thermal analysis indicated that an increased CS concentration improved the thermal stability of the nanofibers. Based on these findings, the optimal CS:PUL ratio for electrospinning was determined to be 1:60. Encapsulation of ZJ316 in the nanofibers significantly enhanced its survival rate in simulated gastrointestinal fluid compared to free bacteria, with survival rates of 87.24 % (gastric) and 79.71 % (intestinal), respectively. This study provides valuable insights for the development of probiotic functional foods.


Subject(s)
Chitosan , Glucans , Lactobacillus plantarum , Nanofibers , Probiotics , Chitosan/chemistry , Gastrointestinal Tract , Probiotics/chemistry , Polymers/pharmacology , Nanofibers/chemistry
17.
Int J Biol Macromol ; 260(Pt 2): 129615, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38246437

ABSTRACT

To preserve the viability of probiotics during digestion and storage, encapsulation techniques are necessary to withstand the challenges posed by adverse environments. A core-shell structure has been developed to provide protection for probiotics. By utilizing sodium alginate (SA) / Lycium barbarum polysaccharide (LBP) as the core material and chitosan (CS) as the shell, the probiotic load reached 9.676 log CFU/mL. This formulation not only facilitated continuous release in the gastrointestinal tract but also enhanced thermal stability and storage stability. The results obtained from Fourier transform infrared spectroscopy and thermogravimetric analysis confirmed that the addition of LBP and CS affected the microstructure of the gel by enhancing the hydrogen bond force, so as to achieve controlled release. Following the digestion of the gel within the gastrointestinal tract, the released amount was determined to be 9.657 log CFU/mL. The moisture content and storage stability tests confirmed that the encapsulated Lactiplantibacillus plantarum maintained good activity for an extended period at 4 °C, with an encapsulated count of 8.469 log CFU/mL on the 28th day. In conclusion, the newly developed core-shell gel in this study exhibits excellent probiotic protection and delivery capabilities.


Subject(s)
Chitosan , Drugs, Chinese Herbal , Probiotics , Alginates/chemistry , Chitosan/chemistry , Microbial Viability , Gels , Probiotics/chemistry
18.
Int J Biol Macromol ; 260(Pt 2): 129614, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38246468

ABSTRACT

The potential application of succinylated chickpea protein (SCP) as a wall material for spray-dried microencapsulated probiotics was investigated. The results showed that succinylation increased the surface charge of chickpea proteins (CP) and reduced the particle size of the proteins. Meanwhile, succinylated modification decreased the solubility of protein under acidic conditions and increased the solubility in alkaline conditions. The effects of spray drying and in vitro gastrointestinal digestion on probiotics were investigated by microencapsulating chickpea protein with different degrees of N-succinylation. The results showed that all microcapsules had similar morphology, particle size and low water content. The microcapsules prepared by succinylated chickpea protein showed better stability and viability during spray drying and gastrointestinal digestion. The protective effect of probiotics was better as the degree of N-succinylation increased. In particular, the SCP-3-P sample (10 % succinic anhydride modified CP and maltodextrin) lost only 0.29 Log CFU/g throughout gastrointestinal digestion. The superior protective effect provided by succinylated CP in simulated gastric fluid (SGF) was mainly attributed to the reaction of succinic anhydride with protein to cause protein aggregation under gastric acidic conditions, reducing the infiltration of gastric acid and pepsin and maintaining the structural integrity of the microcapsules. Therefore, these findings provide a new strategy for probiotic intestinal delivery and application of chickpea protein.


Subject(s)
Cicer , Probiotics , Succinic Anhydrides , Drug Compounding/methods , Capsules/chemistry , Probiotics/chemistry , Digestion , Microbial Viability
19.
J Sci Food Agric ; 104(5): 2842-2850, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38012057

ABSTRACT

BACKGROUND: Encapsulation is commonly used to protect probiotics against harsh stresses. Thus, the fabrication of microcapsules with special structure is critical. In this work, microcapsules with the structure of S/O/W (solid-in-oil-in-water) emulsion were prepared for probiotics, with butterfat containing probiotics as the inner core and with whey protein isolate fibrils (WPIF) and antioxidants (epigallocatechin gallate, EGCG; glutathione, GSH) as the outer shell. RESULTS: Based on the high viscosity and good emulsifying ability of WPIF, dry well-dispersed microcapsules were successfully prepared via the stabilization of the butterfat emulsion during freeze-drying with 30-50 g L-1 WPIF. WPIF, WPIF + EGCG, and WPIF + GSH microcapsules with 50 g L-1 WPIF protected probiotics very well against different stresses and exhibited similar inactivation results, indicating that EGCG and GSH exerted neither harm or protection on probiotics. This significantly reduced the harmful effects of antioxidants on probiotics. Almost all the probiotics survived after pasteurization, which was critical for the use of probiotics in other foods. The inactivation values of probiotics in microcapsules were around 1 log in simulated gastric juice (SGJ), about 0.5 log in simulated intestinal juice (SIJ), and around 1 log after 40 days of ambient storage. CONCLUSION: Dry S/O/W microcapsule, with butterfat containing probiotics as the inner core and WPIF as the outer shell, significantly increased the resistance of probiotics to harsh environments. This work proposed a preparation method of dry S/O/W microcapsule with core/shell structure, which could be used in the encapsulation of probiotics and other bioactive ingredients.


Subject(s)
Probiotics , Capsules/chemistry , Drug Compounding/methods , Emulsions/chemistry , Freeze Drying , Probiotics/chemistry
20.
Food Funct ; 15(2): 747-765, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38117188

ABSTRACT

Bacillus probiotics exhibit considerable economic potential owing to their heightened resilience to external stressors and relatively lower costs related to production and preservation. Although Bacillus paralicheniformis has been acknowledged as a plant-promoting bacterium for a long time, understanding its potential as a probiotic is still in its nascent stages. In this study, the safety and probiotic characteristics of a strain of HMPM220325, isolated from artisanal fruit dairy products, were examined through whole-genome sequencing and phenotypic analysis. The whole genome of HMPM220325 was analyzed for antimicrobial resistance genes, pathogenicity factors, and genes associated with probiotic traits including stress resistance, spore formation, gut adhesion, competitive exclusion of pathogens, bacteriocin expression, and carbohydrate metabolism related to prebiotic utilization. Also, wet lab experiments were conducted for the characterization of probiotics. The identification of the organism as B. paralicheniformis was verified. Its safety was assessed through in silico analysis, the haemolytic activity test, and the acute oral toxicity test. B. paralicheniformis HMPM220325 demonstrated its ability to survive in the pH range of 4-10 and bile salt concentrations of 0-0.9% (w/v), tolerate temperatures between 20 and 60 °C, and exhibit a robust antioxidant capacity. Moreover, B. paralicheniformis HMPM220325 demonstrated a moderate level of hydrophobicity, had the ability to form biofilms, achieved a self-aggregation rate of 51.77 ± 1.01% within 6 hours, and successfully colonized the mouse intestine for a duration of up to 17 days. Additionally, the genome of B. paralicheniformis HMPM220325 contains three gene clusters associated with the biosynthesis of bacteriocins and exhibits co-aggregation with Staphylococcus aureus, Pseudomonas aeruginosa, and Salmonella enterica serovar Typhimurium. The findings of the genomic analysis align with those obtained from the experimental investigation, thereby substantiating the potential of B. paralicheniformis HMPM220325 as a probiotic suitable for incorporation in dairy functional foods and feed applications.


Subject(s)
Bacillus , Bacteriocins , Probiotics , Animals , Mice , Fruit/metabolism , Bacillus/genetics , Bacillus/metabolism , Bacteriocins/genetics , Bacteriocins/metabolism , Dairy Products , Probiotics/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...