Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.848
Filter
1.
FASEB J ; 38(9): e23630, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38713100

ABSTRACT

Heat shock proteins (HSPs) are a group of highly conserved proteins found in a wide range of organisms. In recent years, members of the HSP family were overexpressed in various tumors and widely involved in oncogenesis, tumor development, and therapeutic resistance. In our previous study, DNAJC24, a member of the DNAJ/HSP40 family of HSPs, was found to be closely associated with the malignant phenotype of hepatocellular carcinoma. However, its relationship with other malignancies needs to be further explored. Herein, we demonstrated that DNAJC24 exhibited upregulated expression in LUAD tissue samples and predicted poor survival in LUAD patients. The upregulation of DNAJC24 expression promoted proliferation and invasion of LUAD cells in A549 and NCI-H1299 cell lines. Further studies revealed that DNAJC24 could regulate the PI3K/AKT signaling pathway by affecting AKT phosphorylation. In addition, a series of experiments such as Co-IP and mass spectrometry confirmed that DNAJC24 could directly interact with PCNA and promoted the malignant phenotypic transformation of LUAD. In conclusion, our results suggested that DNAJC24 played an important role in the progression of LUAD and may serve as a specific prognostic biomarker for LUAD patients. The DNAJC24/PCNA/AKT axis may be a potential target for future individualized and precise treatment of LUAD patients.


Subject(s)
Cell Proliferation , HSP40 Heat-Shock Proteins , Proliferating Cell Nuclear Antigen , Proto-Oncogene Proteins c-akt , Humans , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/genetics , Phosphorylation , HSP40 Heat-Shock Proteins/metabolism , HSP40 Heat-Shock Proteins/genetics , Proliferating Cell Nuclear Antigen/metabolism , Proliferating Cell Nuclear Antigen/genetics , Male , Cell Line, Tumor , Female , Mice, Nude , Gene Expression Regulation, Neoplastic , Mice , Signal Transduction , Animals , Disease Progression , Mice, Inbred BALB C , Middle Aged , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Lung Neoplasms/genetics
2.
Microb Biotechnol ; 17(4): e14471, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38646975

ABSTRACT

Proliferating cell nuclear antigen (PCNA) is an essential factor for DNA metabolism. The influence of PCNA on DNA replication and repair, combined with the high expression rate of PCNA in various tumours renders PCNA a promising target for cancer therapy. In this context, an autodisplay-based screening method was developed to identify peptidic PCNA interaction inhibitors. A 12-mer randomized peptide library consisting of 2.54 × 106 colony-forming units was constructed and displayed at the surface of Escherichia coli BL21 (DE3) cells by autodisplay. Cells exhibiting an enhanced binding to fluorescent mScarlet-I-PCNA were enriched in four sorting rounds by flow cytometry. This led to the discovery of five peptide variants with affinity to mScarlet-I-PCNA. Among these, P3 (TCPLRWITHDHP) exhibited the highest binding signal. Subsequent flow cytometric analysis revealed a dissociation constant of 0.62 µM for PCNA-P3 interaction. Furthermore, the inhibition of PCNA interactions was investigated using p15, a PIP-box containing protein involved in DNA replication and repair. P3 inhibited the PCNA-p1551-70 interaction with a half maximal inhibitory activity of 16.2 µM, characterizing P3 as a potent inhibitor of the PCNA-p15 interaction.


Subject(s)
Escherichia coli , Peptide Library , Proliferating Cell Nuclear Antigen , Protein Binding , Proliferating Cell Nuclear Antigen/metabolism , Proliferating Cell Nuclear Antigen/genetics , Proliferating Cell Nuclear Antigen/chemistry , Escherichia coli/genetics , Escherichia coli/metabolism , Flow Cytometry , Drug Evaluation, Preclinical/methods , Cell Surface Display Techniques/methods , Humans , Peptides/metabolism , Peptides/genetics , Peptides/chemistry , Peptides/pharmacology
3.
Cell Mol Biol (Noisy-le-grand) ; 70(4): 85-89, 2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38678624

ABSTRACT

We aimed to explore the effects of silencing NOD-like receptor protein 3 (NLRP3) on proliferation of psoriasis-like HaCaT cells and expressions of cytokines. HaCaT cells were treated with human keratinocyte growth factor (KGF) and were divided into KGF group, negative control group, NLRP3-RNAi group and control group. Cells proliferation was detected by CCK8, cell clone formation rate was detected by clone formation assay, distribution of cells cycle was detected by flow cytometry, expressions of cyclin B1 (Cyclin B1), cyclin-dependent kinase 2 (CDK2), Ki67 and proliferating cell nuclear antigen (PCNA) proteins were detected by Western blot, and levels of interleukin (IL)-17, IL-23, IL-6 and tumor necrosis factor α (TNF-α) were detected by enzyme-linked immunosorbent assay. Compared with control group, expressions of NLRP3 mRNA and protein, proliferation rate and clonal formation rate were increased in KGF group, percentage of cells in G0/G1 phase was decreased, percentage of cells in S phase was increased, expressions of Cyclin B1, CDK2, Ki67 and PCNA proteins were increased, and levels of IL-17, IL-23, IL-6 and TNF-α were increased. Compared with negative control group, expressions of NLRP3 mRNA and protein, proliferation rate and clonal formation rate were decreased in NLRP3-RNAi group, percentage of cells in G0/G1 phase was increased, percentage of cells in S phase was decreased, expressions of Cyclin B1, CDK2, Ki67 and PCNA proteins were decreased, and levels of IL-17, IL-23, IL-6 and TNF-α were decreased. Silencing NLRP3 gene can inhibit the proliferation of psoriasis-like HaCaT cells, arrest cell cycle, inhibit the expressions of cell proliferation-related proteins and reduce levels of pro-inflammatory factors.


Subject(s)
Cell Proliferation , Cytokines , NLR Family, Pyrin Domain-Containing 3 Protein , Psoriasis , Humans , Cell Cycle/genetics , Cell Proliferation/genetics , Cyclin B1/metabolism , Cyclin B1/genetics , Cyclin-Dependent Kinase 2/metabolism , Cyclin-Dependent Kinase 2/genetics , Cytokines/metabolism , Gene Silencing , HaCaT Cells , Interleukin-17/metabolism , Interleukin-17/genetics , Interleukin-23/metabolism , Interleukin-23/genetics , Interleukin-6/metabolism , Interleukin-6/genetics , Ki-67 Antigen/metabolism , Ki-67 Antigen/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Proliferating Cell Nuclear Antigen/metabolism , Proliferating Cell Nuclear Antigen/genetics , Psoriasis/genetics , Psoriasis/metabolism , Psoriasis/pathology , RNA Interference , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/genetics
4.
Aging (Albany NY) ; 16(8): 7311-7330, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38687509

ABSTRACT

Cholangiocarcinoma, a prevalent hepatic malignancy, exhibits a progressively rising incidence. While Eukaryotic translation initiation factor 3 subunit B (EIF3B) has been implicated in the occurrence and development of various cancers, its specific roles in cholangiocarcinoma remain unexplored. Immunohistochemical (IHC) analysis was employed to detect EIF3B/PCNA expression in cholangiocarcinoma. Cells were manipulated using short hairpin RNA (shRNA)-mediated lentiviruses or overexpression plasmids. Statistical significance was assessed using the Student's t-test and one-way ANOVA, with P < 0.05 considered statistically significant. EIF3B exhibited robust expression in cholangiocarcinoma, demonstrating a significant correlation with the pathological grade of cholangiocarcinoma patients. Furthermore, modulation of EIF3B expression, either depletion or elevation, demonstrated the ability to inhibit or enhance cholangiocarcinoma cell survival and migration in vitro. Mechanistically, we identified Proliferating Cell Nuclear Antigen (PCNA) as a downstream gene of EIF3B, driving cholangiocarcinoma. EIF3B stabilized PCNA by inhibiting PCNA ubiquitination, a process mediated by E3 ligase SYVN1. Similar to EIF3B, PCNA levels were also abundant in cholangiocarcinoma, and knocking down PCNA impeded cholangiocarcinoma development. Intriguingly, silencing PCNA attenuated the promotion induced by EIF3B overexpression. Furthermore, the elevated P21 protein level in shEIF3B RBE cells was partially attenuated after UC2288 (P21 signaling pathway inhibitor) treatment. Our findings underscored the potential of EIF3B as a therapeutic target for cholangiocarcinoma. Unraveling its functions holds promise for the development of more specific and effective targeted therapy strategies.


Subject(s)
Bile Duct Neoplasms , Cholangiocarcinoma , Eukaryotic Initiation Factor-3 , Proliferating Cell Nuclear Antigen , Ubiquitin-Protein Ligases , Ubiquitination , Animals , Female , Humans , Male , Bile Duct Neoplasms/metabolism , Bile Duct Neoplasms/genetics , Bile Duct Neoplasms/pathology , Cell Line, Tumor , Cell Movement/genetics , Cholangiocarcinoma/metabolism , Cholangiocarcinoma/genetics , Cholangiocarcinoma/pathology , Eukaryotic Initiation Factor-3/metabolism , Eukaryotic Initiation Factor-3/genetics , Gene Expression Regulation, Neoplastic , Proliferating Cell Nuclear Antigen/metabolism , Proliferating Cell Nuclear Antigen/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics
5.
Mol Biol Rep ; 51(1): 518, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38622261

ABSTRACT

BACKGROUND: Cold atmospheric plasma (CAP) has been widely used in biomedical research, especially in vitro cancer therapy. Cutaneous squamous cell carcinoma (CSCC) is a malignant tumor originating from epidermal keratinocytes. However, the mechanism of CAP therapy on CSCC remains unclear. METHODS AND RESULTS: The animal models of CSCC induced by 7,12-dimethylbenz(a) anthracene (DMBA)/12-O-tetradecanoylphorbol-13-acetate (TPA) were constructed. For the CAP treatment group, after each TPA application, CAP was administered for 3 min twice weekly after drying. HE staining were used to detect the pathological status of tumor tissue in each group. The levels of PCNA, Bcl-2, Bax, MMP2 and MMP9 were evaluated by western blot and qPCR. TUNEL staining were used to detect apoptosis in tumor tissues. In vivo, serum samples were used for ELISA of total ROS. MTT assay was used to detect the viability of A431 cells. Western blot and qPCR were used to detect the levels of PCNA, Bcl-2, Bax, MMP2 and MMP9 in A431 cells. A431 cell proliferation was examined by colony formation assay. The proportions of apoptosis of A431 cells were detected by flow cytometry. Transwell assessed the ability of A431 cells migration and proliferation. We found that CAP could induce skin cancer cells apoptosis and inhibit the progress of skin cancer. Through experiments in vitro, reactive oxygen species (ROS) generated by N-acetylcysteine (NAC) and CAP inhibited the proliferation and migration of A431 skin cancer cells while promoting apoptosis. CONCLUSIONS: These evidences suggest the protective effect of CAP in CSCC, and CAP has the potential clinical application of CSCC.


Subject(s)
Carcinoma, Squamous Cell , Plasma Gases , Skin Neoplasms , Animals , Skin Neoplasms/drug therapy , Skin Neoplasms/pathology , Carcinoma, Squamous Cell/drug therapy , Carcinoma, Squamous Cell/pathology , Reactive Oxygen Species/pharmacology , Matrix Metalloproteinase 2/genetics , Matrix Metalloproteinase 9/genetics , Plasma Gases/pharmacology , Proliferating Cell Nuclear Antigen/genetics , bcl-2-Associated X Protein , Apoptosis , Cell Line, Tumor , Cell Proliferation
6.
BMC Genomics ; 25(1): 358, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38605318

ABSTRACT

BACKGROUND: Hox gene family is an important transcription factor that regulates cell process, and plays a role in the process of adipocytes differentiation and fat deposition. Previous transcriptome sequencing studies have indicated that the Homeobox A9 gene (HOXA9) is a candidate gene for regulating the process of bovine lipid metabolism, but the function and specific mechanism of action remain unclear. Therefore, this study aims to explore the role of HOXA9 in the proliferation, differentiation and apoptosis of bovine preadipocytes through gain-of-function and lose-of-function. RESULT: It found HOXA9 highly expressed in bovine adipose tissue, and its expression level changed significantly during adipocytes differentiation process. It gave a hint that HOXA9 may be involved in the process of bovine lipid metabolism. The results of HOXA9 gain-of-function experiments indicated that HOXA9 appeared to act as a negative regulator not only in the differentiation but also in the proliferation of bovine preadipocytes, which is mainly reflected that overexpression of HOXA9 down-regulate the mRNA and protein expression level of PPARγ, CEBPα and FABP4 (P < 0.05). The mRNA expression level of CDK1, CDK2, PCNA, CCNA2, CCNB1, CCND1 and CCNE2, as well as the protein expression of CDK2 also significantly decreased. The decrease of lipid droplets content was the main characteristic of the phenotype (P < 0.01), which further supported the evidence that HOXA9 was a negative regulator of preadipocytes differentiation. The decrease of cell proliferation rate and EdU positive rate, as well as the limitation of transition of preadipocytes from G0/G1 phase to S phase also provided evidence for the inhibition of proliferation. Apart from this above, we noted an interesting phenomenon that overexpression of HOXA9 showed in a significant upregulation of both mRNA and protein level of apoptosis markers, accompanied by a significant increase in cell apoptosis rate. These data led us not to refute the fact that HOXA9 played an active regulatory role in apoptosis. HOXA9 loss-of-function experiments, however, yielded the opposite results. Considering that HOXA9 acts as a transcription factor, we predicted its target genes. Dual luciferase reporter assay system indicated that overexpression of HOXA9 inhibits activity of PCNA promoter. CONCLUSION: Taken together, we demonstrated for the first time that HOXA9 played a role as a negative regulatory factor in the differentiation and proliferation of preadipocytes, but played a positive regulatory role in apoptosis, and it may play a regulatory role by targeting PCNA. This study provides basic data for further exploring the regulatory network of intramuscular fat deposition in bovine.


Subject(s)
Adipocytes , Genes, Homeobox , Animals , Cattle , Adipocytes/metabolism , Proliferating Cell Nuclear Antigen/genetics , Proliferating Cell Nuclear Antigen/metabolism , Cell Differentiation/genetics , Cell Proliferation , Transcription Factors/metabolism , Apoptosis/genetics , RNA, Messenger/metabolism , Adipogenesis/genetics
7.
Int J Mol Sci ; 25(6)2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38542333

ABSTRACT

DNA Damage Tolerance (DDT) mechanisms allow cells to bypass lesions in the DNA during replication. This allows the cells to progress normally through the cell cycle in the face of abnormalities in their DNA. PCNA, a homotrimeric sliding clamp complex, plays a central role in the coordination of various processes during DNA replication, including the choice of mechanism used during DNA damage bypass. Mono-or poly-ubiquitination of PCNA facilitates an error-prone or an error-free bypass mechanism, respectively. In contrast, SUMOylation recruits the Srs2 helicase, which prevents local homologous recombination. The Elg1 RFC-like complex plays an important role in unloading PCNA from the chromatin. We analyze the interaction of mutations that destabilize PCNA with mutations in the Elg1 clamp unloader and the Srs2 helicase. Our results suggest that, in addition to its role as a coordinator of bypass mechanisms, the very presence of PCNA on the chromatin prevents homologous recombination, even in the absence of the Srs2 helicase. Thus, PCNA unloading seems to be a pre-requisite for recombinational repair.


Subject(s)
Saccharomyces cerevisiae Proteins , Proliferating Cell Nuclear Antigen/genetics , Proliferating Cell Nuclear Antigen/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , DNA Damage , DNA Helicases/genetics , DNA Helicases/metabolism , Homologous Recombination , DNA Replication , DNA/genetics , DNA/metabolism , Chromatin/genetics , Chromatin/metabolism , Carrier Proteins/metabolism
8.
J Anim Sci ; 1022024 Jan 03.
Article in English | MEDLINE | ID: mdl-38483185

ABSTRACT

Betaine is widely used as a feed additive in the chicken industry to promote laying performance and growth performance, yet it is unknown whether betaine can be used in geese to improve the laying performance of goose breeders and the growth traits of offspring goslings. In this study, laying goose breeders at 39 wk of age were fed basal (Control, CON) or betaine-supplemented diets at low (2.5 g/kg, LBT) or high (5 g/kg, HBT) levels for 7 wk, and the breeder eggs laid in the last week were collected for incubation. Offspring goslings were examined at 35 and 63 d of age. The laying rate tended to be increased (P = 0.065), and the feed efficiency of the breeders was improved by betaine supplementation, while the average daily gain of the offspring goslings was significantly increased (P < 0.05). Concentrations of insulin-like growth factor 2 (IGF-2) in serum and liver were significantly increased in the HBT group (P < 0.05), with age-dependent alterations of serum T3 levels. Concurrently, hepatic mRNA expression of the IGF gene family was significantly increased in goslings derived from betaine-treated breeders (P < 0.05). A higher ratio of proliferating cell nuclear antigen (PCNA)-immunopositive nuclei was found in the liver sections of the HBT group, which was confirmed by significantly upregulated hepatic expression of PCNA mRNA and protein (P < 0.05). Moreover, hepatic expression of thyroxine deiodinase type 1 (Dio1) and thyroid hormone receptor ß (TRß) was also significantly upregulated in goslings of the HBT group (P < 0.05). These changes were associated with significantly higher levels of global DNA 5-mC methylation, together with increased expression of methyl transfer genes (P < 0.05), including betaine-homocysteine methyltransferase (BHMT), glycine N-methyltransferase (GNMT), and DNA (cytosine-5-)-methyltransferase 1 (DNMT1). The promoter regions of IGF-2 genes, as well as the predicted TRß binding site on the IGF-2 gene, were significantly hypomethylated (P < 0.05). These results indicate that gosling growth can be improved by dietary betaine supplementation in goose breeders via epigenetic modulation of the IGF gene family, especially IGF-2, in the liver.


The goose industry plays important roles in economics, cultures, and ecosystems, yet the low laying and growth rates of many indigenous breeds hinders the development of the goose farming. Betaine, an important methyl donor, is commonly used as a feed additive in livestock and poultry to enhance animal growth. Dietary supplementation of betaine in laying hens or gestational sows has been reported to promote the growth of their offspring. Here, we sought to investigate whether and how dietary betaine supplementation affects the growth and development of offspring goslings. In this study, goose breeders, both male and female, were fed a basal diet supplemented respectively with 0, 2.5, or 5 g/kg betaine for 7 wk. Goslings hatched from the breeder eggs of different groups were raised under the same standard condition for assessing the growth performance. Parental betaine increases the growth rate of offspring goslings with decreased DNA methylation on the IGF-2 gene promoter and increased expression of the IGF-2 gene in the liver. These results provide scientific evidence for the inter-generational effect of betaine on gosling growth.


Subject(s)
Betaine , Insulin-Like Growth Factor II , Animals , Betaine/pharmacology , Insulin-Like Growth Factor II/genetics , Geese/genetics , Geese/metabolism , Proliferating Cell Nuclear Antigen/genetics , Proliferating Cell Nuclear Antigen/metabolism , Ovum/metabolism , Dietary Supplements , Liver/metabolism , Diet/veterinary , Chickens/genetics , Chickens/metabolism , Epigenesis, Genetic , RNA, Messenger/metabolism , Animal Feed/analysis
9.
Mol Cell ; 84(7): 1224-1242.e13, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38458201

ABSTRACT

Although mismatch repair (MMR) is essential for correcting DNA replication errors, it can also recognize other lesions, such as oxidized bases. In G0 and G1, MMR is kept in check through unknown mechanisms as it is error-prone during these cell cycle phases. We show that in mammalian cells, D-type cyclins are recruited to sites of oxidative DNA damage in a PCNA- and p21-dependent manner. D-type cyclins inhibit the proteasomal degradation of p21, which competes with MMR proteins for binding to PCNA, thereby inhibiting MMR. The ability of D-type cyclins to limit MMR is CDK4- and CDK6-independent and is conserved in G0 and G1. At the G1/S transition, the timely, cullin-RING ubiquitin ligase (CRL)-dependent degradation of D-type cyclins and p21 enables MMR activity to efficiently repair DNA replication errors. Persistent expression of D-type cyclins during S-phase inhibits the binding of MMR proteins to PCNA, increases the mutational burden, and promotes microsatellite instability.


Subject(s)
Cyclins , DNA Mismatch Repair , Animals , Cyclins/genetics , Proliferating Cell Nuclear Antigen/genetics , Proliferating Cell Nuclear Antigen/metabolism , Cyclin-Dependent Kinase Inhibitor p21/genetics , Interphase , Mammals/metabolism
10.
EMBO Rep ; 25(4): 1734-1751, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38480846

ABSTRACT

Pif1 family helicases are multifunctional proteins conserved in eukaryotes, from yeast to humans. They are important for the genome maintenance in both nuclei and mitochondria, where they have been implicated in Okazaki fragment processing, replication fork progression and termination, telomerase regulation and DNA repair. While the Pif1 helicase activity is readily detectable on naked nucleic acids in vitro, the in vivo functions rely on recruitment to DNA. We identify the single-stranded DNA binding protein complex RPA as the major recruiter of Pif1 in budding yeast, in addition to the previously reported Pif1-PCNA interaction. The two modes of the Pif1 recruitment act independently during telomerase inhibition, as the mutations in the Pif1 motifs disrupting either of the recruitment pathways act additively. In contrast, both recruitment mechanisms are essential for the replication-related roles of Pif1 at conventional forks and during the repair by break-induced replication. We propose a molecular model where RPA and PCNA provide a double anchoring of Pif1 at replication forks, which is essential for the Pif1 functions related to the fork movement.


Subject(s)
Saccharomyces cerevisiae Proteins , Telomerase , Humans , DNA Replication/genetics , Proliferating Cell Nuclear Antigen/genetics , Proliferating Cell Nuclear Antigen/metabolism , Telomerase/genetics , Saccharomyces cerevisiae Proteins/metabolism , DNA/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism
11.
EMBO J ; 43(7): 1301-1324, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38467834

ABSTRACT

Upon replication fork stalling, the RPA-coated single-stranded DNA (ssDNA) formed behind the fork activates the ataxia telangiectasia-mutated and Rad3-related (ATR) kinase, concomitantly initiating Rad18-dependent monoubiquitination of PCNA. However, whether crosstalk exists between these two events and the underlying physiological implications of this interplay remain elusive. In this study, we demonstrate that during replication stress, ATR phosphorylates human Rad18 at Ser403, an adjacent residue to a previously unidentified PIP motif (PCNA-interacting peptide) within Rad18. This phosphorylation event disrupts the interaction between Rad18 and PCNA, thereby restricting the extent of Rad18-mediated PCNA monoubiquitination. Consequently, excessive accumulation of the tumor suppressor protein SLX4, now characterized as a novel reader of ubiquitinated PCNA, at stalled forks is prevented, contributing to the prevention of stalled fork collapse. We further establish that ATR preserves telomere stability in alternative lengthening of telomere (ALT) cells by restricting Rad18-mediated PCNA monoubiquitination and excessive SLX4 accumulation at telomeres. These findings shed light on the complex interplay between ATR activation, Rad18-dependent PCNA monoubiquitination, and SLX4-associated stalled fork processing, emphasizing the critical role of ATR in preserving replication fork stability and facilitating telomerase-independent telomere maintenance.


Subject(s)
Telomerase , Humans , Proliferating Cell Nuclear Antigen/genetics , Proliferating Cell Nuclear Antigen/metabolism , Telomerase/genetics , Ubiquitination , DNA Replication , Telomere/genetics , Telomere/metabolism , Ataxia Telangiectasia Mutated Proteins/genetics , Ataxia Telangiectasia Mutated Proteins/metabolism , DNA Damage
12.
Elife ; 122024 Feb 20.
Article in English | MEDLINE | ID: mdl-38376141

ABSTRACT

Genome and epigenome integrity in eukaryotes depends on the proper coupling of histone deposition with DNA synthesis. This process relies on the evolutionary conserved histone chaperone CAF-1 for which the links between structure and functions are still a puzzle. While studies of the Saccharomyces cerevisiae CAF-1 complex enabled to propose a model for the histone deposition mechanism, we still lack a framework to demonstrate its generality and in particular, how its interaction with the polymerase accessory factor PCNA is operating. Here, we reconstituted a complete SpCAF-1 from fission yeast. We characterized its dynamic structure using NMR, SAXS and molecular modeling together with in vitro and in vivo functional studies on rationally designed interaction mutants. Importantly, we identify the unfolded nature of the acidic domain which folds up when binding to histones. We also show how the long KER helix mediates DNA binding and stimulates SpCAF-1 association with PCNA. Our study highlights how the organization of CAF-1 comprising both disordered regions and folded modules enables the dynamics of multiple interactions to promote synthesis-coupled histone deposition essential for its DNA replication, heterochromatin maintenance, and genome stability functions.


Subject(s)
Histones , Schizosaccharomyces , Histones/metabolism , Schizosaccharomyces/genetics , Schizosaccharomyces/metabolism , Proliferating Cell Nuclear Antigen/genetics , Proliferating Cell Nuclear Antigen/metabolism , Scattering, Small Angle , X-Ray Diffraction , Saccharomyces cerevisiae/genetics , DNA/metabolism , Nucleosomes/metabolism
13.
Nucleic Acids Res ; 52(7): 3740-3760, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38321962

ABSTRACT

It is well-established that, through canonical functions in transcription and DNA repair, the tumor suppressor p53 plays a central role in safeguarding cells from the consequences of DNA damage. Recent data retrieved in tumor and stem cells demonstrated that p53 also carries out non-canonical functions when interacting with the translesion synthesis (TLS) polymerase iota (POLι) at DNA replication forks. This protein complex triggers a DNA damage tolerance (DDT) mechanism controlling the DNA replication rate. Given that the levels of p53 trigger non-binary rheostat-like functions in response to stress or during differentiation, we explore the relevance of the p53 levels for its DDT functions at the fork. We show that subtle changes in p53 levels modulate the contribution of some DDT factors including POLι, POLη, POLζ, REV1, PCNA, PRIMPOL, HLTF and ZRANB3 to the DNA replication rate. Our results suggest that the levels of p53 are central to coordinate the balance between DDT pathways including (i) fork-deceleration by the ZRANB3-mediated fork reversal factor, (ii) POLι-p53-mediated fork-slowing, (iii) POLι- and POLη-mediated TLS and (iv) PRIMPOL-mediated fork-acceleration. Collectively, our study reveals the relevance of p53 protein levels for the DDT pathway choice in replicating cells.


Subject(s)
DNA Damage , DNA Polymerase iota , DNA Replication , DNA-Directed DNA Polymerase , Tumor Suppressor Protein p53 , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics , DNA-Directed DNA Polymerase/metabolism , Humans , Proliferating Cell Nuclear Antigen/metabolism , Proliferating Cell Nuclear Antigen/genetics , DNA Repair , Nucleotidyltransferases/metabolism , Nucleotidyltransferases/genetics , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Multifunctional Enzymes/metabolism , Multifunctional Enzymes/genetics , DNA Primase/metabolism , DNA Primase/genetics , DNA Damage Tolerance
14.
Exp Cell Res ; 435(2): 113950, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38309674

ABSTRACT

The existing knowledge of the involvement of vinculin (VCL) in the control of ovarian cell functions is insufficient. To understand the role of VCL in the control of basic porcine ovarian granulosa cell functions, we decreased VCL activity by small interfering RNA (VCL siRNA). The expression of VCL, accumulation of VCL protein, cell viability, proliferation (accumulation of PCNA and cyclin B1), proportion of proliferative active cells, apoptosis (accumulation of bax, caspase 3, p53, antiapoptotic marker bcl2, and bax/bcl-2 ratio), DNA fragmentation, and release of steroid hormones and IGF-I were analyzed by RT‒qPCR, Trypan blue exclusion test, quantitative immunocytochemistry, XTT assay, TUNEL assay, and ELISA. The suppression of VCL activity inhibited cell viability, the accumulation of the proliferation-related proteins PCNA and cyclin B1, the antiapoptotic protein bcl2, and the proportion of proliferative active cells. Moreover, VCL siRNA inhibited the release of progesterone, estradiol, and IGF-1. VCL siRNA increased the proportion of the proapoptotic proteins bax, caspase 3, p53, the proportion of DNA fragmented cells, and stimulated testosterone release. Taken together, the present study is the first evidence that inhibition of VCL suppresses porcine granulosa cell functions. Moreover, the results suggest that VCL can be a potent physiological stimulator of ovarian functions.


Subject(s)
Progesterone , Tumor Suppressor Protein p53 , Female , Swine , Animals , Cyclin B1/metabolism , Cyclin B1/pharmacology , Caspase 3/genetics , Caspase 3/metabolism , Proliferating Cell Nuclear Antigen/genetics , Proliferating Cell Nuclear Antigen/metabolism , bcl-2-Associated X Protein/genetics , bcl-2-Associated X Protein/metabolism , Vinculin/genetics , Vinculin/metabolism , Progesterone/pharmacology , Apoptosis , Proto-Oncogene Proteins c-bcl-2/metabolism , Cell Proliferation , RNA, Small Interfering/genetics , RNA, Small Interfering/pharmacology , Cells, Cultured , Insulin-Like Growth Factor I/metabolism
15.
Mol Biol Rep ; 51(1): 61, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38170326

ABSTRACT

BACKGROUND: Breast adenocarcinoma cells (MCF-7) are characterized by the overexpression of apoptotic marker genes and proliferative cell nuclear antigen (PCNA), which promote cancer cell proliferation. Thymol, derived from Nigella sativa (NS), has been investigated for its potential anti-proliferative and anticancer properties, especially its ability to suppress Cyclin D1 and PCNA expression, which are crucial in the proliferation of cancer cells. METHODS: The cytotoxicity of thymol on MCF-7 cells was assessed using 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) and lactate dehydrogenase (LDH) release methods. Thymol was tested at increasing concentrations (0-1000 µM) to evaluate its impact on MCF-7 cell growth. Additionally, Cyclin D1 and PCNA gene expression in thymol-treated and vehicle control groups of MCF-7 were quantified using real-time Polymerase Chain Reaction (RT-qPCR). Protein-ligand interactions were also investigated using the CB-Dock2 server. RESULTS: Thymol significantly inhibited MCF-7 cell growth, with a 50% inhibition observed at 200 µM. The gene expression of Cyclin D1 and PCNA was down-regulated in the thymol-treated group relative to the vehicle control. The experimental results were verified through protein-ligand interaction investigations. CONCLUSIONS: Thymol, extracted from NS, demonstrated specific cytotoxic effects on MCF-7 cells by suppressing the expression of Cyclin D1 and PCNA, suggesting its potential as an effective drug for MCF-7. However, additional in vivo research is required to ascertain its efficacy and safety in medical applications.


Subject(s)
Breast Neoplasms , Nigella sativa , Humans , Female , Proliferating Cell Nuclear Antigen/genetics , Proliferating Cell Nuclear Antigen/metabolism , MCF-7 Cells , Breast Neoplasms/genetics , Thymol/pharmacology , Thymol/therapeutic use , Nigella sativa/metabolism , Antigens, Nuclear/genetics , Antigens, Nuclear/metabolism , Antigens, Nuclear/therapeutic use , Cyclin D1/genetics , Cyclin D1/metabolism , Down-Regulation , Ligands , Cell Proliferation
16.
Biochim Biophys Acta Mol Cell Res ; 1871(3): 119681, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38280406

ABSTRACT

Bladder cancer (BC) is one of the most common cancers worldwide. Although the treatment and survival rate of BC are being improved, the risk factors and the underlying mechanisms causing BC are incompletely understood. Squalene monooxygenase (SQLE) has been associated with the occurrence and development of multiple cancers but whether it contributes to BC development is unclear. In this study, we performed bioinformatics analysis on paired BC and adjacent non-cancerous tissues and found that SQLE expression is significantly upregulated in BC samples. Knockdown of SQLE impairs viability, induces apoptosis, and inhibits the migration and invasion of BC cells. RNA-seq data reveals that SQLE deficiency leads to dysregulated expression of genes regulating proliferation, migration, and apoptosis. Mass spectrometry-directed interactome screening identifies proliferating cell nuclear antigen (PCNA) as an SQLE-interacting protein and overexpression of PCNA partially rescues the impaired viability, migration, and invasion of BC cells caused by SQLE knockdown. In addition, we performed xenograft assays and confirmed that SQLE deficiency inhibits BC growth in vivo. In conclusion, these data suggest that SQLE promotes BC development and SQLE inhibition may be therapeutically useful in BC treatment.


Subject(s)
Squalene Monooxygenase , Urinary Bladder Neoplasms , Humans , Proliferating Cell Nuclear Antigen/genetics , Squalene Monooxygenase/genetics , Urinary Bladder Neoplasms/genetics , Apoptosis/genetics , Computational Biology
17.
Nucleic Acids Res ; 52(5): 2340-2354, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38180818

ABSTRACT

DNA replication stress-induced fork arrest represents a significant threat to genomic integrity. One major mechanism of replication restart involves repriming downstream of the arrested fork by PRIMPOL, leaving behind a single-stranded DNA (ssDNA) gap. Accumulation of nascent strand ssDNA gaps has emerged as a possible determinant of the cellular hypersensitivity to genotoxic agents in certain genetic backgrounds such as BRCA deficiency, but how gaps are converted into cytotoxic structures is still unclear. Here, we investigate the processing of PRIMPOL-dependent ssDNA gaps upon replication stress induced by hydroxyurea and cisplatin. We show that gaps generated in PRIMPOL-overexpressing cells are expanded in the 3'-5' direction by the MRE11 exonuclease, and in the 5'-3' direction by the EXO1 exonuclease. This bidirectional exonucleolytic gap expansion ultimately promotes their conversion into DSBs. We moreover identify the de-ubiquitinating enzyme USP1 as a critical regulator of PRIMPOL-generated ssDNA gaps. USP1 promotes gap accumulation during S-phase, and their expansion by the MRE11 and EXO1 nucleases. This activity of USP1 is linked to its role in de-ubiquitinating PCNA, suggesting that PCNA ubiquitination prevents gap accumulation during replication. Finally, we show that USP1 depletion suppresses DSB formation in PRIMPOL-overexpressing cells, highlighting an unexpected role for USP1 in promoting genomic instability under these conditions.


Subject(s)
DNA Replication , DNA-Directed DNA Polymerase , Ubiquitin-Specific Proteases , DNA/genetics , DNA Damage , DNA, Single-Stranded/genetics , DNA-Directed DNA Polymerase/genetics , DNA-Directed DNA Polymerase/metabolism , Proliferating Cell Nuclear Antigen/genetics , Humans , Ubiquitin-Specific Proteases/metabolism
18.
Chem Biol Drug Des ; 103(1): e14361, 2024 01.
Article in English | MEDLINE | ID: mdl-37767622

ABSTRACT

Proliferating cell nuclear antigen (PCNA) is a homo-trimeric protein complex that clamps around DNA to tether DNA polymerases to the template during replication and serves as a hub for many other interacting proteins. It regulates DNA metabolic processes and other vital cellar functions through the binding of proteins having short linear motifs (SLiMs) like the PIP-box (PCNA-interacting protein-box) or the APIM (AlkB homolog 2 PCNA-interacting motif) in the hydrophobic pocket where SLiMs bind. However, overproducing TbPCNA or human PCNA (hPCNA) in the pathogenic protist Trypanosoma brucei triggers a dominant-negative phenotype of arrested proliferation. The mechanism for arresting T. brucei proliferation requires the overproduced PCNA orthologs to have functional intact SLiM-binding pocket. Sight-directed mutagenesis studies showed that T. brucei overproducing PCNA variants with disrupted SLiM-binding pockets grew normally. We hypothesized that chemically disrupting the SLiM-binding pocket would restore proliferation in T. brucei, overproducing PCNA orthologs. Testing this hypothesis is the proof-of-concept for a T. brucei-based PCNA screening assay. The assay design is to discover bioactive small molecules that restore proliferation in T. brucei strains that overproduce PCNA orthologs, likely by disrupting interactions in the SLiM-binding pocket. The pilot screen for this assay discovered two hit compounds that linked to predetermined PCNA targets. Compound #1, a known hPCNA inhibitor, had selective bioactivity to hPCNA overproduced in T. brucei, validating the assay. Compound #6 had promiscuous bioactivity for hPCNA and TbPCNA but is the first compound discovered with bioactivity for inhibiting TbPCNA.


Subject(s)
DNA Replication , Trypanosoma brucei brucei , Humans , Proliferating Cell Nuclear Antigen/genetics , Proliferating Cell Nuclear Antigen/chemistry , Proliferating Cell Nuclear Antigen/metabolism , Trypanosoma brucei brucei/metabolism , DNA/metabolism , Mutagenesis , Protein Binding
19.
J Biotechnol ; 380: 1-19, 2024 Jan 20.
Article in English | MEDLINE | ID: mdl-38072328

ABSTRACT

DNA damage tolerance (DDT) pathways mitigate the effects of DNA damage during replication by rescuing the replication fork stalled at a DNA lesion or other barriers and also repair discontinuities left in the newly replicated DNA. From yeast to mammalian cells, RAD18-regulated translesion synthesis (TLS) and template switching (TS) represent the dominant pathways of DDT. Monoubiquitylation of the polymerase sliding clamp PCNA by HRAD6A-B/RAD18, an E2/E3 protein pair, enables the recruitment of specialized TLS polymerases that can insert nucleotides opposite damaged template bases. Alternatively, the subsequent polyubiquitylation of monoubiquitin-PCNA by Ubc13-Mms2 (E2) and HLTF or SHPRH (E3) can lead to the switching of the synthesis from the damaged template to the undamaged newly synthesized sister strand to facilitate synthesis past the lesion. When immediate TLS or TS cannot occur, gaps may remain in the newly synthesized strand, partly due to the repriming activity of the PRIMPOL primase, which can be filled during the later phases of the cell cycle. The first part of this review will summarize the current knowledge about RAD18-dependent DDT pathways, while the second part will offer a molecular toolkit for the identification and characterization of the cellular functions of a DDT protein. In particular, we will focus on advanced techniques that can reveal single-stranded and double-stranded DNA gaps and their repair at the single-cell level as well as monitor the progression of single replication forks, such as the specific versions of the DNA fiber and comet assays. This collection of methods may serve as a powerful molecular toolkit to monitor the metabolism of gaps, detect the contribution of relevant pathways and molecular players, as well as characterize the effectiveness of potential inhibitors.


Subject(s)
DNA Replication , Saccharomyces cerevisiae Proteins , Animals , Proliferating Cell Nuclear Antigen/genetics , Proliferating Cell Nuclear Antigen/metabolism , DNA Damage , DNA/genetics , Saccharomyces cerevisiae/metabolism , DNA Repair , Mammals/genetics , DNA-Binding Proteins/genetics , Saccharomyces cerevisiae Proteins/genetics
20.
Br Poult Sci ; 65(1): 44-51, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37772759

ABSTRACT

1. The bioflavonoid quercetin is a biologically active component, but its functional regulation of granulosa cells (GCs) during chicken follicular development is little studied. To investigate the effect of quercetin on follicular development in laying hens, an in vitro study was conducted on granulosa cells from hierarchical follicles treated with quercetin.2. The effect of quercetin on cell activity, proliferation and apoptosis of granulosa cells was detected by CCK-8, EdU and apoptosis assays. The effect on progesterone secretion from granulosa cells was investigated by enzyme-linked immunosorbent assay (ELISA). Expression of proliferating cell nuclear antigen (PCNA) mRNA and oestrogen receptors (ERs), as well as the expression of steroid acute regulatory protein (StAR), cytochrome P450 cholesterol side chain cleavage enzyme (P450scc) and 3ß-hydroxysteroid dehydrogenase (3ß-HSD) mRNA during progesterone synthesis, were measured by real-time quantitative polymerase chain reaction (RT-qPCR). PCNA, StAR and CYP11A1 protein expression levels were detected using Western blotting (WB).3. The results showed that treatment with quercetin in granulosa cells significantly enhanced cell vitality and proliferation, reduced apoptosis and promoted the expression of gene and protein levels of PCNA. The levels of progesterone secretion increased significantly following quercetin treatment, as did the expression levels of StAR and CYP11A1 using the Western Blot (WB) method.4. The mRNA expression levels of ERα were significantly upregulated in the 100 ng/ml and 1000 ng/ml quercetin-treated groups, while there was no significant difference in expression levels of ERß mRNA.


Subject(s)
Chickens , Progesterone , Female , Animals , Progesterone/metabolism , Progesterone/pharmacology , Chickens/genetics , Quercetin/pharmacology , Quercetin/metabolism , Proliferating Cell Nuclear Antigen/genetics , Proliferating Cell Nuclear Antigen/metabolism , Proliferating Cell Nuclear Antigen/pharmacology , Cholesterol Side-Chain Cleavage Enzyme/genetics , Cholesterol Side-Chain Cleavage Enzyme/metabolism , Granulosa Cells/physiology , RNA, Messenger/genetics , RNA, Messenger/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...