Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Anal Toxicol ; 45(2): 184-194, 2021 Feb 13.
Article in English | MEDLINE | ID: mdl-32435795

ABSTRACT

This article presents newly developed screening and confirmation analytical procedures to detect the misuse of nine prolyl-hydroxylase inhibitors of the hypoxia-inducible factor: daprodustat, desidustat, FG2216, IOX2, IOX4, JNJ-42041935, molidustat, roxadustat and vadadustat, targeting either the parent drugs and/or their main metabolite(s). For the sample pretreatment, different extraction protocols and technologies were evaluated. The instrumental analysis was performed by ultra-high-performance liquid chromatography coupled to either high- or low-resolution mass spectrometry. The chromatographic separation was performed on a C18 column, employing water and acetonitrile, both containing 0.1% formic acid, as mobile phase. Detection was achieved using as analyzer either a triple quadrupole or an Orbitrap, with positive and negative electrospray ionization and different acquisition modes. Validation of the procedures was performed according to the ISO 17025 and World Anti-Doping Agency guidelines. The methods do not show any significant interference at the retention times of the analytes of interest. The extraction efficiency was estimated to be greater than 75% for all analytes and the matrix effect smaller than 35%. Detection capability was determined in the range of 0.25-2.0 for the screening procedure and in the range of 0.5-2.0 ng/mL for the confirmation procedure, that is, in a range of concentration small enough to reveal the abuse of the compounds considered, in case they are used as performance-enhancing agents. The repeatability of the relative retention times (CV% < 0.5) and of the relative abundances of the selected ion transitions, considered only in the case of triple quadrupole (CV% < 15), was confirmed to be fit for purpose to ensure the unambiguous identification of all the target analytes in human urine. The applicability of the newly developed methods was verified by the analysis of urine samples containing molidustat, roxadustat or daprodustat. The developed procedures enabled to detect the compounds under investigation and their main metabolites.


Subject(s)
Prolyl-Hydroxylase Inhibitors/urine , Substance Abuse Detection/methods , Acetonitriles , Barbiturates , Body Fluids , Chromatography, High Pressure Liquid , Chromatography, Liquid , Glycine/analogs & derivatives , Isoquinolines , Limit of Detection , Picolinic Acids , Tandem Mass Spectrometry
2.
Bioanalysis ; 9(9): 719-732, 2017 May.
Article in English | MEDLINE | ID: mdl-28488896

ABSTRACT

AIM: A sensitive LC-MS/MS method was developed and validated for estimation of ZYAN1 in human blood/urine. METHODS: An analog internal standard IOX2 along with ZYAN1 was quantified using selective reaction monitoring in positive mode. The chromatographic separation was performed by gradient elution with C18 analytical column (3 µm, 50 mm × 2.0 mm) with 4-min run time using an acidified mobile phase consisting of ammonium formate and acetonitrile. Protein precipitation enabled extraction of analytes from diluted blood/urine. RESULTS: Calibration curve of ZYAN1 was linear (2-5000 ng/ml). The recovery of ZYAN1 and IOX2 was between 87 and 104%. Interday and intraday accuracy and precision was found well within the acceptance criteria. CONCLUSION: The validated assay was applied for clinical pharmacokinetics of ZYAN1 in healthy volunteers.


Subject(s)
Chromatography, High Pressure Liquid/methods , Prolyl-Hydroxylase Inhibitors/blood , Prolyl-Hydroxylase Inhibitors/urine , Quinolones/blood , Quinolones/urine , Tandem Mass Spectrometry/methods , Humans , Limit of Detection , Reproducibility of Results , Spectrometry, Mass, Electrospray Ionization/methods
3.
Drug Test Anal ; 8(8): 858-63, 2016 Aug.
Article in English | MEDLINE | ID: mdl-26361079

ABSTRACT

Drug candidates, which have the potential of enhancing athletic performance represent a risk of being misused in elite sport. Therefore, there is a need for early consideration by anti-doping authorities and implementation into sports drug testing programmes. The hypoxia-inducible factor (HIF) or prolyl hydroxylase inhibitor (PHI) GSK1278863 represents an advanced candidate of an emerging class of therapeutics that possess substantial potential for abuse in sport due to their capability to stimulate the biogenesis of erythrocytes and, consequently, the individual's oxygen transport capacity. A thorough characterization of such analytes by technologies predominantly used for doping control purposes and the subsequent implementation of the active drug and/or its main urinary metabolite(s) are vital for comprehensive, preventive, and efficient anti-doping work. In the present study, the HIF PHI drug candidate GSK1278863 (comprising a 6-hydroxypyrimidine-2,4-dione nucleus) and its bishydroxylated metabolite M2 (GSK2391220A) were studied regarding their mass spectrometric behaviour under electrospray ionization (ESI-MS/MS) conditions. Synthesized reference materials were used to elucidate dissociation pathways by means of quadrupole/time-of-flight high resolution/high accuracy tandem mass spectrometry, and their detection from spiked urine and elimination study urine samples under routine doping control conditions was established using liquid chromatography-electrospray ionization-tandem mass spectrometry with direct injection. Dissociation pathways to diagnostic product ions of GSK1278863 (e.g. m/z 291, 223, and 122) were proposed as substantiated by determined elemental compositions and MS(n) experiments as well as comparison to spectra of the bishydroxylated analogue M2. An analytical assay based on direct urine injection using liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) was developed for the simultaneous determination of GSK1278863 in combination with its bishydroxylated metabolite M2. Validation parameters including limit of detection (0.5-1 ng/mL), linearity, specificity, ion suppression/enhancement (<10%), intra- and inter-day precision (6-22%) were determined, demonstrating the fitness-for-purpose of the assay for doping control screening of urine samples for the presence of the drug candidate and its main metabolite and for expanding current anti-doping efforts to this new class of therapeutics. However, administration study urine sample analysis suggested the use of M2 rather than the intact drug due to extensive metabolic conversion. Copyright © 2015 John Wiley & Sons, Ltd.


Subject(s)
Barbiturates/urine , Glycine/analogs & derivatives , Prolyl-Hydroxylase Inhibitors/urine , Spectrometry, Mass, Electrospray Ionization/methods , Substance Abuse Detection/methods , Chromatography, Liquid/methods , Doping in Sports , Glycine/urine , Humans , Limit of Detection , Tandem Mass Spectrometry/methods , Urinalysis/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...