Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37.058
Filter
1.
Biotechnol J ; 19(5): e2400178, 2024 May.
Article in English | MEDLINE | ID: mdl-38719574

ABSTRACT

Sucrose isomerase (SIase) catalyzes the hydrolysis and isomerization of sucrose into isomaltulose, a functional sugar extensively used in the food industry. However, the lack of safe and efficient heterologous expression systems for SIase has constrained its production and application. In this study, an engineered Bacillus subtilis strain for antibiotic-free SIase production was developed via a food-grade expression system. First, the B. subtilis strain TEA was modified through the CRISPR/Cas9 system, resulting in a mutant strain TEA4, which exhibited enhanced capabilities for recombinant protein expression. For efficient and safe production of SIase, different constitutive and inducible promoters were evaluated. The maltose-inducible promoter Poglv was found to have an extracellular SIase activity of 21.7 U mL-1 in engineered strain TEA4. Subsequent optimization of the culture medium further increased SIase activity to 26.4 U mL-1 during shake flask cultivation. Eventually, using the crude enzyme solution of the engineered strain in biotransformation reactions resulted in a high yield of isomaltulose under high concentrations sucrose, achieving a maximum yield of 83.1%. These findings demonstrated an engineered B. subtilis strain for antibiotic-free SIase production, paving the way for its scale-up industrial production and application.


Subject(s)
Bacillus subtilis , Glucosyltransferases , Isomaltose , Recombinant Proteins , Sucrose , Bacillus subtilis/genetics , Bacillus subtilis/enzymology , Bacillus subtilis/metabolism , Isomaltose/metabolism , Isomaltose/analogs & derivatives , Glucosyltransferases/genetics , Glucosyltransferases/metabolism , Sucrose/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Metabolic Engineering/methods , Promoter Regions, Genetic/genetics , CRISPR-Cas Systems/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
2.
Plant Mol Biol ; 114(3): 54, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38714535

ABSTRACT

Sugars, synthesized by photosynthesis in source organs, are loaded and utilized as an energy source and carbon skeleton in sink organs, and also known to be important signal molecules regulating gene expression in higher plants. The expression of genes coding for sporamin and ß-amylase, the two most abundant proteins in storage roots of sweet potato, is coordinately induced by sugars. We previously reported on the identification of the carbohydrate metabolic signal-responsible element-1 (CMSRE-1) essential for the sugar-responsible expression of two genes. However, transcription factors that bind to this sequence have not been identified. In this study, we performed yeast one-hybrid screening using the sugar-responsible minimal promoter region of the ß-amylase gene as bait and a library composed only transcription factor cDNAs of Arabidopsis. Two clones, named Activator protein binding to CMSRE-1 (ACRE), encoding AP2/ERF transcription factors were isolated. ACRE showed transactivation activity of the sugar-responsible minimal promoter in a CMSRE-1-dependent manner in Arabidopsis protoplasts. Electric mobility shift assay (EMSA) using recombinant proteins and transient co-expression assay in Arabidopsis protoplasts revealed that ACRE could actually act to the CMSRE-1. Among the DEHYDRATION -RESPONSIVE ELEMENT BINDING FACTOR (DREB) subfamily, almost all homologs including ACRE, could act on the DRE, while only three ACREs could act to the CMSRE-1. Moreover, ACRE-homologs of Japanese morning glory also have the same property of DNA-binding preference and transactivation activity through the CMSRE-1. These findings suggested that ACRE plays an important role in the mechanism regulating the sugar-responsible gene expression through the CMSRE-1 conserved across plant species.


Subject(s)
Arabidopsis , Gene Expression Regulation, Plant , Ipomoea batatas , Plant Proteins , Promoter Regions, Genetic , Transcription Factors , beta-Amylase , Plant Proteins/genetics , Plant Proteins/metabolism , beta-Amylase/genetics , beta-Amylase/metabolism , Ipomoea batatas/genetics , Ipomoea batatas/metabolism , Promoter Regions, Genetic/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Phylogeny , Transcriptional Activation/genetics
3.
Nat Commun ; 15(1): 4521, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38806452

ABSTRACT

Topologically associated domains (TADs) restrict promoter-enhancer interactions, thereby maintaining the spatiotemporal pattern of gene activity. However, rearrangements of the TADs boundaries do not always lead to significant changes in the activity pattern. Here, we investigated the consequences of the TAD boundaries deletion on the expression of developmentally important genes encoding tyrosine kinase receptors: Kit, Kdr, Pdgfra. We used genome editing in mice to delete the TADs boundaries at the Kit locus and characterized chromatin folding and gene expression in pure cultures of fibroblasts, mast cells, and melanocytes. We found that although Kit is highly active in both mast cells and melanocytes, deletion of the TAD boundary between the Kit and Kdr genes results in ectopic activation only in melanocytes. Thus, the epigenetic landscape, namely the mutual arrangement of enhancers and actively transcribing genes, is important for predicting the consequences of the TAD boundaries removal. We also found that mice without a TAD border between the Kit and Kdr genes have a phenotypic manifestation of the mutation - a lighter coloration. Thus, the data obtained shed light on the principles of interaction between the 3D chromatin organization and epigenetic marks in the regulation of gene activity.


Subject(s)
Chromatin , Fibroblasts , Mast Cells , Melanocytes , Proto-Oncogene Proteins c-kit , Animals , Proto-Oncogene Proteins c-kit/genetics , Proto-Oncogene Proteins c-kit/metabolism , Mice , Mast Cells/metabolism , Melanocytes/metabolism , Fibroblasts/metabolism , Chromatin/metabolism , Chromatin/genetics , Vascular Endothelial Growth Factor Receptor-2/genetics , Vascular Endothelial Growth Factor Receptor-2/metabolism , Promoter Regions, Genetic/genetics , Enhancer Elements, Genetic/genetics , Receptor, Platelet-Derived Growth Factor alpha/genetics , Receptor, Platelet-Derived Growth Factor alpha/metabolism , Epigenesis, Genetic , Genetic Loci , Mice, Inbred C57BL , Organ Specificity/genetics , Gene Editing , Ectopic Gene Expression , Male
4.
Nat Commun ; 15(1): 4529, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38806456

ABSTRACT

Despite major advances in linking single genetic variants to single causal genes, the significance of genetic variation on transcript-level regulation of expression, transcript-specific functions, and relevance to human disease has been poorly investigated. Strawberry notch homolog 2 (SBNO2) is a candidate gene in a susceptibility locus with different variants associated with Crohn's disease and bone mineral density. The SBNO2 locus is also differentially methylated in Crohn's disease but the functional mechanisms are unknown. Here we show that the isoforms of SBNO2 are differentially regulated by lipopolysaccharide and IL-10. We identify Crohn's disease associated isoform quantitative trait loci that negatively regulate the expression of the noncanonical isoform 2 corresponding with the methylation signals at the isoform 2 promoter in IBD and CD. The two isoforms of SBNO2 drive differential gene networks with isoform 2 dominantly impacting antimicrobial activity in macrophages. Our data highlight the role of isoform quantitative trait loci to understand disease susceptibility and resolve underlying mechanisms of disease.


Subject(s)
Crohn Disease , Genetic Predisposition to Disease , Lipopolysaccharides , Protein Isoforms , Quantitative Trait Loci , Crohn Disease/genetics , Humans , Protein Isoforms/genetics , Protein Isoforms/metabolism , Interleukin-10/genetics , Interleukin-10/metabolism , Promoter Regions, Genetic/genetics , DNA Methylation , Macrophages/metabolism , Gene Expression Regulation
5.
Discov Med ; 36(184): 971-980, 2024 May.
Article in English | MEDLINE | ID: mdl-38798256

ABSTRACT

OBJECTIVE: Tissue inhibitors of matrix metalloproteinases (TIMPs) are prognostic markers in cancers. However, the role of TIMPs in DNA methylation during invasive pituitary adenoma (PA) remains unclear. The purpose of this study was to assess the effects of TIMP2 and TIMP3 promoter demethylation on the proliferation, migration, and invasion of invasive PA cells. METHODS: Methylation-specific polymerase chain reaction (PCR), quantitative PCR, and western blots were used to analyze the promoter methylation and expression of TIMP1-3. Cell counting kit-8 (CCK-8), wound healing, and transwell assays were carried out to determine the effects of TIMP2 and TIMP3 demethylation. RESULTS: TIMP1-3 showed downregulated expression in invasive PA tissues and cell lines (p < 0.05). The low expression of TIMP1-3 was due to promoter methylation of these genes (p < 0.05). The results showed that downregulation of TIMP2 and TIMP3 can promote cell proliferation, migration, and invasion (p < 0.05), whereas overexpression of TIMP2 and TIMP3 can inhibit cell proliferation, migration, and invasion (p < 0.05). After treatment with 5-azacytidine (5-AzaC), the cell activity decreased, the proliferation rate decreased, and the invasion ability weakened (p < 0.05). Treatment with 5-AzaC increased TIMP2 and TIMP3 expression and decreased DNA (cytosine-5-)-methyltransferase 1 (DNMT1), DNMT3a, and DNMT3b expression (p < 0.05). CONCLUSIONS: We showed that DNA methylation causes the silencing of TIMP2 and TIMP3 in invasive PA, it can also lead to malignant cell proliferation and cause pathological changes, whereas the use of 5-AzaC can inhibit the methylation process and can inhibit cell proliferation. Our results provide a novel method for clinical diagnosis and prevention of invasive PA.


Subject(s)
Adenoma , Cell Movement , Cell Proliferation , DNA Methylation , Neoplasm Invasiveness , Pituitary Neoplasms , Tissue Inhibitor of Metalloproteinase-2 , Tissue Inhibitor of Metalloproteinase-3 , Humans , Tissue Inhibitor of Metalloproteinase-3/genetics , Tissue Inhibitor of Metalloproteinase-3/metabolism , Cell Proliferation/genetics , Cell Proliferation/drug effects , Pituitary Neoplasms/genetics , Pituitary Neoplasms/pathology , Pituitary Neoplasms/metabolism , Cell Movement/genetics , Cell Movement/drug effects , Tissue Inhibitor of Metalloproteinase-2/genetics , Tissue Inhibitor of Metalloproteinase-2/metabolism , Adenoma/genetics , Adenoma/pathology , Adenoma/metabolism , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Male , Female , Promoter Regions, Genetic/genetics , Middle Aged , Adult , Azacitidine/pharmacology , DNA Methyltransferase 3A/metabolism
6.
Biomed Res Int ; 2024: 9625043, 2024.
Article in English | MEDLINE | ID: mdl-38807916

ABSTRACT

Epigenetic alterations have been observed in many hematological malignancies, including acute myeloid leukemia (AML). Many of these alterations result from mutations in DNA methyl transferase (DNMT) enzymes, disabling them to methylate target genes in a proper way. In this case-control study, we investigated the association between R882H mutation in DNMT3A gene and DDX43 gene methylation in patients with AML. 47 AML patients and 6 controls were included in this study. After DNA extraction, amplification refractory mutation system (ARMS)-PCR was used to evaluate R882H mutations in DNMT3A gene. The high-resolution melting (HRM) method was used to determine the methylation changes of the DDX43 gene promoter. R882H mutation was only found in 10.6% (5 out of 47) of AML patients. The frequency of DDX43 gene methylation was significantly higher in patients without R882H mutations compared to patients with R882H mutations (P < 0.05). The DNMT3A R882H mutation is typically present in a minority of AML patients. Nevertheless, this mutation is associated with a reduced frequency of methylation in the DDX43 promoter region.


Subject(s)
DEAD-box RNA Helicases , DNA (Cytosine-5-)-Methyltransferases , DNA Methylation , DNA Methyltransferase 3A , Leukemia, Myeloid, Acute , Mutation , Promoter Regions, Genetic , Humans , Leukemia, Myeloid, Acute/genetics , DNA Methyltransferase 3A/genetics , Promoter Regions, Genetic/genetics , DEAD-box RNA Helicases/genetics , DNA Methylation/genetics , Male , DNA (Cytosine-5-)-Methyltransferases/genetics , Female , Middle Aged , Adult , Mutation/genetics , Aged , Case-Control Studies , Neoplasm Proteins
7.
Mol Plant Pathol ; 25(6): e13468, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38808392

ABSTRACT

Phytophthora pathogens possess hundreds of effector genes that exhibit diverse expression patterns during infection, yet how the expression of effector genes is precisely regulated remains largely elusive. Previous studies have identified a few potential conserved transcription factor binding sites (TFBSs) in the promoters of Phytophthora effector genes. Here, we report a MYB-related protein, PsMyb37, in Phytophthora sojae, the major causal agent of root and stem rot in soybean. Yeast one-hybrid and electrophoretic mobility shift assays showed that PsMyb37 binds to the TACATGTA motif, the most prevalent TFBS in effector gene promoters. The knockout mutant of PsMyb37 exhibited significantly reduced virulence on soybean and was more sensitive to oxidative stress. Consistently, transcriptome analysis showed that numerous effector genes associated with suppressing plant immunity or scavenging reactive oxygen species were down-regulated in the PsMyb37 knockout mutant during infection compared to the wild-type P. sojae. Several promoters of effector genes were confirmed to drive the expression of luciferase in a reporter assay. These results demonstrate that a MYB-related transcription factor contributes to the expression of effector genes in P. sojae.


Subject(s)
Phytophthora , Plant Diseases , Promoter Regions, Genetic , Transcription Factors , Phytophthora/pathogenicity , Phytophthora/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Promoter Regions, Genetic/genetics , Plant Diseases/microbiology , Plant Diseases/genetics , Glycine max/microbiology , Glycine max/genetics , Virulence/genetics
8.
Neuropathol Appl Neurobiol ; 50(3): e12984, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38783575

ABSTRACT

AIMS: The methylation status of the O6-methylguanine-DNA methyltransferase (MGMT) promoter region is essential in evaluating the prognosis and predicting the drug response in patients with glioblastoma. In this study, we evaluated the utility of using nanopore long-read sequencing as a method for assessing methylation levels throughout the MGMT CpG-island, compared its performance to established techniques and demonstrated its clinical applicability. METHODS: We analysed 165 samples from CNS tumours, focusing on the MGMT CpG-island using nanopore sequencing. Oxford Nanopore Technologies (ONT) MinION and PromethION flow cells were employed for single sample or barcoded assays, guided by a CRISPR/Cas9 protocol, adaptive sampling or as part of a whole genome sequencing assay. Methylation data obtained through nanopore sequencing were compared to results obtained via pyrosequencing and methylation bead arrays. Hierarchical clustering was applied to nanopore sequencing data for patient stratification. RESULTS: Nanopore sequencing displayed a strong correlation (R2 = 0.91) with pyrosequencing results for the four CpGs of MGMT analysed by both methods. The MGMT-STP27 algorithm's classification was effectively reproduced using nanopore data. Unsupervised hierarchical clustering revealed distinct patterns in methylated and unmethylated samples, providing comparable survival prediction capabilities. Nanopore sequencing yielded high-confidence results in a rapid timeframe, typically within hours of sequencing, and extended the analysis to all 98 CpGs of the MGMT CpG-island. CONCLUSIONS: This study presents nanopore sequencing as a valid and efficient method for determining MGMT promotor methylation status. It offers a comprehensive view of the MGMT promoter methylation landscape, which enables the identification of potentially clinically relevant subgroups of patients. Further exploration of the clinical implications of patient stratification using nanopore sequencing of MGMT is warranted.


Subject(s)
DNA Methylation , Nanopore Sequencing , Promoter Regions, Genetic , Humans , Nanopore Sequencing/methods , Promoter Regions, Genetic/genetics , CpG Islands/genetics , Tumor Suppressor Proteins/genetics , DNA Modification Methylases/genetics , DNA Repair Enzymes/genetics , Brain Neoplasms/genetics , Female , Male , Glioblastoma/genetics , Aged
9.
Arch Dermatol Res ; 316(6): 225, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38787453

ABSTRACT

Myosin Va (Myo Va) is one of three protein complexes involved in melanosome transport. In this study, we identified BMP-2 as an up-regulator of Myo Va expression using 2-methyl-naphtho[1,2,3-de]quinolin-8-one (MNQO). Our results showed that MNQO reduced the mRNA and protein expression of Myo Va and BMP-2 in melanocytes. Knockdown of BMP-2 by siRNA also affected Myo Va mRNA and protein expression, confirming that MNQO regulates Myo Va through BMP-2. Furthermore, phosphorylation of Smad1/5/8 by BMP2 treatment confirmed that the BMP-2/Smad signaling pathway regulates Myo Va expression in Melan-a melanocytes. Smad-binding elements were found in the Myo Va promoter and phosphorylated Smad1/5/8 bind directly to the Myo Va promoter to activate Myo Va transcription and BMP-2 enhances this binding. These findings provide insight into a new role for BMP-2 in Melan-a melanocytes and a mechanism of regulation of Myo Va expression that may be beneficial in the treatment of albinism or hyperpigmentation disorders.


Subject(s)
Bone Morphogenetic Protein 2 , Melanocytes , Myosin Heavy Chains , Myosin Type V , Signal Transduction , Myosin Type V/metabolism , Myosin Type V/genetics , Melanocytes/metabolism , Bone Morphogenetic Protein 2/metabolism , Bone Morphogenetic Protein 2/genetics , Myosin Heavy Chains/metabolism , Myosin Heavy Chains/genetics , Humans , Smad Proteins/metabolism , Promoter Regions, Genetic/genetics , Phosphorylation , Mice , Animals , Gene Expression Regulation
10.
Plant Physiol Biochem ; 211: 108708, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38733938

ABSTRACT

S-Adenosyl-L-methionine (SAM) is widely involved in plant growth, development, and abiotic stress response. SAM synthetase (SAMS) is the key enzyme that catalyzes the synthesis of SAM from methionine and ATP. However, the SAMS gene family has not been identified and their functions have not been characterized in most Cucurbitaceae plants. Here, a total of 30 SAMS genes were identified in nine Cucurbitaceae species and they were categorized into 3 subfamilies. Physicochemical properties and gene structure analysis showed that the SAMS protein members are tightly conserved. Further analysis of the cis-regulatory elements (CREs) of SAMS genes' promoter implied their potential roles in stress tolerance. To further understand the molecular functions of SAMS genes, watermelon SAMSs (ClSAMSs) were chosen to analyze the expression patterns in different tissues and under various abiotic stress and hormone responses. Among the investigated genes, ClSAMS1 expression was observed in all tissues and found to be up-regulated by abiotic stresses including salt, cold and drought treatments as well as exogenous hormone treatments including ETH, SA, MeJA and ABA. Furthermore, knockdown of ClSAMS1 via virus-induced gene silencing (VIGS) decreased SAM contents in watermelon seedings. The pTRSV2-ClSAMS1 plants showed reduced susceptibility to drought, cold and NaCl stress, indicating a positive role of ClSAMS1 in abiotic stresses tolerance. Those results provided candidate SAMS genes to regulate plant resistance against abiotic stresses in Cucurbitaceae plants.


Subject(s)
Citrullus , Cucurbitaceae , Gene Expression Regulation, Plant , Plant Proteins , Stress, Physiological , Plant Proteins/genetics , Plant Proteins/metabolism , Stress, Physiological/genetics , Citrullus/genetics , Citrullus/metabolism , Citrullus/enzymology , Cucurbitaceae/genetics , Cucurbitaceae/metabolism , Multigene Family , Methionine Adenosyltransferase/genetics , Methionine Adenosyltransferase/metabolism , Phylogeny , Genes, Plant , Genome, Plant/genetics , Plants, Genetically Modified/genetics , Promoter Regions, Genetic/genetics
11.
Plant Physiol Biochem ; 211: 108710, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38735154

ABSTRACT

Adenosine triphosphate-binding cassette transporters (ABC transporters) are involved in regulating plant growth, development and tolerance to environmental stresses. In this study, a total of 138 ABC transporter genes were identified in the lentil genome that were classified into eight subfamilies. Four lentil ABC transporters from subfamily B and I were clustered together with the previously characterized ABC transporter proteins related to aluminium (Al) detoxification. Lentil ABC transporter genes were distributed across the chromosomes. Tandem duplication was the main driving force for expansion of the ABC gene family. Collinearity of lentil with soybean indicated that ABC gene family is closely linked to Glycine max. ABC genes in the same subfamily showed similar gene structure and conserved motifs. The ABC promoter regions harboured a large number of plant hormones and multiple stress responsive cis-regulatory elements. The qRT-PCR showed that ABC genes had varied expression in roots of lentil at different time points under Al stress. This is the first report on genome wide identification and expression analyses of genes encoding ABC transporter genes in lentil which has provided in-depth insight for future research on evolution and elucidation of molecular mechanisms for aluminium tolerance.


Subject(s)
ATP-Binding Cassette Transporters , Aluminum , Gene Expression Regulation, Plant , Lens Plant , Plant Proteins , Stress, Physiological , Lens Plant/genetics , Lens Plant/metabolism , Lens Plant/drug effects , Aluminum/toxicity , Gene Expression Regulation, Plant/drug effects , Stress, Physiological/genetics , Stress, Physiological/drug effects , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Genome, Plant , Multigene Family , Gene Expression Profiling , Phylogeny , Promoter Regions, Genetic/genetics
12.
Nat Commun ; 15(1): 4358, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38778058

ABSTRACT

3C-based methods have significantly advanced our understanding of 3D genome organization. However, it remains a formidable task to precisely capture long-range chromosomal interactions between individual loci, such as those between promoters and distal enhancers. Here, we present Methyltransferase Targeting-based chromosome Architecture Capture (MTAC), a method that maps the contacts between a target site (viewpoint) and the rest of the genome in budding yeast with high resolution and sensitivity. MTAC detects hundreds of intra- and inter-chromosomal interactions within nucleosome-depleted regions (NDRs) that cannot be captured by 4C, Hi-C, or Micro-C. By applying MTAC to various viewpoints, we find that (1) most long-distance chromosomal interactions detected by MTAC reflect tethering by the nuclear pore complexes (NPCs), (2) genes co-regulated by methionine assemble into inter-chromosomal clusters near NPCs upon activation, (3) mediated by condensin, the mating locus forms a highly specific interaction with the recombination enhancer (RE) in a mating-type specific manner, and (4) correlation of MTAC signals among NDRs reveal spatial mixing and segregation of the genome. Overall, these results demonstrate MTAC as a powerful tool to resolve fine-scale long-distance chromosomal interactions and provide insights into the 3D genome organization.


Subject(s)
Chromosomes, Fungal , DNA Methylation , Nucleosomes , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Nucleosomes/metabolism , Nucleosomes/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Chromosomes, Fungal/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Chromosome Mapping/methods , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Adenosine Triphosphatases/metabolism , Adenosine Triphosphatases/genetics , Genome, Fungal , Promoter Regions, Genetic/genetics , Multiprotein Complexes/metabolism , Multiprotein Complexes/genetics , Nuclear Pore/metabolism , Nuclear Pore/genetics , Methyltransferases/metabolism , Methyltransferases/genetics
13.
PLoS Biol ; 22(5): e3002418, 2024 May.
Article in English | MEDLINE | ID: mdl-38713714

ABSTRACT

The phenomenon of de novo gene birth-the emergence of genes from non-genic sequences-has received considerable attention due to the widespread occurrence of genes that are unique to particular species or genomes. Most instances of de novo gene birth have been recognized through comparative analyses of genome sequences in eukaryotes, despite the abundance of novel, lineage-specific genes in bacteria and the relative ease with which bacteria can be studied in an experimental context. Here, we explore the genetic record of the Escherichia coli long-term evolution experiment (LTEE) for changes indicative of "proto-genic" phases of new gene birth in which non-genic sequences evolve stable transcription and/or translation. Over the time span of the LTEE, non-genic regions are frequently transcribed, translated and differentially expressed, with levels of transcription across low-expressed regions increasing in later generations of the experiment. Proto-genes formed downstream of new mutations result either from insertion element activity or chromosomal translocations that fused preexisting regulatory sequences to regions that were not expressed in the LTEE ancestor. Additionally, we identified instances of proto-gene emergence in which a previously unexpressed sequence was transcribed after formation of an upstream promoter, although such cases were rare compared to those caused by recruitment of preexisting promoters. Tracing the origin of the causative mutations, we discovered that most occurred early in the history of the LTEE, often within the first 20,000 generations, and became fixed soon after emergence. Our findings show that proto-genes emerge frequently within evolving populations, can persist stably, and can serve as potential substrates for new gene formation.


Subject(s)
Escherichia coli , Evolution, Molecular , Promoter Regions, Genetic , Escherichia coli/genetics , Promoter Regions, Genetic/genetics , Gene Expression Regulation, Bacterial , Genome, Bacterial , Mutation , Genes, Bacterial , Transcription, Genetic
14.
ACS Synth Biol ; 13(5): 1467-1476, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38696739

ABSTRACT

Optogenetics is a powerful tool for spatiotemporal control of gene expression. Several light-inducible gene regulators have been developed to function in bacteria, and these regulatory circuits have been ported to new host strains. Here, we developed and adapted a red-light-inducible transcription factor for Shewanella oneidensis. This regulatory circuit is based on the iLight optogenetic system, which controls gene expression using red light. A thermodynamic model and promoter engineering were used to adapt this system to achieve differential gene expression in light and dark conditions within a S. oneidensis host strain. We further improved the iLight optogenetic system by adding a repressor to invert the genetic circuit and activate gene expression under red light illumination. The inverted iLight genetic circuit was used to control extracellular electron transfer within S. oneidensis. The ability to use both red- and blue-light-induced optogenetic circuits simultaneously was also demonstrated. Our work expands the synthetic biology capabilities in S. oneidensis, which could facilitate future advances in applications with electrogenic bacteria.


Subject(s)
Light , Optogenetics , Promoter Regions, Genetic , Shewanella , Shewanella/genetics , Shewanella/metabolism , Optogenetics/methods , Electron Transport , Promoter Regions, Genetic/genetics , Gene Expression Regulation, Bacterial , Transcription Factors/metabolism , Transcription Factors/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Gene Regulatory Networks/genetics , Synthetic Biology/methods
15.
Nat Commun ; 15(1): 4156, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755141

ABSTRACT

Epstein-Barr virus (EBV) uses a biphasic lifecycle of latency and lytic reactivation to infect >95% of adults worldwide. Despite its central role in EBV persistence and oncogenesis, much remains unknown about how EBV latency is maintained. We used a human genome-wide CRISPR/Cas9 screen to identify that the nuclear protein SFPQ was critical for latency. SFPQ supported expression of linker histone H1, which stabilizes nucleosomes and regulates nuclear architecture, but has not been previously implicated in EBV gene regulation. H1 occupied latent EBV genomes, including the immediate early gene BZLF1 promoter. Upon reactivation, SFPQ was sequestered into sub-nuclear puncta, and EBV genomic H1 occupancy diminished. Enforced H1 expression blocked EBV reactivation upon SFPQ knockout, confirming it as necessary downstream of SFPQ. SFPQ knockout triggered reactivation of EBV in B and epithelial cells, as well as of Kaposi's sarcoma-associated herpesvirus in B cells, suggesting a conserved gamma-herpesvirus role. These findings highlight SFPQ as a major regulator of H1 expression and EBV latency.


Subject(s)
Herpesvirus 4, Human , Histones , PTB-Associated Splicing Factor , Virus Activation , Virus Latency , Herpesvirus 4, Human/genetics , Herpesvirus 4, Human/physiology , Humans , Histones/metabolism , Virus Activation/genetics , Virus Latency/genetics , PTB-Associated Splicing Factor/metabolism , PTB-Associated Splicing Factor/genetics , Gene Expression Regulation, Viral , B-Lymphocytes/virology , B-Lymphocytes/metabolism , Epstein-Barr Virus Infections/virology , Epstein-Barr Virus Infections/genetics , Epstein-Barr Virus Infections/metabolism , CRISPR-Cas Systems , Promoter Regions, Genetic/genetics , Trans-Activators/metabolism , Trans-Activators/genetics , Genome, Viral
16.
Plant Mol Biol ; 114(3): 59, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750303

ABSTRACT

The plant-specific homeodomain-leucine zipper I subfamily is involved in the regulation of various biological processes, particularly growth, development and stress response. In the present study, we characterized four BnaHB6 homologues from Brassica napus. All BnaHB6 proteins have transcriptional activation activity. Structural and functional data indicate the complex role of BnaHB6 genes in regulating biological processes, with some functions conserved and others diverged. Transcriptional analyzes revealed that they are induced in a similar manner in different tissues but show different expression patterns in response to stress and circadian rhythm. Only the BnaA09HB6 and BnaC08HB6 genes are expressed under dehydration and salt stress, and in darkness. The partial transcriptional overlap of BnaHB6s with the evolutionarily related genes BnaHB5 and BnaHB16 was also observed. Transgenic Arabidopsis thaliana plants expressing a single proBnaHB6::GUS partially confirmed the expression results. Bioinformatic analysis allowed the identification of TF-binding sites in the BnaHB6 promoters that may control their expression under stress and circadian rhythm. ChIP-qPCR analysis revealed that BnaA09HB6 and BnaC08HB6 bind directly to the promoters of the target genes BnaABF4 and BnaDREB2A. Comparison of their expression patterns in the WT plants and the bnac08hb6 mutant showed that BnaC08HB6 positively regulates the expression of the BnaABF4 and BnaDREB2A genes under dehydration and salt stress. We conclude that four BnaHB6 homologues have distinct functions in response to stress despite high sequence similarity, possibly indicating different binding preferences with BnaABF4 and BnaDREB2A. We hypothesize that BnaC08HB6 and BnaA09HB6 function in a complex regulatory network under stress.


Subject(s)
Brassica napus , Dehydration , Gene Expression Regulation, Plant , Leucine Zippers , Plant Proteins , Salt Stress , Transcription Factors , Brassica napus/genetics , Brassica napus/metabolism , Brassica napus/physiology , Brassica napus/drug effects , Plant Proteins/genetics , Plant Proteins/metabolism , Salt Stress/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Leucine Zippers/genetics , Plants, Genetically Modified , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Arabidopsis/genetics , Arabidopsis/physiology , Arabidopsis/metabolism , Promoter Regions, Genetic/genetics , Phylogeny , Circadian Rhythm/genetics , Stress, Physiological/genetics
17.
BMC Plant Biol ; 24(1): 404, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38750451

ABSTRACT

BACKGROUND: Ubiquitin-specific proteases (UBPs) are a large family of deubiquitinating enzymes (DUBs). They are widespread in plants and are critical for plant growth, development, and response to external stresses. However, there are few studies on the functional characteristics of the UBP gene family in the important staple crop, maize (Zea mays L.). RESULTS: In this study, we performed a bioinformatic analysis of the entire maize genome and identified 45 UBP genes. Phylogenetic analysis indicated that 45 ZmUBP genes can be divided into 15 subfamilies. Analysis of evolutionary patterns and divergence levels indicated that ZmUBP genes were present before the isolation of dicotyledons, were highly conserved and subjected to purifying selection during evolution. Most ZmUBP genes exhibited different expression levels in different tissues and developmental stages. Based on transcriptome data and promoter element analysis, we selected eight ZmUBP genes whose promoters contained a large number of plant hormones and stress response elements and were up-regulated under different abiotic stresses for RT-qPCR analysis, results showed that these genes responded to abiotic stresses and phytohormones to varying degrees, indicating that they play important roles in plant growth and stress response. CONCLUSIONS: In this study, the structure, location and evolutionary relationship of maize UBP gene family members were analyzed for the first time, and the ZmUBP genes that may be involved in stress response and plant growth were identified by combining promoter element analysis, transcriptome data and RT-qPCR analysis. This study informs research on the involvement of maize deubiquitination in stress response.


Subject(s)
Gene Expression Regulation, Plant , Genome, Plant , Multigene Family , Phylogeny , Ubiquitin-Specific Proteases , Zea mays , Zea mays/genetics , Zea mays/enzymology , Ubiquitin-Specific Proteases/genetics , Ubiquitin-Specific Proteases/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Stress, Physiological/genetics , Genes, Plant , Gene Expression Profiling , Promoter Regions, Genetic/genetics
18.
BMC Plant Biol ; 24(1): 392, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38735932

ABSTRACT

BACKGROUND: Long-chain acyl-coenzyme A synthetase (LACS) is a type of acylating enzyme with AMP-binding, playing an important role in the growth, development, and stress response processes of plants. RESULTS: The research team identified different numbers of LACS in four cotton species (Gossypium hirsutum, Gossypium barbadense, Gossypium raimondii, and Gossypium arboreum). By analyzing the structure and evolutionary characteristics of the LACS, the GhLACS were divided into six subgroups, and a chromosome distribution map of the family members was drawn, providing a basis for further research classification and positioning. Promoter cis-acting element analysis showed that most GhLACS contain plant hormones (GA, MeJA) or non-biological stress-related cis-elements. The expression patterns of GhLACS under salt stress treatment were analyzed, and the results showed that GhLACS may significantly participate in salt stress response through different mechanisms. The research team selected 12 GhLACSs responsive to salt stress for tissue expression analysis and found that these genes are expressed in different tissues. CONCLUSIONS: There is a certain diversity of LACS among different cotton species. Analysis of promoter cis-acting elements suggests that GhLACS may be involved in regulating plant growth, development and stress response processes. GhLACS25 was selected for in-depth study, which confirmed its significant role in salt stress response through virus-induced gene silencing (VIGS) and induced expression in yeast cells.


Subject(s)
Gossypium , Plant Proteins , Salt Stress , Gossypium/genetics , Gossypium/physiology , Salt Stress/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant , Coenzyme A Ligases/genetics , Coenzyme A Ligases/metabolism , Multigene Family , Phylogeny , Promoter Regions, Genetic/genetics , Genome, Plant , Genes, Plant
19.
Int J Mol Sci ; 25(9)2024 May 06.
Article in English | MEDLINE | ID: mdl-38732270

ABSTRACT

The majority of the world's natural rubber comes from the rubber tree (Hevea brasiliensis). As a key enzyme for synthesizing phenylpropanoid compounds, phenylalanine ammonia-lyase (PAL) has a critical role in plant satisfactory growth and environmental adaptation. To clarify the characteristics of rubber tree PAL family genes, a genome-wide characterization of rubber tree PALs was conducted in this study. Eight PAL genes (HbPAL1-HbPAL8), which spread over chromosomes 3, 7, 8, 10, 12, 13, 14, 16, and 18, were found to be present in the genome of H. brasiliensis. Phylogenetic analysis classified HbPALs into groups I and II, and the group I HbPALs (HbPAL1-HbPAL6) displayed similar conserved motif compositions and gene architectures. Tissue expression patterns of HbPALs quantified by quantitative real-time PCR (qPCR) proved that distinct HbPALs exhibited varying tissue expression patterns. The HbPAL promoters contained a plethora of cis-acting elements that responded to hormones and stress, and the qPCR analysis demonstrated that abiotic stressors like cold, drought, salt, and H2O2-induced oxidative stress, as well as hormones like salicylic acid, abscisic acid, ethylene, and methyl jasmonate, controlled the expression of HbPALs. The majority of HbPALs were also regulated by powdery mildew, anthracnose, and Corynespora leaf fall disease infection. In addition, HbPAL1, HbPAL4, and HbPAL7 were significantly up-regulated in the bark of tapping panel dryness rubber trees relative to that of healthy trees. Our results provide a thorough comprehension of the characteristics of HbPAL genes and set the groundwork for further investigation of the biological functions of HbPALs in rubber trees.


Subject(s)
Gene Expression Regulation, Plant , Hevea , Multigene Family , Phenylalanine Ammonia-Lyase , Phylogeny , Plant Proteins , Phenylalanine Ammonia-Lyase/genetics , Phenylalanine Ammonia-Lyase/metabolism , Hevea/genetics , Hevea/enzymology , Hevea/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Stress, Physiological/genetics , Gene Expression Profiling , Plant Diseases/genetics , Plant Diseases/microbiology , Genome, Plant , Promoter Regions, Genetic/genetics
20.
Nat Commun ; 15(1): 3699, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38698035

ABSTRACT

In silico identification of viral anti-CRISPR proteins (Acrs) has relied largely on the guilt-by-association method using known Acrs or anti-CRISPR associated proteins (Acas) as the bait. However, the low number and limited spread of the characterized archaeal Acrs and Aca hinders our ability to identify Acrs using guilt-by-association. Here, based on the observation that the few characterized archaeal Acrs and Aca are transcribed immediately post viral infection, we hypothesize that these genes, and many other unidentified anti-defense genes (ADG), are under the control of conserved regulatory sequences including a strong promoter, which can be used to predict anti-defense genes in archaeal viruses. Using this consensus sequence based method, we identify 354 potential ADGs in 57 archaeal viruses and 6 metagenome-assembled genomes. Experimental validation identified a CRISPR subtype I-A inhibitor and the first virally encoded inhibitor of an archaeal toxin-antitoxin based immune system. We also identify regulatory proteins potentially akin to Acas that can facilitate further identification of ADGs combined with the guilt-by-association approach. These results demonstrate the potential of regulatory sequence analysis for extensive identification of ADGs in viruses of archaea and bacteria.


Subject(s)
Archaea , Archaeal Viruses , Archaeal Viruses/genetics , Archaea/genetics , Archaea/virology , Archaea/immunology , Promoter Regions, Genetic/genetics , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Regulatory Sequences, Nucleic Acid/genetics , Viral Proteins/genetics , Archaeal Proteins/genetics , Archaeal Proteins/metabolism , Metagenome/genetics , CRISPR-Associated Proteins/genetics , CRISPR-Associated Proteins/metabolism , CRISPR-Cas Systems/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...